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Abstract: The impact of germline variants on the regulation of the expression of tumor microenviron-
ment (TME)-based immune response genes remains unclear. Expression quantitative trait loci (eQTL)
provide insight into the effect of downstream target genes (eGenes) regulated by germline-associated
variants (eVariants). Through eQTL analyses, we illustrated the relationships between germline
eVariants, TME-based immune response eGenes, and clinical outcomes. In this study, both RNA se-
quencing data from primary tumor and germline whole-genome sequencing data were collected from
patients with stage III colorectal cancer (CRC). Ninety-nine high-risk subjects were subjected to im-
mune response gene expression analyses. Seventy-seven subjects remained for further analysis after
quality control, of which twenty-two patients (28.5%) experienced tumor recurrence. We found that 65
eQTL, including 60 germline eVariants and 22 TME-based eGenes, impacted the survival of cancer pa-
tients. For the recurrence prediction model, 41 differentially expressed genes (DEGs) achieved the best
area under the receiver operating characteristic curve of 0.93. In total, 19 survival-associated eGenes
were identified among the DEGs. Most of these genes were related to the regulation of lymphocytes
and cytokines. A high expression of HGF, CCR5, IL18, FCER1G, TDO2, IFITM2, and LAPTM5 was
significantly associated with a poor prognosis. In addition, the FCER1G eGene was associated with
tumor invasion, tumor nodal stage, and tumor site. The eVariants that regulate the TME-based
expression of FCER1G, including rs2118867 and rs12124509, were determined to influence survival
and chromatin binding preferences. We also demonstrated that FCER1G and co-expressed genes in
TME were related to the aggregation of leukocytes via pathway analysis. By analyzing the eQTL
from the cancer genome using germline variants and TME-based RNA sequencing, we identified the
eQTL in immune response genes that impact colorectal cancer characteristics and survival.

Keywords: expression quantitative trait loci; tumor microenvironnement; immune response genes;
FCER1G; colorectal cancer
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1. Introduction

Many researchers have shown their interest in the impact of germline variants on
clinical outcomes in different types of cancer. The common variants typically have modest
effects on entire biological pathways. In contrast, some rare variants are believed to lead
to dysregulation in biological systems [1]. The identification of prognostic and predictive
germline variants for cancer research is a developing field. For example, the germline
SUFU variant is believed to predispose an individual to medulloblastoma and is associated
with a poor prognosis [2]. One hallmark of cancer is that some cancer cells evade the host’s
immune system. The immune system is an essential part of the tumor microenvironment
(TME). The immune response genes that regulate germline variants play a crucial role in
the clinical outcomes of cancer patients [3]. For example, the expression of PD-L1/PD-
1 in the TME contributes to tumor suppression and enhances the immune tolerance of
tumor cells. By understanding the role of immune cells in the TME, we can develop new
immunotherapies for currently nonresponsive tumors.

Transcription has substantial genetic control. Expression quantitative trait loci (eQTL)
provide insight into the effect of downstream target genes (eGenes) regulated by trait-
associated variants (eVariants). They provide a molecular basis for the phenotype–genotype
association. In a cancer study, a comprehensive eQTL analysis revealed the target genes in
cancer susceptibility loci from genome-wide association studies (GWASs) [4,5]. Germline
variants caused by somatically acquired or inherited gene alterations can lead to immune
response gene expression in the TME [6]. From the eQTL analysis of TME-based immune
gene expression, we identified survival-associated eQTL and determined how immune
cells influence cancer risk, development, and prognosis.

By applying technologies such as immune response gene RNA sequencing (RNA-seq)
with germline whole-genome sequencing and patients’ clinical information, we attempted
to reveal the relationships between eVariants in TME-based immune response eGenes and
clinical outcomes through eQTL analyses. This study explores not just the function of
gene expression but also the mechanisms of gene regulation. Importantly, the underlying
germline eVariants could mold the TME-based immune response eGenes expression to
affect the cancer characteristics and survival. eVariants were potential biomarkers for the
prediction of cancer recurrence. eGenes were implied as potential therapeutic targets.

2. Materials and Methods
2.1. Enrollment of Cancer Patients

This was a cohort study. Eligible cancer patients were aged ≥20 years and had
histologically confirmed pathological stage II–III colorectal cancer (CRC), an Eastern Co-
operative Oncology Group performance status (ECOG PS) of 0–1, and adequate organ
function. Patients were willing to provide blood and cancer tissue samples for research
purposes. The exclusion criteria were as follows: patients receiving chemotherapy within
six months, with other malignancies, and with a life expectancy of less than one year.
A total of 124 patients with colorectal cancer (CRC) were recruited for the study at the
National Cheng Kung University Hospital (NCKUH) between January 2015 and January
2019. Follow-up continued through August 2020. Clinical information and blood and tissue
samples for DNA extraction were collected at the time of enrollment. The NCKUH Institu-
tional Review Board approved this study (A-ER-103-395, A-ER-104-153, and B-ER-109-154),
and all participants provided written informed consent.

