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Introduction
Over the past several decades, osteoarthritis (OA) of the knee 
and hip has emerged as the 11th leading cause of global dis-
ability.1 Among these 2 conditions, the prevalence of knee 
OA exceeds that of hip OA by several fold and it is estimated 
that nearly 1 in every 2 people will develop symptomatic knee 
joint OA by the age of 85 years.1–3 In the United States alone, 
more than 9 million adults have symptomatic OA of the 
knee.4 In particular, it is the senior population that is dispro-
portionately affected, with 37.4% of adults more than the age 
of 60 years displaying radiographic evidence of this condition. 
Approximately, a third of these individuals (12.1%) suffer sig-
nificantly from symptoms of pain and disability.5

Despite the high prevalence of knee OA in those more than 
60 years in the United States, less than 2% of this population 
has a knee joint replacement, and the mean duration of time 
from disease onset to arthroplasty is 19 years.5,6 Such statistics 
underscore the continued importance of exploring and opti-
mizing nonoperative treatments, such as hyaluronan (HA), 
which may have the potential to influence the biology of OA 
and ultimately improve the quality of life for millions of people 
having OA of the knee.

Hyaluronan has been used in thousands of patients for 
the treatment of painful OA of the knee, and its efficacy for 
this indication is supported by results from multiple clinical 
trials.7–11 Despite being classified in the United States, 
Europe, and other countries as a medical device to treat 

knee OA via intra-articular injection, it has been recognized 
that HA preparations may provide clinical benefit beyond 
boundary lubrication and shock absorption, via biochemical 
and genetic modifications that can attenuate nociceptive 
responses and blunt inflammation associated with OA.12 
Since HA was first introduced for the treatment of painful 
knee OA, much has been elucidated regarding both the eti-
ology of this disease and the mechanisms by which HA may 
mitigate joint pain and tissue destruction.

The objectives of this article are to (1) describe the etiology 
and pathophysiology of OA, (2) describe the role of HA on 
disease progression, (3) detail the antinociceptive and anti-
inflammatory actions of HA in OA, and (4) present evidence 
of disease-modifying effects of HA in the preservation and res-
toration of the extracellular matrix (ECM).

Etiology and Pathophysiology of OA
Genetics and epigenetics

The etiology of OA is complex and involves both hereditary 
factors and alteration of gene expression within chondrocytes 
due to environmental and mechanical factors. Approximately 
50% of the risk of developing OA is heritable, but only a few 
loci have been significantly associated with OA in genome-
wide association studies.13 This may be due to epigenetic mod-
ifications, such as DNA methylation, histone modifications, 
and noncoding RNA, that can remodel chromatin and alter 
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gene expression, thereby contributing to the development of 
OA.13 Environmental factors and mechanical stress have been 
shown to induce epigenetic changes within different cell types 
leading to pathology.14 In the field of vascular biology, cells that 
are constantly exposed to fluid shear stress and cyclic stretch 
from blood pressure undergo heritable genetic modifications 
that can influence physiology and pathophysiology.14 Similarly, 
the joint environment is subject to constant pressure and sheer 
stress, which may lead to heritable changes in chondrocytes 
and synoviocytes via mechanotransduction pathways. The link 
between epigenetic changes and OA continues to be investi-
gated and connections continue to be further elucidated. For 
example, the OA disease state has been associated with the 
methylation status of promoter regions responsible for expres-
sion of cartilage-degrading proteins such as matrix metallopro-
teinases (MMPs) and inflammatory molecules.15,16 Given the 
central role of proteinases and inflammatory molecules in the 
progression of OA, exploring the mechanisms underlying their 
increased expression and their cartilage-destroying pathophys-
iology is paramount to understanding the therapeutic effects of 
interventions such as HA.

