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Abstract: At present, a large amount of research from experimental and theoretical points of view
has been done on interpolyelectrolyte complexes formed by electrostatic attractive forces and/or
interpolymer complexes stabilized by hydrogen bonds. By contrast, relatively less attention has
been given to polymer–polymer complex formation with synthetic polyampholytes (PA). In this
review the complexation of polyampholytes with polyelectrolytes (PE) is considered from theoretical
and application points of view. Formation of intra- and interpolyelectrolyte complexes of random,
regular, block, dendritic polyampholytes are outlined. A separate subsection is devoted to amphoteric
behavior of interpolyelectrolyte complexes. The realization of the so-called “isoelectric effect” for
interpolyelectrolyte complexes of water-soluble polyampholytes, amphoteric hydrogels and cryogels
with respect to surfactants, dye molecules, polyelectrolytes and proteins is demonstrated.

Keywords: polyampholyte; polyelectrolyte; interpolyelectrolyte complexes; intrapolyelectrolyte
complexes; “isoelectric effect”

1. Introduction

Formation of polyelectrolyte-polyampholyte complexes (PPC) is crucial from fundamental and
practical points of view [1–5]. IUPAC (International Union of Pure and Applied Chemistry) defines [6]
that a polyampholyte (PA) is a special type of polyelectrolyte (PE) which possesses both cationic and
anionic groups. Conditionally polyampholytes can be divided into 3 classes: “annealed”, “quenched”
and “betainic” (or “zwitterionic”). “Annealed” polyampholytes consist of acid-base monomers that
are ionized in dependence of pH, while “quenched” polyampholytes containing strongly charged
cationic and anionic monomers retain their respective charges independently on pH. “Betainic”
(or “zwitterionic”) polyampholytes are macromolecules containing identical numbers of acid-base
(or fully charged anionic-cationic) species in the same monomer units [7–10]. The macromolecules
existing via compensation of the cationic–anionic monomer pairs without counterions also belong to
”zwitterionic” polymers. In literature the terms “amphoteric” polyelectrolytes and “amphoteric”
copolymers (or macromolecules) are also used [11]. Table 1 represents examples of various
polyampholytes with different chemical structures. The microstructure of polyampholytes can be
represented as random, alternating, graft, diblock, triblock, multiblock, dendritic, and stars.

Concerning the polyelectrolytes, we refer the readers to earlier publications [21–29], where the
fundamental and applied aspects are described and to recent reviews [30,31], in which the theory of
polyelectrolytes and a perspective on polyelectrolyte solutions are comprehensively outlined.
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Table 1. Examples of various polyampholytes.

Chemical Structure of
Monomer Units Name Acronym Type of

Polyampholyte Refs
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of Monomer Units 
Name Acronym 

Type of 

Polyampholyte 
Refs 

 

4-vinylpyridine-co-acrylic acid, 

P(4VPy-co-AA) 
Annealed [12] 

 

N,N-dimethylaminoethylmethacrylate- 

co-methacrylic acid, 

P(DMAEM-co-MAA) 

Annealed [13] 

 

N-vinylimidazole-co-acryic acid, 

P(VI-co-AA) 
Annealed [14] 

 

N,N’-dimethyl-N,N’-diallylammonium 

chloride-co-acrylic acid, 

P(DMDAAC-co-AA) 

Self-quenched* [15] 

 

sodium styrene sulfonate-co-4-vinylpyridine, 

P(NaSS-co-4VPy) 
Self-quenched* [16] 

 

poly(1-methyl-4-vinylpyridinium chloride)-

block-poly(methacrylic acid), 

P1M4VPCl-b-PMAA 

Self-quenched * [17,18] 

 

2-acrylamido-2-methyl-1-propanesulfonic acid 

sodium salt-co-(3-

acrylamidopropyl)trimethylammonium 

chloride, 

P(AMPSNa-co-APTAC) 

Quenched [19] 

 

2-methacryloyloxyethyltrimethylammonium-

co-2-methacryloyloxyethanesulfonate, 

P(METMA-co-MES) 

Quenched 

or zwitterionic 
[20] 

4-vinylpyridine-co-acrylic acid,
P(4VPy-co-AA) Annealed [12]
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Annealed [13]
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* The term “self-quenched” for polyampholytes represents polyampholytes which possess 

permanently ionized charged groups (anionic or cationic) in the repeating units. 