2.2. Whole Blood Cell Whole-Genome Sequencing

Genomic DNA from collected blood samples was quantified with a Qubit fluorescence
assay (Thermo Fisher Scientific, Waltham, MA, USA) and sheared with an S2 instrument
(Covaris, Woburn, MA, USA). Library preparation was conducted using the TruSeq DNA
PCR-Free HT Kit (Illumina, San Diego, CA, USA). Individual DNA libraries were measured
using the 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) qPCR and Qubit (Thermo
Fisher Scientific). All flow cells were sequenced on a HiSeq 2500 sequencer (Illumina)
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using the SBS kit V4 chemistry (Illumina). FastQC was used for quality control, and the
resulting reads were aligned to the hg19 reference genome with the BWA-MEM algorithm.
The identification of SNPs and indels and genotyping were performed across all samples
simultaneously using standard hard-filtering parameters or variant quality score recalibra-
tion according to the GATK Best Practices recommendations. WGS was performed using
a minimum median coverage of 30×.

2.3. RNA-Seq Library Preparation, Quantification, Pooling, and Sequencing

Cancer tissues with immune response gene expression profile data were obtained from
99 CRC patients. RNA was prepared from formalin-fixed paraffin-embedded (FFPE) tissue
extracted with the RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher Scientific).
RNA concentration was determined on an Invitrogen™ Qubit™ Fluorometer with the
Qubit™ RNA High Sensitivity Assay (Thermo Fisher Scientific). Twenty nanograms of
RNA was used for each reverse transcription reaction, and cDNA was prepared with the
SuperScript™ IV VILO™ Master Mix Kit. Immune response libraries were prepared using
the Ion AmpliSeq™ Kit for Chef DL8 with the Ion Chef™ System and the instructions in
the Oncomine™ Immune Response Research Assay user guide (Pub. No. MAN0015867).
The raw gene expression data were preprocessed using Torrent Suite (Thermo Fisher
Scientific), followed by further normalization. Twenty-two samples failed quality control
because of insufficient sequenced reads.

2.4. WGS and RNA-Seq Data Preprocessing

Briefly, genotyped variants were excluded based on the following criteria: (i) Hardy–
Weinberg equilibrium p-value < 1 × 10−6 estimated from the Hardy–Weinberg R pack-
age [7], (ii) minor allele frequency < 0.05, and (iii) location on a non-autosomal chromosome
or chromosome Y. Immune response genes were selected on the basis of expression reads
≥6 in at least 20% of samples. Expression reads were normalized using the size factors
calculated using the DESeq2 R package [8] followed by quantile normalization.

2.5. Differentially Expressed Gene Analysis

Differentially expressed genes were identified using the DESeq2 R package [8] with
p-values < 0.05.

2.6. Comparison of Gene Expression between Different Types of Samples

Normalized RNA-seq data from the TCGA and GTEx project were downloaded from
a cohort comprised of TCGA, GTEx, and TARGET provided by the UCSC-Xena platform
(http://xena.ucsc.edu/ (accessed on 13 April 2020)) [9]. The Wilcoxon rank-sum test was
used to compare different types of samples.

2.7. Dichotomization for Gene Expression

An optimal cutoff point for each gene’s dichotomizing expression level was identified
with the function survcutpoint built-in the survminer R package [10].

2.8. cis-eQTL Mapping

We mapped cis-eQTL for all preprocessed variants within ±1 megabase of each gene’s
transcriptional start site (TSS) using an additive linear model built-in Matrix eQTL [11].
We included only sex and age as covariates because of the simple ethnic composition.
Significant eQTL were defined with the threshold of a raw p-value < 1 × 10−3.

2.9. In Comparison with the GTEx Database

The loci of our result were first transformed to the reference genome hg38 via the
LiftOver tool built in the UCSC Genome Browser [12] to compare with Single-Tissue cis-QTL
Data V8 downloaded from the GTEx portal (https://gtexportal.org/home/ (accessed on

http://xena.ucsc.edu/
https://gtexportal.org/home/
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21 May 2020)). The overlapping cis-eQTL were identified if the eVariants, eGenes, and signs
of the slope were the same as those from the GTEx.