Proteinases

Expression.  Degradation of the ECM is a central feature of 
OA. In the OA joint environment, catabolic proteinases act on 
aggrecan and collagen, 2 essential components of the ECM.17 
Polymorphisms in genes encoding MMP-1 and MMP-3 and 
A Disintegrin and Metalloprotease (ADAM)-12 have been 
shown to be associated with increased risk for the development 
of OA.18,19

Epigenetic changes in the regulation of genes encoding 
MMPs within synoviocytes and chondrocytes may also be 
involved in the development of OA. Significant promoter 
region demethylation of genes encoding MMP-3, MMP-9, 
and MMP-13, as well as A Disintegrin And Metalloproteinase 
with Thrombospondin Motifs (ADAMTS) 4, was found in 
chondrocytes extracted from patients with OA.20 These genes 
were also found to have methylated promoter regions in carti-
lage samples of patients without OA but who had suffered a 
femoral neck fracture.20 The demethylation positively corre-
lated with the expression of these degrading enzymes.20 
Reduced methylation of specific cytosine-phosphate-guanine 
(CpG) sites within the promoter region of MMP-13 and 
ADAMTS4 resulted in increased expression of these genes in 
the chondrocytes of patients with advanced OA and is consist-
ent with the destructive effects of the enzymes that they 
encode.21 Epigenetic derepression associated with DNA meth-
ylation loss has also been demonstrated in chondrocytes affect-
ing genes encoding MMP-3 and MMP-9.22

Pathophysiology of proteinases.  Multiple studies have demon-
strated increased levels of proteinases and aggrecanases in 
patients with OA.17 These enzymes cleave ECM proteins, 

including aggrecan and collagen, which may lead to chondral 
surface and structural damage.17 Hyaluronidase and reactive 
oxygen species (ROS) degrade HA into low-molecular-
weight (LMW) fragments, and increased levels of LMW 
HA fragments are characteristic of later stage OA.23–25 Cross 
talk between subchondral bone osteoblasts and articular car-
tilage chondrocytes in OA alters the expression and regula-
tion of a number of genes, including ADAMTS5, ADAMTS4, 
MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-
13. These effects are mediated by the mitogen-activated pro-
tein kinase/extracellular signal–regulated kinase 1/2 signaling 
pathways.26 Indirect coculture of OA subchondral bone oste-
oblasts with normal articular cartilage chondrocytes resulted 
in a significant increase in the expression of ADAMTS5, 
ADAMTS4, MMP-2, MMP-3, and MMP-9, whereas cocul-
ture of OA articular cartilage chondrocytes led to increased 
MMP-1 and MMP-2 expression in normal subchondral 
bone osteoblasts.26

The increased expression of MMPs in chondrocytes from 
patients with OA, coupled with a growing understanding of 
the pathways involved in upregulation of these enzymes, has 
made them targets for OA therapies.27 Inhibition of MMP-13 
may be of particular benefit due to its specific expression in the 
cartilage of patients with OA but not normal adult cartilage 
samples. Development of MMP-13–specific inhibitors has the 
potential to avoid the musculoskeletal side effects that have 
been associated with broad-spectrum MMP blockers.28

Pro-inflammatory molecules

Expression.  Inflammation plays a central role in the develop-
ment and progression of OA, and there is a clear link between 
the progression of cartilage damage and the presence of a reac-
tive or inflammatory synovium.29 Multiple inflammatory 
mediators are involved in OA, including interleukin (IL)-1β, 
IL-6, IL-15, IL-17, IL-18, IL-21, and tumor necrosis factor α 
(TNF-α).29 These cytokines act on multiple receptors, includ-
ing CD44, HA-mediated motility receptor (RHAMM), and 
toll-like receptors (TLRs).30,31

The presence of inflammatory mediators is explained, at 
least in part, by increased genetic expression. Demethylation of 
specific CpG sites of the proximal IL-1β promoter in chon-
drocytes obtained from human cartilage has been correlated 
with increased expression levels for this gene.16 MicroRNAs 
also modify gene expression; it has been shown that miR-149 
is downregulated in OA chondrocytes and that this decrease is 
associated with increased expression of the genes for pro-
inflammatory cytokines, including IL-1β, TNF-α, and IL-6.32