Concerning the polyelectrolytes, we refer the readers to earlier publications [21–29], where the 

fundamental and applied aspects are described and to recent reviews [30,31], in which the theory of 

polyelectrolytes and a perspective on polyelectrolyte solutions are comprehensively outlined. 

In the context of the present review, interaction of polyelectrolytes with polyampholytes leading 

to the formation of PPC is considered as a model reaction between biological objects, in particular 

between proteins and DNA [32], between sodium hyaulronate and proteins [33] on the one hand, 

and for protein purification and separation [34–36], enzyme immobilization [37], controlling delivery 

of DNA into the cell [38,39] on the other. 

This review is mainly focused on the past, present and recent advances of intra- and 

interpolyelectrolyte complexes of polyampholytes. First, the theoretical achievements of 

polyelectrolyte–polyampholyte complexation are highlighted. The theory of polyampholytes is 

described briefly to introduce the readers to specific properties of amphoteric macromolecules in 

dependence of charge distribution. The ability of polyampholytes to form intrapolyelectrolyte 

complexes (Intra-PEC) at the isoelectric point (IEP) is considered. Then experimental findings on the 

interaction of polyelectrolytes with polyampholytes and formation of interpolyelectrolyte complexes 

(Inter-PEC) are reviewed. The realization of “the isoelectric effect” is discussed in the light of 

competition between the Intra- and Inter-PEC. Analogy between interpolyelectrolyte complexes 

derived from anionic and cationic polyelectrolyte pairs and polyampholytes is justified to expand 

our representation on amphoteric behavior of polyelectrolyte complexes. 

2. Theory of Polyampholytes (PA) and Polyelectrolyte (PE)–Polyampholyte Complexation 

2.1. Theory of Polyampholytes 

Key problems of the protein-folding process definitely intensified the fast development of 

polyampholyte theory because the understanding of the protein-folding mechanism on the level of 

synthetic analogs can be of help to explain their structural–functional relationship [40–69]. Several 

attempts to simulate the folding of diblock polyampholyte chains were undertaken by authors [70–

74]. The first theoretical work [41] considered the statistical polyampholytes containing N monomeric 

units with equal amounts of positive f and negative g charges and pointed out that fluctuation-

induced attraction of opposite charges is the major factor determining their physicochemical 

behavior. This is called microelectrolyte and can be illustrated by the Debye–Huckel (DH) theory. 

The conformation change from collapsed state to extended one could be mathematically described 

by Equation (1): 

Poly(carbobetaine), PCB Annealed [7]
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Poly(phosphobetaine), PPB Quenched
or zwitterionic [7]

* The term “self-quenched” for polyampholytes represents polyampholytes which possess permanently ionized
charged groups (anionic or cationic) in the repeating units.

In the context of the present review, interaction of polyelectrolytes with polyampholytes leading
to the formation of PPC is considered as a model reaction between biological objects, in particular
between proteins and DNA [32], between sodium hyaulronate and proteins [33] on the one hand,
and for protein purification and separation [34–36], enzyme immobilization [37], controlling delivery
of DNA into the cell [38,39] on the other.

This review is mainly focused on the past, present and recent advances of intra- and
interpolyelectrolyte complexes of polyampholytes. First, the theoretical achievements of
polyelectrolyte–polyampholyte complexation are highlighted. The theory of polyampholytes is
described briefly to introduce the readers to specific properties of amphoteric macromolecules in
dependence of charge distribution. The ability of polyampholytes to form intrapolyelectrolyte
complexes (Intra-PEC) at the isoelectric point (IEP) is considered. Then experimental findings
on the interaction of polyelectrolytes with polyampholytes and formation of interpolyelectrolyte
complexes (Inter-PEC) are reviewed. The realization of “the isoelectric effect” is discussed in the light
of competition between the Intra- and Inter-PEC. Analogy between interpolyelectrolyte complexes
derived from anionic and cationic polyelectrolyte pairs and polyampholytes is justified to expand our
representation on amphoteric behavior of polyelectrolyte complexes.