2.10. Statistical Analysis

Fisher’s exact test and odds ratios were used to assess the relationship between
dichotomized gene expression and clinical features, including the tumor invasion stage,
tumor nodal stage, location, and tumor mutational burden. Kaplan–Meier curves were
used to evaluate recurrence-free survival combined with p-values derived from the log-rank
test. The Cox proportional hazards model built-in survival R package [13] was used to
assess the hazard ratio of each potential immune response gene. Recurrence-free survival
was defined as the time between surgery and cancer recurrence.

2.11. Machine Learning

The caret R package [14] was used to build all machine learning models, including
the SVM, logistic regression, random forest, and multilayer perceptron. To estimate each
model’s performance, the AUROC, accuracy, sensitivity, specificity, negative predictive
value, positive predictive value, and F1 score were derived from the 3-fold cross-validation
repeated 100 times.

2.12. Linkage Disequilibrium

Linkage disequilibrium (LD) was estimated by the genetics R package [15], and the
LD map was generated using the LD heatmap R package [16].

3. Results
3.1. Patient Characteristics and Study Design

In this study, we enrolled 124 patients with stage III CRC. From all subjects, we col-
lected germline whole blood cells for whole-genome sequencing (WGS) and primary tumor
tissue for deep targeted sequencing. To study the impact of TME-based immune response-
associated gene expression on recurrence, tumor samples were collected from 99 high-risk
subjects. After quality control, 77 subjects remained for further analysis, among whom
22 patients (28.5%) suffered from tumor recurrence. We hypothesize that response eQTL im-
pact the clinical outcome through the TME response. First, we identified germline eVariants
that regulate immune response eGene expression by eQTL mapping analyses [11]. Second,
we identified prognostic immune response eGenes. Third, we demonstrated that germline
eVariants affect the clinical outcome through immune response eGenes (Figure 1A).

The baseline characteristics of the patients are reported in Table S1. A total of 50.6%
of the patients were male. The median age of these patients was 58 years. The most
common primary tumor location was the left colon (76.6%). The tumor invasive stage
of these patients was high (T stage: T3–T4) (87%), while the tumor nodal stage was low
(N stage: N0–N1) (70%). Thirty-six percent and ninety percent of patients had somatic
nonsynonymous mutations in KRAS and TP53, respectively. The tumor mutational burden
(TMB) was also estimated, and the top 10th percentile cutoff of TMB was considered
a hypermutated status [17]. The distribution of age, sex, tumor location, tumor invasion
stage, tumor nodal stage, KRAS mutations, TP53 mutations, and hypermutation status
were not significantly different between patients with/without tumor recurrence.
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Figure 1. Study design and workflow for cis-eQTL mapping. (A) Study design. Overall, 126 CRC
patients were enrolled in this study. Ninety-nine patients were subjected to RNA-seq analysis. After
filtering low-quality data, 77 patients were kept for further study with three aims. The first was
to identify cis-eQTL in patients’ tumor micro-environment. In the second, prognostic immune
response genes were identified and used to cluster patients. Finally, eVariants that impacted patient
survival through immune response eGenes were identified for further investigation. (B) Workflow of
eQTL mapping. For the first step, variants derived from WGS with Hardy–Weinberg equilibrium
p-values < 1 × 10−6, a minor allele frequency among these patients of <0.05, or a location on non-
autosomal chromosome or chromosome Y were excluded. Next, expression data were normalized via
DESeq2 and quantile normalization. Next, the R package Matrix eQTL was used to map eQTL using
age and sex as covariates, and the cis distance was set to 1 megabase (Mb). For the meta-analysis,
known eQTL in the GTEx database, the functional impact predicted by DeepSEA, and prognostic
significance were annotated to the resulting eVariants.

3.2. Mapping the Germline eVariants That Regulate Immune Response eGenes Expression

For expression quantile trait loci mapping, we performed an eQTL mapping analysis of
TME-based immune response gene RNA-seq data and whole-genome sequencing data from
77 subjects using Matrix eQTL [18] (Figure 1B). After preprocessing, 7,596,484 germline
variants and the expression levels of 378 immune response transcripts were retained for
eQTL mapping. To realize the clinical and biological significance of the resulting eQTL,
the public eQTL database, survival significance, and functional impact were integrated
into our result. The log-rank test was applied to assess the survival significance of the
resulting eVariants. The functional impact of these eVariants was evaluated by predicting
their chromatin effects using DeepSEA, a deep learning-based algorithmic framework [19].
Overall, 94,220 cis-eQTL comprised 88,847 eVariants, and 377 eGenes with a p-value of
<0.05 were identified (Table S2). These eVariants were spread throughout the intergenic
(46.1%), intronic (41.5%), ncRNA (6.8%), up/downstream (2.7%), UTR (1.7%), and exonic
(1.1%) regions of the genome. In addition, 51.8% of exonic eVariants were nonsynonymous
variants. After setting a p-value < 1 × 10−3 as a threshold, 2083 significant eQTL, composed
of 2063 eVariants and 241 eGenes, were retained for further analyses. Among these eQTL,
the most significant eQTL were associated with eGene PYGL, the glycogen phosphorylase
evolved in glycogen metabolism induced by hypoxia in solid tumors [20], and HLA-B,
one of the human leukocyte antigen class I molecules whose expression is associated
with tumor stage and the survival of CRC [21] (Figure 2A,B). Considering the clinical
significance, 65 eQTL comprising 60 eVariants with p-values of <0.05 from the log-rank test
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and 22 eGenes were determined. Moreover, 146 eVariants with high probability (>0.7) of
an SNP being an eQTL variant were identified by DeepSEA (Table S3).