Pathophysiology of inflammation.  The cascade of inflammatory 
cytokines and other destructive molecules in OA has been well 
defined. Both IL-1β and TNF-α play key roles in cartilage 
destruction and could be considered as the initiators of the 
inflammatory cascade.29 IL-1β and TNF-α, produced by 
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chondrocytes, mononuclear cells, osteoblasts, and synovial tis-
sues, stimulate the production of many other inflammatory and 
catabolic molecules.29 IL-1β binds to receptors on chondro-
cytes and synovial cells and induces MMP synthesis. It also 
increases chondrocyte production of ADAMTS.33 In addition, 
IL-1β increases nitric oxide (NO) synthesis and decreases 
expression of the antioxidant enzymes that scavenge ROS, 
including superoxide dismutase, catalase, and glutathione per-
oxidase. The net effect of these changes may be an acceleration 
of the damaging effects of oxygen radicals on cartilage.29,34

Stimulation of chondrocytes by IL-1β also leads to the 
expression of TNF-α, which has many downstream pro-
inflammatory effects.29,33 Tumor necrosis factor α suppresses 
the synthesis of proteoglycans and type II collagen in chondro-
cytes; stimulates the release of MMP-1, MMP-3, and MMP-
13; and increases the production of IL-6, IL-8, monocyte 
chemotactic protein, and chemokine ligand 5.29

It has also been shown that IL-6, interferon-inducible pro-
tein 10, macrophage-derived chemokine, platelet-derived 
growth factor AA, and regulated on activation, normal T-cell 
expressed and secreted levels are higher in the synovial fluid 
from patients with OA as compared with that from normal 
controls (P < .001).35 Leptin, macrophage inflammatory pro-
tein 1β, and soluble CD40 levels are also elevated in synovial 
fluid from patients with OA vs that from normal subjects 
(P < .05).35

Interactions with these inflammatory mediators are the 
mechanism by which HA modifies the progression of OA. A 
detailed understanding of such interactions, as discussed in the 
following section, unequivocally highlights that the effects of 
HA extend beyond those of a “medical device” that simply 
lubricates and provides shock absorption.

Role of HA on Disease Progression
Hyaluronan is a naturally occurring ECM molecule found in 
synovial fluid and is fairly ubiquitous throughout the body.36 
It is a high-molecular-weight (HMW) glycosaminoglycan 
that is present at high levels in cartilage and synovial fluid 
and is believed to play an important role in joint lubrica-
tion.37 Hyaluronan also complexes with lubricin, a glycopro-
tein, to form a network that creates a boundary lubricant that 
decreases friction force and greatly reduces wear damage on 
rubbing/shearing surfaces.37 The lubrication provided by 
HA and lubricin is adaptive in that HA diffuses out of the 
cartilage during joint compression and becomes mechani-
cally trapped at the joint interface by a constricted collagen 
pore network, thereby forming HA-lubricin complexes.37 
Hyaluronan also endows synovial fluid with its viscoelastic 
properties.38

Altered characteristics of HA in the synovium can con-
tribute to inflammation. Decreased HA synthesis, increased 
HA degradation, and elevated oxidative stress all lead to a 
decrease in both concentration and average molecular weight 
of the HA present in the synovium.23,24 Multiple studies have 

demonstrated that exposure of chondrocytes and fibroblasts 
to LMW HA fragments (<400 kDa) can cause an upregula-
tion of pro-inflammatory cytokines.39–41 In addition, it has 
been shown that the levels of IL-18 and IL-33 are increased 
in mouse synovial fibroblasts after exposure to HA frag-
ments,40 and that HA fragments enhance the inflammatory 
activity of macrophages.42 Table 1 summarizes the large num-
ber of pro-inflammatory molecules whose genes are induced 
by HA fragments and the cell types in which this occurs.42 In 
contrast, HMW HA appears to have the opposite effect on 
some of these systems, suppressing mediators such as TNF-α 
and IL-1β.43–46

Hyaluronan injection for treatment of OA of the knee is 
regulated by the US Food and Drug Administration (FDA) as 
a medical device; however, HMW HA, such as that used in 
viscosupplementation, also has multiple effects on molecular 
signaling pathways in several cell types found in synovial joints 
and contributes to the homeostasis of synovial joints (Table 2). 
The HA receptor activity may be responsible for the prolonged 
pain relief effect with intra-articular HA therapy, even though 
the residence time of the exogenous molecule within the joint 
is quite short.54