2. Theory of Polyampholytes (PA) and Polyelectrolyte (PE)–Polyampholyte Complexation

2.1. Theory of Polyampholytes

Key problems of the protein-folding process definitely intensified the fast development of
polyampholyte theory because the understanding of the protein-folding mechanism on the level
of synthetic analogs can be of help to explain their structural–functional relationship [40–69]. Several
attempts to simulate the folding of diblock polyampholyte chains were undertaken by authors [70–74].
The first theoretical work [41] considered the statistical polyampholytes containing N monomeric units
with equal amounts of positive f and negative g charges and pointed out that fluctuation-induced
attraction of opposite charges is the major factor determining their physicochemical behavior. This is
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called microelectrolyte and can be illustrated by the Debye–Huckel (DH) theory. The conformation
change from collapsed state to extended one could be mathematically described by Equation (1):

γ = e2b2

kT (Ll)−1/2 � 1 collapse
� 1 open collapse

(1)

In the above formula, b l and L represent the monomer size, the Kuhn length and the arc length,
respectively, and γ represents dimensionless parameter. The rest of the physical parameters are the
electron charge (e), the Boltzman constant (k), and the absolute temperature (T).

Earlier research works [59,60] used DH theory to describe the behavior of polyampholytes
which contain unevenly dispersed positive and negative charges. Collapsing phenomena among
alternating polyampholytes is similar to precipitation of neutral macromolecules in poor solvents
which experience a conformational transformation, “coil-globule”. The DH theory is not feasible for
regular polyampholytes since the nearest-neighbor interactions of opposite charges act as dipoles and
eliminate charge fluctuations [44]. Diblock polyampholytes containing the same length of flexible
oppositely charged blocks collapse in three regimes [72]. In the first regime is the electrostatic repulsion
of oppositely charged fragments stabilized by short-range repulsion between monomers. Globules
can be represented as densely packed correlation blobs. These blobs are similar to correlation blobs of
polyampholytes, which have a random distribution of positive and negative charges. The third regime
is related to the formation of dipoles, which are associated into quadruples and further organized
into big multiplets like ionomers [75]. Figure 1 demonstrated the evolution of polyampholytes
(polymerization degree: n = 256).
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Figure 1. Cascade type of transition of polyampholyte chain in dependence of charge asymmetry
(a) and double-stranded helical conformation of the ground state of a diblock polyampholyte obtained
from Monte Carlo simulation (b). Dark and light shades indicate complementary charges (Reprinted
from [72]).

A balanced polyampholyte with zero charge ∆N = 0 forms dense globule (where ∆N is the
difference between the amount of positive fN+ and negative fN− charges). Irrespective of positive
or negative, at charge asymmetry (∆N = 16) a globule is transformed into two halves as shown in
Figure 1. Further increase in charge asymmetry (∆N = 32) promotes the formation of “pearl” or bead
strings connected by a “spring”. The simulation findings of variations in sequence and chain length of
random, diblock and zwitterionic polyampholytes are consistent with experimental observations [65].
Comprehensive information on the theory of polyampholytes can be found in monograph [4].