3.3. PYGL and HLA-B eGenes Were Identified by the Genotype-Tissue Expression Project (GTEx)

We next explored the Genotype-Tissue Expression project (GTEx) database [22] and
found 130 (6.2%) overlapping eQTL pairs with the same eVariants, eGenes, and regulatory
trends in 2083 significant eQTL (Figure S1A). Intriguingly, our result and the GTEx database
shared more overlapping eQTL in the transverse colon and esophageal mucosa compared
with other tissues (Figure 2C). In addition, we found that the most significant overlapping
eQTL were related to the PYGL and HLA-B eGenes (Figure 2D). To assess the roles of PYGL
and HLA-B in CRC, we further examined the expression of these two genes sequenced from
normal and tumor samples. RNA-seq data from The Cancer Genome Atlas (TCGA) and
the Genotype-Tissue Expression project (GTEx) revealed that both PYGL and HLA-B were
expressed at higher levels in normal tissues adjacent to colon cancer than in tumor tissues
or normal tissues derived from subjects without cancer (Figure S1B). This result implies
that PYGL and HLA-B are activated in the TME. Recently, Bien et al. showed that PYGL
was significantly associated with CRC. They also identified rs12589665 and its spanning
region covering two variants, rs72685325 and rs72685323, as a predictive locus for CRC [23].
Although these variants were identified in our study (Figure 2E), the high allele frequency
(approximately 0.4) indicates that they are common in East Asian-related ancestry and
might not be suitable for use as cancer-susceptible risk factors. We also identified eVariants
rs2266161, rs10947210, rs62395278, rs2516455, and rs3093971, which were associated with
the HLA-B eGene (Figure 2F) and have been reported in the GTEx database. However,
there was no evidence about whether they were cancer-susceptible risk factors. Despite
the importance of PYGL and HLA-B, as shown in previous studies, these two genes were
not found to be prognostic factors in the patients described herein. We further conducted
several analyses to identify potential prognostic molecules for clinical usage.
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eVariants that regulate the expression of HLA-B through our pipeline.

3.4. Identifying Essential Immune Response eGenes by Tumor Characteristics and Prognosis
3.4.1. Differentially Expressed Genes (DEGs) Were Identified by Cancer Recurrence

A differential gene expression analysis was performed using the DESeq2 R package [8]
to observe the difference in the immune response in the TME in patients with and without
tumor recurrence. As a result, 41 differentially expressed genes (DEGs) were identified
(Figure 3A, Table S4). Based on the categorization of the Oncomine immune response
research assay, the results showed that most of the downregulated immune response
genes, including IFNB1, MX1, ISG20, CXCR5, BST2, IFI35, and IRF1, were involved in the
signaling of interferons, which have multiple immunoregulatory effects [24]. It has been
demonstrated that the absence of interferons leads to the metastasis of tumor cells [25].
Alternatively, lymphocyte regulators such as CX3CR1, CXCR4, TLR8, TLR7, CCR5, IL18,
FCER1G, and LAPTM5 were slightly upregulated in patients with recurrence.
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Figure 3. Prognostic immune response eGenes and tumor characteristics. (A) M (log ratio)-A
(mean average) plot for the differentially expressed genes (DEGs) between patients with/without
recurrence. Red points indicate the upregulated DEGs in patients with recurrence. Blue points
indicate downregulated DEGs in patients with recurrence. Triangles indicate the significant DEGs
after FDR correction. Most of the downregulated DEGs, including IFNB1, MX1, ISG20, CXCR5,
BST2, IFI35, and IRF1, are involved in interferon signaling. However, lymphocyte regulators such
as CX3CR1, CXCR4, TLR8, TLR7, CCR5, IL18, FCER1G, and LAPTM5 are slightly upregulated
in patients with recurrence. (B) Association between dichotomized immune response genes and
clinical features. The association was derived from Fisher’s exact test. The color scale indicates
the odds ratio. Red indicates that a high expression positively impacts tumor invasion, tumor
nodal stage, tumor originating from the right side of the colon, and hypermutation status. Blue
indicates that high expression negatively impacts these clinical features. White is used when the
association is not significant. (C) Area under the receiver operating characteristic curve (AUROC) of
five classification models. Classification models were built from 41 DEGs. Among these strategies,
the multilayer perceptron and support vector machine models had the best performance, with an
AUROC of 0.93 (MLP: multilayer perceptron; SVM: support vector machine; RF: random forest;
LR: logistic regression).