Antinociceptive and Anti-Inflammatory Actions of 
HA
Antinociceptive effects

Hyaluronan products have certain rheologic properties that 
inhibit joint nociceptor discharges by acting as an elastoviscous 
filter. There is also a response to chemical sensitization of noci-
ceptive terminals of inflamed joint tissues, possibly linked to 
HA concentration.55 Results from a study in cats with experi-
mental arthritis indicated that intra-articular injection of 
HMW HA reduced the activity of pain-related primary affer-
ents at baseline and during movement,56 suggesting that joint 
lubrication is not solely responsible for the antinociceptive 
effects of HA. Hyaluronan may coat pain receptors in synovial 
tissues and perhaps also trap molecules involved in pain signal-
ing.57 Recently, single intra-articular injections of HA were 
shown to decrease pain by more than 50% compared with 
saline in a bradykinin/prostaglandin E2 (PGE2) model.58 In 
addition, a single injection of HA-attenuated pain responses 
for at least 56 days after administration.58 Injection of HA into 
the superior compartment of the temporomandibular joint in 
patients with unilateral internal derangement has been shown 
to significantly decrease pain (P < .01), as well as joint levels of 
leukotriene C4, 6-keto-prostaglandin F1α, prostaglandin F2α, 
and IL-1β (all P’s < .05).59 Experiments using human mac-
rophages have indicated that HMW HA interferes with 
lipopolysaccharide (LPS)-induced increases in the production 
of PGE2 and cyclooxygenase 2 (COX-2). In these cells, pre-
treatment with HA suppressed induction of COX-2, leading to 
a decrease in PGE2 production. Use of an anti-CD44 antibody 
reversed the inhibitory effects of HA on the LPS-mediated 
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increase in PGE2 production and COX-2 induction, indicating 
that the anti-inflammatory effects of HA were CD44 receptor 
mediated.51

Additional mechanisms that may contribute to the antino-
ciceptive effects of HA include an inhibition of arachidonic 
acid release from fibroblasts and activation of opioid recep-
tors.60,61 Exposure to HA has been shown to decrease secretion 
of arachidonic acid from fibroblasts taken from patients with 
knee OA and stimulated with bradykinin or induced by a cal-
cium ionophore.60 More recent in vitro experiments demon-
strated that HA stimulated κ opioid receptors expressed by 
Chinese hamster ovary cells and rat dorsal root ganglion 
neurons.61

Results from one study have indicated that unlike anti-
inflammatory drugs, pain reduction resulting from HA admin-
istration was associated with cartilage preservation. Both HA 
and loxoprofen significantly decreased pain in a rabbit OA 
model (partial meniscectomy), as measured by hind paw weight 
distribution, and they also reduced PGE2 production. 
Hyaluronan treatment also significantly inhibited cartilage 
degeneration, whereas loxoprofen did not.52

Anti-inflammatory effects

High-molecular-weight HA has the potential to inhibit the 
inflammatory events involved in OA by interfering with the 
actions of LMW HA fragments at CD44, RHAMM, and 
TLR-2 and TLR-4. Results from in vitro and in vivo studies 
indicate that administration of HMW HA has significant 
anti-inflammatory effects that are mediated, at least in part, by 
blockade of CD44. Administration of HMW HA leads to the 
downregulation of IL-8 and inducible NO synthase gene 
expression in cells that were not stimulated with IL-1. In cells 
that were stimulated with IL-1, TNF-α gene expression was 
also downregulated. Blocking CD44 with a specific antibody 
inhibited the effects of HMW HA on pro-inflammatory gene 
expression.44,62,63 It has also recently been shown that HMW 
HA suppresses IL-1β production in monocyte/macrophage 
cultures under various inflammatory conditions.46

Inhibition of IL-1β and TNF-α production by HA has 
important downstream effects on the expression of pro-inflam-
matory and catabolic molecules. IL-1β induces ADAMTS via 
p38 mitogen-activated protein kinase and c-jun NH2-terminal 
kinase phosphorylation in human fibroblast-like synoviocytes. 
The ADAMTS degrade aggrecan in cartilage; HMW HA also 
suppresses ADAMTS expression.50

IL-1β downregulates peroxisome proliferator–activated 
receptor γ (PPARγ) and increases expression of MMPs.45 
Results from a study focused on inflammatory gene expression 
in IL-1β–stimulated human chondrosarcoma cells indicate 
that HMW HA increases the expression of PPARγ and 
decreases that for COX-2, MMP-1, and MMP-13. Additional 
anti-inflammatory effects of HA demonstrated in this study 