All aforementioned theoretical conclusions successfully explain most experimental results.
(1) Polyampholytes demonstrate polycationic (if f >> g) or polyanionic (if g >> f )

properties correspondingly.
(2) At the isoelectric point (IEP) (if f ≈ g) the polyampholytes become quasi-electroneutral and

have a small hydrodynamic radius. If soluble, they tend to aggregate; if insoluble, they precipitate.
(3) Addition of salts causes neutral polyampholytes swelling if polyampholytes are soluble,

narrowing the phase separation region or even dissolving the precipitate if they are not soluble
(“antipolyelectrolyte” effect).
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However all aforementioned theories developed for polyampholytes consider mostly quenched
polyampholytes; disregard the specific binding among counterions and polyion; consider mostly
the diluted solutions and are applicable only at low concentration of salts; and do not take into
account non-electrostatic forces (hydrogen bonds, hydrophobic interactions, Van der Waals forces).
Nevertheless the aforementioned principles explain the solution behavior of most polyampholytes
reasonably well.

2.2. Theory of Polyelectrolyte–Polyampholyte Complexation

The study of polyelectrolyte-polyampholyte complexation is promising for protein separation [76]
and delivery of DNA into the cell [77]. The polyelectrolyte–protein or polyampholyte–DNA
interactions are similar to the adsorption of polyampholytes on charged surfaces, because
polyelectrolyte chains are able to polarize protein molecules and recognize them [3,78]. The Monte
Carlo method [79] and molecular dynamics simulations [80,81] have been conducted to explain the
polyampholyte–polyelectrolyte complexation as a function of charge distribution of a polyampholyte,
nature of solvent and salt. The structure of polyelectrolyte-polyampholyte complexes strongly depends
on the charge distribution of polyampholyte chain. The typical aggregate structures formed between
random polyampholytes and polyelectrolytes (RPA-PE) on the one hand, and diblock polyampholyte
and polyelectrolyte (DBPA-PE) on the other, show that DBPA forms micellar aggregate while RPA
forms branch polymer-like aggregate.

Molecular simulation study proved the contribution of polarization and indicated the
stability order for the following complexes: block polyampholyte–polyelectrolyte > statistical
polyampholyte–polyelectrolyte > alternating polyampholyte–polyelectrolyte.

Computational works were devoted to (1) Monte Carlo simulation and analytical considerations
on the adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres (JNS) containing
two oppositely charged hemispheres [82]; and (2) critical adsorption of periodic and random
polyampholytes onto charged surfaces [83]. It is concluded that the PE chain adsorbed onto JNS
differs from the adsorption of PE onto uniformly charged spheres. In the case of PA-surface
adsorption, increasing PA block length enhances the adsorption onto charged planar surfaces
(Figure 2). At low surface charge density σ, the oppositely charged blocks are internally bound to one
another by electrostatic attractions and weakly bound to the surface. At high surface charge density,
the positively charged blocks of PA strongly bind to the oppositely charged surface. In other words,
the positive–negative interactions among the blocks within the PA are replaced by external binding
of positive blocks with the negative surface and the negative PA blocks are liberated. After reaching
the critical adsorption transition, σ→ σc, a rapid reduction in the binding energy occurs. It should
be noted that under the same conditions and surface charge densities the binding energies for the
periodic (block) PAs are significantly bigger than that of the random polyampholytes. Transformation
of Inter-PEC to Intra-PEC is related to exchange of external contacts between PA blocks and PE chain to
internal contacts between positively and negatively charged PA blocks. The simulation-based analysis
of critical PA-surface adsorption conditions can successfully be applied for theoretical modeling of
PE–PA, PE-protein, PE-RNA, and PE-DNA complexation. Electrostatic-driven binding of PE with
Janus type amphoteric nano- or microgels may potentially be used as stimuli-responsive nano- and
micro-actuators [84].

Monte Carlo simulations were used to study the pH effect on the behavior of isolated
polyampholytes and PPC in dilute solutions [85]. Simulation for the polyelectrolyte-polyampholyte
system show that the resulting complexes are stable at pH ≤ 6.5. A further increase in pH results
in destruction of PPC due to repulsion between the polyampholyte and the negatively charged
polyelectrolyte. This theoretical finding confirms the existence of the “isoelectric effect” that is realized
at the IEP of polyampholytes and discussed in Section 5.
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Figure 2. Snapshots of complexes of random polyampholyte (RPA) and diblock polyampholyte
(DBPA) with polyelectrolyte (PE). Red bead represents the positively charged beads of polyampholyte;
blue bead represents negatively charged ones; green bead represents polyelectrolyte chain. (Updated
from [80]).