3.4.2. Correlation of 41 DEGs and Tumor Characteristics

The expression levels of all genes were divided into high and low groups using maxi-
mally selected rank statistics [26] to evaluate each gene’s clinical relevance and prognostic
significance (Table S5). After adjusting the p-values of the log-rank test that compared
the dichotomized expression of each gene by Benjamini–Hochberg adjustment, 36 were
found to be significant, with a false discovery rate of <0.05 (Figure S2). These data showed
that tumor invasion stage, tumor nodal stage, tumor location, and TMB were influenced
by particular genes (Figure 3B). Among these results, a high expression of FCER1G was
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related to the high T and N stages—namely, the proliferation and migration of tumor
cells. Additionally, a high FCER1G expression was observed more in the right side of
the colon than in the left side of the colon. In addition, a previous study demonstrated
a similar association of CD274 and CD3G considering lymph node metastases [27] and
hypermutation [28], respectively.

3.4.3. Predictive Ability of 41 DEGs for Cancer Recurrence in Machine Learning Model

In terms of features importance, we applied several machine learning strategies, includ-
ing the support vector machine (SVM), random forest, logistic regression, and multilayer
perceptron (MLP), to analyze the dichotomized expression of 41 DEGs and estimate their
performance in predicting the cancer recurrence state. On comparing patients with and
without recurrence, the SVM and MLP achieved the best performance, with an area un-
der the receiver operating characteristic curve (AUROC) of 0.93 (Figure 3C). Regarding
sensitivity, the SVM and MLP performed better than the other strategies, with scores of
0.78 and 0.77, respectively. Except for logistic regression, all the different models reached
a specificity score of more than 0.9 (Figure S3A). The results confirm that 41 DEGs are
essential features in molecular biology predicting cancer recurrence.

3.4.4. 36 Survival-Associated Genes Were Selected in Machine Learning Model

Alternatively, we applied the same machine learning strategies to analyze the di-
chotomized expression of the 36 most significant survival-associated genes. The perfor-
mance of the MLP, SVM, and random forest was similar, with AUROCs of approximately
0.88, better than logistic regression with an AUROC of 0.64 (Figure S4A). Both the SVM
and MLP had the best sensitivity of 0.68, which was lower than that of the models that
incorporated 41 DEGs. The random forest showed the highest specificity of 0.92, followed
by the MLP (Figure S3B). By applying K-means fuzzy clustering, these patients were
grouped into the protective group. Only one patient experienced relapse, and the risk
group contained most patients with recurrence (Figure S4B). Compared with the protective
group, it was observed that some lymphocyte regulatory factors were upregulated and
some cytokine signaling factors were downregulated in the risk group. The results indicate
the usefulness of combining cancer recurrence and prognostic survival factors to identify
potential prognostic-associated eQTLs (eVariants and eGenes).

3.5. Germline eVariants Affect the Clinical Outcome through Immune Response eGenes
3.5.1. Selecting Survival-Associated eVariants and eGenes form 41 DEGs

Integrally speaking, 19 survival-associated eGenes among the DEGs were subjected
to a detailed examination (Table S6). Most of these genes were related to the regulation of
lymphocytes and cytokines. The results indicated that a high expression of HGF, CCR5, IL18,
FCER1G, TDO2, IFITM2, and LAPTM5 was significantly associated with a poor prognosis
(Table 1). Previous studies also revealed that most of these genes substantially impacted
the prognosis of patients with various types of cancer and were potential targets for clinical
usage [29–31]. Combined with previous eQTL analyses, we found nine eQTLs, including
nine eVariants and two eGenes (HGF and FCER1G), that correlated with the survival of
cancer patients. Among these potential target genes, the expression of FCER1G was related
to clinical relevance, such as the tumor invasion stage, tumor nodal stage, and primary
tumor location. Therefore, we used FCER1G as the candidate eGene for further validation.
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Table 1. Contributions of eVariants and eGenes to clinical outcome.

eGenes Refseq DGE* eQTLs* (Number) Gene Function Hazard Ratio (95% CI)