Table 1.  Selected genes that are induced by HA fragments and the 
cells in which this occurs.42

Category Gene/protein Cell type

Chemokines CCL3 Macrophages

CCL4 Macrophages

CXCL2 Macrophages

CCL5 Macrophages

CCL2 Renal tubular 
epithelial cells

CXCL10 Macrophage

CXCL9 Macrophage

CXCL1 Endothelial cells

CCL5 Macrophages

IL-8 Endothelial cells, 
epithelial cells

CXCL1 Macrophages

Cytokines IL-12 Macrophages, 
dendritic cells

TNF-α Dendritic cells

IL-1β Dendritic cells

Growth factors TGF-β2 Monocytes

IGF-I Macrophages

Transcription factors IκBα Macrophages

AP-1 Endothelial cells

Rest Monocytes

ECM MMP-10 Endothelial cells

MMP-13 Monocytes, 
dendritic cells

PAI-1 Macrophages

uPA Macrophages

MME Macrophages

MMP-9 Dendritic cells

Collagen VIII Endothelial cells

HSPG Syndecan-4 Endothelial cells

Others iNOS Hepatocytes, 
endothelial, Kupffer, 
and stellate cells

COX-2 Renal tubular 
epithelial cells

MDR-1 Lymphocytes

Trdn Monocytes

Frk Monocytes

Abbreviations: AP-1, activator protein 1; CCL, chemokine ligand; COX-2, 
cyclooxygenase 2; CXC, chemokine receptor; ECM, extracellular matrix; 
Frk, fractalkine; HA, hyaluronan; HSPG, heparin sulfate proteoglycan; IGF-
1, insulinlike growth factor 1; IκBα, nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor α; IL, interleukin; iNOS, inducible nitric 
oxide synthase; MDR-1, multidrug resistance protein 1; MME, macrophage 
metalloelastase; MMP, matrix metalloproteinase; PAI-1, plasminogen activator 
inhibitor 1; TGF-β2, transforming growth factor β2; TNF-α, tumor necrosis factor α; 
Trdn, triadin; uPA, urokinase-type plasminogen activator.
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Table 2.  Selected genes that are suppressed by HMW HA and the cells in which this occurs.