3. Intrapolyelectrolyte Complexes (Intra-PEC) of Polyampholytes

Formation of intrapolyelectrolyte complexes (Intra-PEC) within a single chain of polyampholytes is
mostly pronounced for block polyampholytes [86]. A linear diblock copolymer poly(styrenesulfonate)-
b-poly(2-vinylpyridine) (PSS-b-P2VP) is the first example of formation of Intra-PEC at the isoelectric
point (IEP) of polyampholytes [87]. Depending on the degree of ionization of a P2VP block,
the conformation of the PSS-b-P2VP is altered from segregated structure with a nucleus of P2VP
blocks to a “frozen” coil and further to globular structure at the IEP due cooperative intraionic contacts
between positively and negatively charged blocks.

Similar behavior was observed for nearly equimolar BPA consisting of poly(methacrylic acid)
(PMAA) and poly(1-methyl-4-vinylpyridinium chloride) (P1M4VPCl) [18,88]. As seen from Figure 3
in acidic and alkaline media PMAA-b-P1M4VPCl acts as polycation and polyanion, respectively;
the reduced viscosity drops with the increase in the ionic strength (µ).
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Figure 3. pH-dependent reduced viscosity of PMAA-b-P1M4VPCl in aqueous solution (1) and at ionic 

strength µ = 0.01 (2) and 0.3 mol·L−1 KCl (3). [PMAA-b-P1M4VPCl] = 0.045 g·dL−1. (Reprinted from 
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Figure 3. pH-dependent reduced viscosity of PMAA-b-P1M4VPCl in aqueous solution (1) and at
ionic strength µ = 0.01 (2) and 0.3 mol·L−1 KCl (3). [PMAA-b-P1M4VPCl] = 0.045 g·dL−1. (Reprinted
from [18]).
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The insolubility of BPA in aqueous solution is observed at the IEP due to the formation of globular
Intra-PEC because of cooperative interactions between the anionic and cationic blocks (Scheme 1).
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Scheme 1. Formation of intrapolyelectrolyte complexes (Intra-PEC) at the isoelectric point (IEP) of
equimolar PMAA-b-P1M4VPCl.

By definition [89], a globule is the state of a macromolecule possessing a definite
thermodynamically stable spatial structure in which the fluctuation of the density is rather small
in comparison with the density itself, while the correlation radius of the density fluctuation is much
smaller than the size of whole macromolecule.

Increase in the ionic strength (µ) of the solution through addition of KCl diminishes the
precipitation region and at higher values of µ = 0.3 mol·L−1 the BPA is entirely dissolved. Dissolution
of BPA is due to screening of the electrostatic interactions among the oppositely charged blocks on
the polymers by KCl, resulting in the change of globule to coil. By definition [89], coil is the state of
macromolecule possessing an adequate spatial structure. In this case, the fluctuation of the density is
in the order of density itself, while correlation radius is in the order of a macromolecular size. Thus,
coil and globule differ from each other by fluctuation regime. From a statistical physics point of view,
such a major (or big) difference between two states is called phases, and transformation between them
is defined as a phase transition. According to this terminology, the transition of globular structure
of BPA at the IEP to coil structure upon addition of low-molecular-weight salts can be qualified as a
phase transition.