HGF NM_000601 0.0468 rs6962550/
rs11365736(2) Cytokine signaling 5.49 [2.34–12.88]

TLR8 NM_138636 0.0029 rs12842223(1) Lymphocyte infiltrate 4.23 [0.99–18.13]
CCR5 NM_001100168 0.0251 rs11456888(2) Lymphocyte infiltrate 3.57 [1.39–9.14]

LAPTM5 NM_006762 0.0411
rs12121984/

rs694215/
rs12135225(8)

Lymphocyte infiltrate 3.51 [1.46–8.39]

IL18 NM_001562 0.0298 rs374315853(1) T cell regulation 3.28 [1.11–9.7]
TDO2 NM_005651 0.0126 rs201071019(1) Checkpoint pathway 2.92 [1.22–6.95]

IFITM2 NM_006435 0.0274 rs764825643(1) Type I interferon signaling 2.9 [1.23–6.85]

FCER1G NM_004106 0.0334 rs2118867/
rs12124509(7) Lymphocyte infiltrate 2.85 [1.22–6.7]

Refseq: reference sequence; DGE*: differential gene expression; eQTLs*: eQTLs variants.

3.5.2. Validation of eVariants and FCER1G eGene by TCGA and GTEx

FCER1G is believed to be involved in cancer prognosis. Bulk RNA-seq data from the
TCGA and GTEx project showed that the expression of FCER1G was higher in normal
tissues near colon cancer than in tumor tissue or normal tissue from noncancer subjects
(Figure 4A). In addition, the analysis of the Human Protein Atlas [32] revealed not only
that the FCER1G protein was expressed on the cytoplasmic membrane of colon cancer cells
by immunohistochemistry staining but also that a high expression level of FCER1G was
associated with poor survival, which is consistent with our results (Figure 4B, a log-rank
p = 0.012). In order to control the effects of other clinical features such as age and gen-
der, we conducted multivariate cox regression to investigate the significance of FCER1G
eGenes. The results indicated the increased recurrent risk of high FCER1G expression
compared to low FCER1G expression in the study cohort (adjust HR: 3.4; 95% CI 1.26–9.37).
The details of multivariate cox regression were shown in Table S7. The number of pa-
tients at risk was appended to the Kaplan–Meier plot in Figure 4B. These results imply
that the high expression of FCER1G in the tumor microenvironment (TME) is a prognos-
tic factor. The eVariant rs12124509 was predicted to influence the binding of chromatin,
with the smallest functional significance score from DeepSEA. In contrast, the log-rank
test revealed that rs2118867 was a survival-associated eVariant, with a p-value of <0.05
(hazard ratio = 0.429). In addition, we surprisingly found that rs12124509 was in perfect
linkage disequilibrium (LD) with the other eVariants (r2 > 0.99), except for rs2118867
(r2 < 0.1) (Figure 4C). The allele frequency of rs1214509 and variants in LD are higher in
non-Finnish European, Finnish, and Ashkenazi Jewish populations (0.648 to 0.715) than in
African and East Asian populations (0.142 to 0.304). These data indicate that alternative
alleles do not frequently occur in Africans and East Asians compared to other populations.
Alternatively, the worldwide allele frequency of rs211867 is similar in different populations
ranging from 0.426 (African) to 0.578 (Ashkenazi Jewish). However, the allele frequency of
rs211867 is 0.318 in the population of Taiwan, which is lower than that of other populations.
The downregulation of FCER1G was associated with the gain of alternative alleles of the
survival-associated eVariant rs2118867, and the most functional eVariant rs12124509 and
the other eVariant in LD with the former (Figure 4D). These results indicate that alternative
alleles of rs211867, rs12124509, and their spanning LD regions lead to a good prognosis by
decreasing FCER1G expression in the TME.
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Figure 4. Expression of FCER1G eGene and its eVariants. (A) Box plot showing the expression level
of FCER1G between different studies. The expression of FCER1G was higher in cancer tissues than
in normal tissues. Our results showed that FCER1G was highly expressed in the primary tumors
of these CRC patients. (B) Kaplan–Meier curve showing the difference in recurrence-free survival
between patients with high or low FCER1G expression. High expression of FCER1G was related to
a poor prognosis, with a log-rank p = 0.012. (C) Linkage disequilibrium map of 7 FCER1G-related
eVariants. The functionally significant eVariant rs12124509 was in linkage disequilibrium with the
other eVariants (r2 > 0.99), except for the survival-associated eVariant rs2118867 (r2 < 0.1). (D) Violin
plot showing the expression level of FCER1G according to different genotypes of rs2118867 and
rs12124509. The downregulation of FCER1G was related to the gain of alternative alleles of rs2118867
and rs12124509 and the other eVariants in LD with the former. *** p-value < 1 × 10−3 from Wilcoxon
rank sum test.