Category Gene/protein Cell type References

Cytokines IFN-γ Chondrocytes Campo et al, 201043

IL-1β Chondrocytes Chang et al, 201245

  Macrophages Baeva et al, 201446

  Synoviocytes Wang et al, 200644

IL-6 Chondrocytes Campo et al, 201043

  Macrophages Yasuda et al, 201147

  Synoviocytes Wang et al, 200644

LIF Synoviocytes Wan et al, 200644

RANKL Osteoblasts Ariyoshi et al, 201448

TNF-α Chondrocytes Campo et al, 201043

  Synoviocytes Wang et al, 200644

Chemokines CCL5 (RANTES) Chondrocytes Tanaka et al, 200649

IL-8 Synoviocytes Wang et al, 200644

Transcription factors Phospho-Akt/PKB Macrophages Yasuda et al, 201147

NF-κB Chondrocytes Chang et al, 201245

  Macrophages Yasuda et al, 201047

Phospho-JNK Synoviocytes Kataoka et al, 201350

Phospho-p38 MAPK Chondrocytes Yasuda, 201051

  Synoviocytes Kataoka et al, 201350

Phospho-ERK Chondrocytes Hashizume et al, 201052

Proteases ADAM17 (TACE) Synoviocytes Wang et al, 200644

ADAMTS4 (aggrecanase-1) Synoviocytes Wang et al, 2006; Kataoka et al, 201344,50

ADAMTS5 (aggrecanase-2) Synoviocytes Wang et al, 200644

MMP-1 Chondrocytes Hashizume et al, 201052

  Synoviocytes Wang et al, 200644

MMP-2 Synoviocytes Wang et al, 200644

MMP-3 Chondrocytes Hashizume et al, 201052

  Synoviocytes Wang et al, 200644

MMP-9 Synoviocytes Wang et al, 200644

MMP-13 Chondrocytes Hashizume et al, 201052

  Synoviocytes Wang et al, 200644

TIMP-1 Synoviocytes Wang et al, 200644

TIMP-2 Synoviocytes Wang et al, 200644

Others COX-2 Macrophages Yasuda et al, 201051

iNOS Chondrocytes Campo et al, 201043

  Synoviocytes Wang et al, 200644

TLR-4 Chondrocytes Campo et al, 201053

Abbreviations: ADAM, a disintegrin and metalloprotease; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; Akt, Ak strain transforming; 
CCL, chemokine ligand; COX-2, cyclooxygenase 2; ERK, extracellular signal–related kinase; HA, hyaluronan; HMW, high molecular weight; IFN-γ, interferon γ; IL, 
interleukin; iNOS, inducible nitric oxide synthase; JNK, c-jun N-terminal kinase; LIF, leukemia inhibitory factor; MAPK, mitogen-activated protein kinase; MMP, matrix 
metalloproteinase; NF-κB, nuclear factor κB; PKB, protein kinase B; RANKL, receptor activator of nuclear factor κB ligand; RANTES, regulated on activation; normal T 
cell expressed and secreted; TACE, tumor necrosis factor α–converting enzyme; TIMP, tissue inhibitor of metalloproteinases; TLR-4, toll-like receptor 4; TNF-α, tumor 
necrosis factor α.
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included suppression of mitogen-activated protein kinases and 
nuclear factor κB signaling.45

In a rabbit model that induced OA through sterile papain 
solution injection into the knee, an intra-articular injection of 
HA resulted in significant reductions in the expression of 
IL-1β and TNF-α and increased expression of TIMP-1 com-
pared with intra-articular saline-treated controls.64 Histologic 
analysis and Mankin scores also indicated significantly less 
degeneration in the HA-treated vs control animals (P < .01). 
Treatment with HA also resulted in proliferation of chondro-
cytes in this model.64

Exogenous HA also decreases levels of inflammatory 
cytokines and MMPs in tissues taken from patients with OA 
and other conditions associated with joint damage. In one 
study, subacromial synovium fibroblasts were taken from 
patients with rotator cuff disease and stimulated with IL-1β. 
Addition of HA resulted in a dose-dependent decrease in the 
expression of IL-1β, TNF-α, and IL-6. These effects of HA 
were lost when CD44 was blocked with the anti-CD44 anti-
body, OS/37.65 Incubation with HA has also been shown to 
inhibit IL-1β–induced MMP activity in explants of synovial 
tissue from patients with OA. This effect was also potentially 
mediated by interaction of HA with CD44.66

Oxidative stress resulting from chronic overproduction of 
ROS plays an important role in OA, and this stress may be 
induced by abnormal cyclic loading of the joint.67,68 Free radi-
cals can damage DNA, decrease cell viability, and contribute to 
disruption of the ECM. Reactive oxygen species reduce syn-
thesis of proteoglycans and accelerate chondrocyte senescence 
and thus their ability to repair tissue.68

Results from several studies have demonstrated that HA 
reduces levels of ROS and also protects chondrocytes from the 
adverse consequences of exposure to these molecules. Several 
experiments have shown that HA can decrease ROS produc-
tion resulting from mechanical stress. For example, mechanical 
compression of bovine cartilage increases ROS production, and 
this effect is attenuated by incubating the tissue with HA.69 In 
a rabbit model in which OA was induced by intra-articular 
injection of papain, treatment with HA significantly decreased 
the expression of NO vs control animals treated with saline 
(P < .05).64 It has also been shown that HA inhibits NO-induced 
apoptosis and dedifferentiation of chondrocytes in vitro.70

Increased expression of MMPs and aggrecanases contrib-
utes to the cartilage-destructive characteristic of OA,71 and 
intra-articular administration of HA has been shown to sig-
nificantly inhibit these proteases. In human chondrocytes, 
stimulation with IL-6 and the IL-6 soluble receptor increases 
expression of MMP-1, MMP-3, and MMP-13. The effect is 
inhibited by HA via the CD44 receptor. In vitro incubation of 
human chondrocytes with an anti-CD44 antibody blocks this 
action, indicating that interaction of HA with CD44 is neces-
sary for inhibition of MMP upregulation.72 In a rabbit model 
of OA induced by anterior cruciate ligament transection, 
intra-articular injection of HA decreased OA severity and 

suppressed expression of MMP-13 in subchondral bone. 
These effects also required interaction of HA with CD44.73 In 
a different rabbit OA model that induced disease by injection 
of papain, treatment with HA significantly increased synovial 
fluid levels of TIMP-1, an inhibitor of MMPs.64