A phase diagram of PMAA-b-P1M4VPCl at constant concentration of BPA (C = 0.045 g·dL−1)
and various pH and ionic strength is shown in Figure 4. At the IEP BPA has a wide region of
insolubility that is narrowed upon increase in the ionic strength of the solution adjusted by addition
of KCl. The dissolution of BPA at µ = 0.2–0.4 mol·L−1 KCl is related to the destruction of the
globules stabilized by intraionic salt “bridges” between the oppositely charged blocks. Precipitation of
PMAA-b-P1M4VPCl at µ > 0.4 mol·L−1 can be explained by the “salting out” effect. The Intra-PEC of
PMAA-b-P1M4VPCl composed of the excess of anionic or cationic blocks has the specific structure
at the IEP [18,88]. Its aggregate is made of Intra-PEC surrounded by anionic (or cationic) blocks,
which prevent it from precipitation and preserving the whole macromolecules in water-soluble
state (Scheme 2).
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Scheme 2. Schematic representation of Intra-PEC formed at the IEP of PMAA-b-P1M4VPCl with the
excess of cationic block.

Figure 5 presents the phase diagram of chitosan carboxymethyl esters (CCM)/water/salt systems
with parameters including the polymer concentration, pH and ionic strength of the solution [90,91].
When the concentration of polyampholyte increases, an isoelectric region is broadened and separated
into 2 phases. One is a solvent and the other is a swollen precipitated Intra-PEC.
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polymer concentration. [CCM] = 0.05 wt % (1), 0.1 wt % (2) and 0.5 wt % (3).

Formation of Intra-PEC at the IEP was compared for triblock and random polyampholytes based
on N,N-dimethylaminoethylmethacrylate-methylmethacrylate-methacrylic acid (DMAEM-MMA-
MAA) [92,93]. Light-scattering data of random and triblock copolymers DMAEM-MMA-MAA
of 1:1:1 composition reveal that no aggregation is observed for random copolymers while large
aggregates of the size 110–188 nm are formed for triblock copolymers at the IEP. The latter is due
to the formation of globular Intra-PEC. The same phenomenon was observed for DMAEM-MAA
containing hydrophobic spacers [94] and ABC triblock copolymers of poly(styrene)-b-poly(2- (or
4-)vinylpyridine)-b-poly(methacrylic acid) [95].

Diblock “quenched” polyampholytes composed of AMPSNa-APTAC synthesized by RAFT radical
polymerization exhibit both thermo- and salt sensitive behavior [96]. At low salt concentration,
the Intra-PEC is stabilized by ionic bonds (Figure 6). At 0.8 mol·L−1 ≤ [NaCl] ≤ 1.1 mol·L−1 the
Intra-PEC is disrupted, becomes water-soluble and at 1.1 mol·L−1 ≤ [NaCl] transforms to unimer
state with Rh = 6.0 nm. Upon heating, the saline solution of AMPSNa-APTAC shows the LCST (lower
critical soluble temperature) due to enhancement of hydrophobic interactions of the polymer chains.
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Authors [97] studied the solution and volume-phase behavior, structural and stimuli-responsive
properties of linear and crosslinked triblock polyampholytes PAA109-b-P2VP819-b-PAA109 and
PAA109-b-QP2VP819-b-PAA109 (where PAA is poly(acrylic acid), P2VP is poly(2-vinylpyridine), QP2VP
is quaternized P2VP) with the change in pH and ionic strength of the solution together with
computer simulation of the systems. At pH > 5.0 the system PAA109-b-QP2VP819-b-PAA109 forms
a viscous opaque liquid, while at pH < 3.0 it forms a stiff gel. These results are interpreted in
terms of a charge-driven association between oppositely charged blocks and the formation of neutral
hydrophobic complexes.

The rheology, rotational dynamic light scattering and small angle neutron scattering
were used to evaluate the influence of the pH on gel and solution behavior of the triblock
terpolymer: poly(methyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate-co-methacrylic
acid)-b-poly(methyl methacrylate) (PMAA-b-P(DEA-MAA)-b-PMMA) [98,99]. Existence of telechelic
polyampholytes in several regimes was identified. Phase separation, or precipitation, of PMAA-b-
P(DEA-MAA)-b-PMMA was observed at the IEP (in the range of pH 7.6–8.8). At pH 6.0–7.4 (just below
the IEP regime) a sol–gel transition was fixed. In acidic or basic regions, amphoteric macromolecules are
in stretched conformation due to predominance of positive or negative charges in the polymer chain.