3.6. The Biological Process of FCER1G and Its Co-Expressed Immune Genes

The univariate odds ratio model was used to study immune gene expression levels
and revealed the high expression of FCER1G. The overexpression of the top five genes—
SRGN, HAVCR2, AIF1, TNFSF4, and GZMA—was correlated with a high FCER1G expres-
sion. The downregulation of the top five genes—STAT6, GADD45GIP1, LEXM, BCL2, and
ICOSLG—was associated with a high FCER1G expression (Figure S5). Pathway analysis
was performed using DAVID [33]. There are four major signaling pathway clusters: cluster
1 to cluster 4 (Figure 5). Type I interferon signaling genes, including ISG20, IFNB1, IFNA17,
IFITM2, IFI35, NOS2, and BST2 eGenes, were enriched in cluster 1. A higher expression of
IFITM2 may be regulated by rs764825643. IFITM2 is associated with lymphatic metastasis
and poor clinical outcomes [34]. Cytokine production regulation genes, including the
IL18 and HGF eGenes, were enriched in cluster 2. A higher expression of HGF may be
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regulated by rs6962550/rs11365736. HGF could activate ERK1/2 and AKT via MET phos-
phorylation, resulting in cetuximab resistance in colorectal cancer patients [35]. Leukocyte
aggregation genes, including the prognostic LAPTM5, CCR5, TDO2, FCER1G, and TLR8
eGenes, were enriched in cluster 3. Chemokine receptor 5 (CCR5) is associated with liver
metastasis [36]. The results indicate that targeting the CCR5 axis can be an effective strategy.
TLR8 expression increased the chemotherapy resistance in colorectal cancer. FCER1G and
its co-expressed immune response genes were related to leukocyte aggregation and poor
survival (Figure 5). Lymphocyte activation genes, including the LAMP3 and IKZF3 eGenes,
were enriched in cluster 4. A high LAMP3 protein expression was significantly associated
with the migration and invasion of tumor cells in vitro, lymph node metastasis, and poor
overall survival [37].
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Figure 5. Biological process of FCER1G and its co-expressed immune genes. Clustered heatmap
showing the co-expressed immune response genes and related biological processes. FCER1G and
its co-expressed immune response genes were grouped into cluster 3, which implied leukocyte
aggregation. Type I interferon signaling was enriched with genes in cluster 1, including the prognostic
ISG20, IFNB1, IFNA17, IFITM2, IFI35, NOS2, and BST2 eGenes. Cytokine production regulation
was enriched with genes in cluster 2, including the prognostic IL18 and HGF eGenes. Leukocyte
aggregation genes, including the prognostic LAPTM5, CCR5, TDO2, FCER1G, and TLR8 eGenes,
were enriched in cluster 3. Lymphocyte activation genes, including the prognostic LAMP3 and IKZF3
eGenes, were enriched in cluster 4.

4. Discussion

We conducted a comprehensive analysis of eQTL from the cancer genome using
germline variants and TME-based RNA sequencing, potentially identifying the eQTL
with FCER1G in immune response genes that impact colorectal cancer characteristics and
survival. Germline genetic variants are associated with an increased risk of cancer develop-
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ment. However, the genetic variants that affect the clinical outcome through TME-based
immune response gene expression are still unknown in CRC. We integrated whole-genome
sequencing data and TME-based immune response gene expression data through eQTL
mapping to address these issues. These analyses also provided potential eQTL, including
germline genetic variants and immune gene expression, to predict the prognosis and deter-
mine possible biological mechanisms. Our results highlight the following important points:
(i) 65 eQTL, including 60 germline eVariants in 22 TME-based eGenes, impact the clinical
outcome; (ii) 49 TME-based immune response gene panels can be used to predict prognosis;
(iii) 19 survival-associated eGenes were identified among the DEGs (most of these genes are
related to the regulation of lymphocytes and cytokines); (iv) 9 eQTL, including 9 eVariants
and 2 eGenes (HGF and FCER1G), correlated with the survival of cancer patients; (v) eQTL,
including the rs2118867 and rs12124509 eVariants in TME-based FCER1G eGene expression,
influence both colorectal cancer clinical characteristics and survival; and (vi) FCER1G and
its co-expressed immune response genes are related to leukocyte aggregation genes such
as LAPTM5, CCR5, TDO2, FCER1G, and TLR8. These findings suggest that a compressive
analysis of eQTL and TME-based immune gene expression has a significant impact on
cancer biology.