Furthermore, HA has been shown to decrease MMP 
expression in patients with OA. In a trial of 51 patients with 
knee OA who received intra-articular injections of HA or 
chondroitin sulfate and were followed for 6 months, both treat-
ments significantly decreased pain/inflammation scores 
(P < .01). However, only HA significantly reduced levels of 
MMP-9 (P < .01).74

Disease-Modifying Effects of OA—Tissue 
Protection
Exogenous HA—preservation and restoration of 
the ECM

During the progression of OA, cartilage ECM is remodeled by 
proteases expressed by chondrocytes in response to inflamma-
tion. Changes in the ECM alter the biomechanical environ-
ment of chondrocytes and result in disease progression.75 The 
ECM is integrally involved in the development and progres-
sion of OA, and its preservation and restoration have become 
the focal point of treatment.

Results from several studies have indicated that exogenous 
HA can increase the synthesis of ECM molecules.74,76 
Exogenous HA stimulates synovial fibroblasts to produce new 
HA. When synovial fibroblasts from OA knees were cultured 
with HA formulations of various molecular weights, the 
amount of newly synthesized HA was dependent on both the 
concentration and molecular weight of the exogenous HA. 
Higher molecular weight agents stimulated more HA synthe-
sis and very LMW HA suppressed HA synthesis when applied 
at high concentrations.25 Two additional studies have shown 
that intra-articular injection of HA in patients with OA 
increases endogenous HA production.74,76

In vitro experiments that treated bovine articular chondro-
cytes with HA induced a significant increase in sulfated gly-
cosaminoglycan and hydroxyproline synthesis, which was 
coincident with increased matrix deposition of chondroitin-
6-sulfate and collagen type II.77 Mechanical stress resulting in 
injury has been shown to result in loss of proteoglycans from 
cartilage and can play a role in the development and progres-
sion of OA,78 whereas administration of HA has been shown 
to increase proteoglycan synthesis in cartilage subjected to 
mechanical stress.69

Osteopontin is an extracellular scaffold protein that is 
upregulated in OA cartilage and inhibits IL-1β–induced NO 
and PGE2 production in human OA–affected cartilage in 
response to joint inflammation.79 It has been shown that expo-
sure to HA significantly increases osteopontin expression in 
fibroblast-like synoviocytes from patients with OA of the knee, 
thus potentially amplifying its anti-inflammatory actions.80
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Exogenous HA—clinical evidence of tissue 
protection

Although there is a host of basic science and animal studies 
that demonstrate the ability of HA to significantly blunt rheo-
logic, inflammatory, and physical changes brought about by 
OA, there has been less focus on support of this potential clini-
cally in human studies. In 2007, a review of disease-modifying 
OA drugs dedicated only a single paragraph to HA, conclud-
ing that there was no evidence that HA provided a disease-
modifying effect.81 This conclusion was based on the 
observation that intra-articular HA injection into the knee had 
no significant effect on radiographic progression vs intra-artic-
ular saline over 1 year of follow-up.82 However, a subgroup 
analysis of patients with less severe disease at baseline indicated 
significantly less joint space narrowing with HA vs saline 
(P = .02).82 Ultimately, however, there is a growing consensus 
that plain film radiographs may be insensitive to potential dis-
ease-modifying effects of OA treatments that are currently 
used as well as those in development.83