Through genome-wide association studies (GWASs), several germline variants asso-
ciated with cancer susceptibility were identified through eQTL analysis. From the GTEx
database, we found that the PYGL eGene was associated with the risk of cancer develop-
ment. However, the minor allele frequencies of the previously identified variants, including
rs1258966, rs72685323, and rs72685325, are relatively high in the East Asian population,
ranging from 0.415 to 0.439. These eQTL might not be suitable predictive markers for
East Asians.

Patients who have inherited defective genes in immune cells may experience different
immunotherapy responses, clinical outcomes, and cancer risks [38]. These findings have
implications for identifying individual eQTL based on germline variants and TME-based
immune response genes. This study recognizes the association of 65 eQTL (60 germline
eVariants in 22 TME-based immune response eGenes) and survival.

To understand the relationship between tumor features and cancer recurrence and
tumor microenvironment-based immune response gene expression, we used RNA se-
quencing as a tool for analysis. We developed a 41-DEG panel to predict recurrence with
an accuracy greater than 0.9. In this study, based on the current TME-based immune
response gene expression, we offered a comprehensive analysis of immune response genes
in the tumor invasion stage, tumor nodal stage, tumor sites, and tumor mutational burden.
From the TME-based immune response gene expression data available for CRC, we have
a clear biological interpretability and a basis for future clinical stratification and targeted
interventions. The tumor nodal stage is suggestively correlated with CD274 expression.
Therefore, a high CD274 expression may be a candidate for therapeutic strategies in stage
III CRC. We also found that several genes, including TYROBP, CD1C, KIR2DL3, CD3G,
and TARP, were significantly highly expressed in patients with a high tumor mutational
burden. These genes may serve as onco-immunotherapy targets.

To identify the germline eVariants that affect the clinical outcome through TME-based
immune response eGenes, we reviewed our results to find eQTL comprising survival-
associated DEGs and eVariants. We found nine eQTL, including nine eVariants and
two eGenes (HGF and FCER1G), that correlated with the survival of cancer patients.
The FCER1G eGene is also associated with the tumor invasion stage, tumor nodal stage,
and tumor site. FCER1G, located on chromosome 1, is essential for FcεRI signaling via
an immunoreceptor tyrosine-based activation motif (ITAM). It activates the RAS/MAPK
and NF-kB downstream pathways and increases intracellular calcium levels [39]. Antitu-
mor activity has also been observed in FCER1G knockdown mice [40]. Immune response
FCER1G expression in the TME is also associated with cancer prognosis [41]. We found
that the eVariant rs2118867 could affect tumor features and clinical outcomes through
the TME-based FCER1G eGene expression. However, in vitro cell migration and inva-
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sion assays need to be conducted. We further explored the chromatin effect predicted by
DeepSEA in more detail. The results indicated that inherited rs12124509 slightly increased
the binding preference of transcription factors such as TAL1, GATA2, and TEAD4 (i.e.,
the eVariants generated new binding motifs for these chromatins) (Figure S6). From the
eQTL analysis, we found that rs2118867 and rs12124509 germline eVariants are prognostic
biomarkers in colorectal cancer patients. The FCER1G eGene is a potential therapeutic
target. We identified novel cancer biomarkers for use in clinical practice.

The current study has some significant limitations. First, we used the TCGA and
GTEx data to validate the higher expression of FCER1G in the tumor microenvironment
(TME). At the protein level, we also demonstrated that higher FCER1G protein levels
are associated with poor survival by the analysis of the Human Protein Atlas. However,
we did not confirm the results in in vitro or in vivo studies, such as through Western
blot RNA expression. Second, the RNA was isolated from primary CRC whole-slide
cancer tissue from paraformaldehyde-fixed paraffin-embedded (FFPE). We did not use
microdissection for tumor microenvironment (TME) enrichment. We used the Oncomine™
Immune Response Research Assay (OIRRA), designed to interrogate the tumor microen-
vironment (TME), for analysis. The OIRRA content included 395 genes and 36 across
functional annotation groups associated with lymphocyte regulation, cytokine signal-
ing, lymphocyte markers, checkpoint pathways, and tumor characterization. The assay
was optimized to measure the expression of genes involved in tumor–immune inter-
actions (https://www.thermofisher.com/order/catalog/product/A32881 (accessed on
5 January 2022)). We profiled bulk tumors to study the tumor microenvironment by func-
tional annotation [42]. We did not use microdissection or spatial profiling against cross-
contamination from cancer cells and the tumor environment (TME). In the future, we will
perform single-cell RNAseq or spatial cell biology for TME tissue [43].

5. Conclusions

We conclude that a comprehensive analysis of eQTL in TME-based immune gene
expression significantly impacts cancer biology and provides us with potential immune
therapy targets.
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