As imaging technology becomes more advanced, the mac-
roscopic impact of HA supplementation in both experimental 
animals and clinical patients will become more evident. For 
example, in a study that employed an anterior cruciate liga-
ment transection model of OA in rats, T2-weighted magnetic 
resonance (MR) imaging was used to evaluate the effects of 
intra-articular injection of HA, intra-articular saline, and 
sham injections. Study results indicated significant superiority 
of intra-articular HA over intra-articular saline for T2 MR 
values (P < .05). Study results also showed that the T2 values 

were significantly and positively correlated with Mankin 
scores.84 Results from a study of patients evaluated with T1ρ 
and T2 MR imaging just prior to total knee arthroplasty indi-
cated T1ρ mapping was superior to T2 mapping for evalua-
tion of denatured articular cartilage associated with OA of the 
knee.85 A clinical trial using T1ρ MR imaging to evaluate 
effects of intra-articular HA injection is currently under way. 
Further human studies are needed to demonstrate that these 
basic science principles can indeed translate into disease mod-
ification in human OA pathology.

The importance of evaluating outcomes relevant to the 
patient, such as pain and quality of life, alongside imaging, 
cannot be overstated, as approximately two-thirds of adult 
patients with radiographic evidence of knee OA are asympto-
matic.5 Since 2007, studies have investigated the potentially 
beneficial effects of HA in relieving OA pain and reducing 
tissue destruction.55 A 2006 Cochrane Review of randomized 
trials concluded that viscosupplementation with HA (or 
hylan derivatives) was superior to placebo in improving pain 
and function at several weeks. Furthermore, viscosupplemen-
tation generally demonstrated benefit for a longer duration 
compared with intra-articular corticosteroid injections.86 
More recent systematic reviews have also shown safety and 
efficacy of HA over nonsteroidal anti-inflammatory drugs 
and other nonoperative treatment modalities.87,88

Conclusions
Hyaluronan products used for viscosupplementation are  
considered medical devices by the FDA. It has become  

Figure 1.  Selected genes that are involved in ECM degradation (top) and inflammation/pain (bottom) responses in the OA environment. Data on protein 

function were obtained by searching the Universal Protein Resource (UniProt; www.uniprot.org) and analyzing the gene ontology associated with each 

protein. Genes within the gray (left) box are induced by LMW HA fragments and those within the marble (right) box are inhibited by HMW HA. The 

overlapping region (center) show selected genes that have been shown to be both induced by LMW HA and inhibited by HMW HA. ADAM indicates a 

disintegrin and metalloprotease; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; Akt, Ak strain transforming; CCL, chemokine 

ligand; COX-2, cyclooxygenase 2; CXC, chemokine receptor; ECM, extracellular matrix; HA, hyaluronan; HMW, high molecular weight; IL, interleukin; 

iNOS, inducible nitric oxide synthase; JNK, c-jun N-terminal kinase; LMW, low molecular weight; MME, macrophage metalloelastase; MMP, matrix 

metalloproteinase; NF-κB, nuclear factor κB; OA, osteoarthritis; TLR-4, toll-like receptor 4; TNF-α, tumor necrosis factor α.

www.uniprot.org
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increasingly apparent that HA influences a wide range of bio-
logic processes via multiple molecular pathways (Figure 1). 
This review presents evidence for the broader role of HA in the 
treatment of OA beyond joint cushioning and lubrication. 
Exogenous HA can reduce pain transmission and blunt the 
inflammatory cascade via the CD44 receptor that is associated 
with OA, as well as stimulate synthesis and deposition of ECM 
molecules that are suppressed and degraded in an osteoarthritic 
joint. These data also show that the effect of HA is dependent 
on the size of the fragment. In particular, long-chain HMW 
HA exerts an anti-inflammatory effect and can stimulate the 
production of endogenous HA, whereas shorter HA fragments 
are pro-inflammatory and can inhibit HA production at high 
concentrations. Although there are many molecules that will 
reduce the pain and inflammation due to OA, HA has the 
potential to reduce pain as well as to protect and restore the 
chondral matrix.

Much of what is known regarding the biochemical actions 
of HA in the knee OA environment comes from experiments 
with animal models and human explants. Only a small num-
ber of clinical studies have evaluated the biochemical effects 
of HA in patients with OA. Large-scale clinical trials that 
evaluate biomarker changes in response to treatment, as well 
as noninvasive imaging studies, would be beneficial for fur-
ther elucidating the mechanism(s) of action of HA in OA, 
demonstrating disease modification in vivo and providing 
insight into additional biological targets for treatment of this 
very common disease.
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