Recent remarkable review [100] is focused on the comparative analysis of stimuli-responsive
hydrogels made of block co-polyampholytes and block copolymers or homopolyelectrolytes. The main
attention is paid to physically crosslinked hydrogels based on the intermolecular association of
hydrophilic triblock copolymers end-capped by polyion sequences. Another gelling system is a mixture
of triblock copolymer with ionic end blocks and an oppositely charged homopolymer. The study of the
solution, rheological and structural properties of co-assembled hydrogels offers important guidance
for their potential biomedical application.

The globular structure of macromolecules [89] can be considered as dense three-dimensional
nucleation, consisting of a “core” from which the monomers “force out of” the solvent and surrounded
by a hydrophilic “edge”. Such globular structure can be realized at the IEP of water-soluble
polyampholytes and lead to formation of high ordered structures [101]. In the authors’ opinion,
the appearance of sharp lines in a Raman spectrum, especially in the low-frequency region, indicates the
presence of a high-ordered structure like crystalline domains in aqueous media. However, additional
XRD (X-ray diffraction), SAXS (small angle X-ray scattering), WAXS (wide angle X-ray scattering),
SANS (small angle neutron scattering) measurements are needed to confirm such hypothesis.



Polymers 2018, 10, 1146 10 of 34

4. Interpolyelectrolyte Complexes of Polyampholytes

The pioneering works of H.A. Bixler and A.S. Michaelis [102], V.A. Kabanov [103],
B. Philipp [104], E. Tsuchida [105], and E.A. Bekturov [106] made substantial contributions to the fast
development of interpolyelectrolyte (or interpolymer) complexes. Various aspects of polyelectrolyte–
polyelectrolyte complexes have been reviewed recently [107–111]. Interpolyelectrolyte complexes of
polyampholytes [112] are a subject less considered in comparison with hydrogen-bonded interpolymer
complexes [113,114]. The complexation between 2-methyl-5-vinylpyridine-acrylic acid (2M5VPy-co-AA)
and poly(acrylic acid) (PAA) was first studied by V.A. Kabanov et al. [115]. It was established that the
common cooperative system consisting of the 2M5VPy-co-AA and PAA via ionic and hydrogen bonds
is responsible for PPC formation (Scheme 3).
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The interaction between polyampholyte and 2,5-ionene bromide by turbidimetry was studied
by [116] (Figure 7).
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Figure 7. Turbidimetric titration curves for ionene bromide solution by chitosan sulfate (CS) at pH = 2.5
(curve 1) and 11.5 (curve 2). [2,5-ionene] = 5·10−4 mol·L−1. Z = [CS]/[2,5-ionene].

It was found that in the alkaline region Inter-PEC while in acidic region Intra-PEC is formed.
The competition between the Intra-PEC and Inter-PEC is clearly seen when 13C nuclear

magnetic resonance (NMR) spectra of N-methyldiallylamine-maleic acid (MDAA-MA) and
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mixture of MDAA-MA and poly(N,N-dimethyl-N,N-diallylammonium chloride) (PDMDAAC) are
compared [117–121]. The signals of carboxylate anions of MDAA-MA participating in the formation
of Intra-PEC appear at 180.5 and 180.8 ppm. The formation of Inter-PEC between carboxylate anions
of MDAA-MA and quaternary nitrogen atoms of PDMDAAC shifts the same peaks to 181.3 and
181.8 ppm. At the IEP of N,N-dimethyldiallylammonium-maleic acid (DMDAA-MA) (pHIEP = 4.1),
the position of the carboxylate anions peak of DMDAA-MA at 182.4 ppm does not change during the
addition of PDMDAAC, e.g., the strength of Intra-PEC is higher than that of the Inter-PEC. Formation
of the Inter-PEC between cellulose-based poly(zwitterion) and PDMDAAC is mentioned in [122].

A copolymer of N,N-dimethyldiallylammonium and alkyl (or aryl) derivatives of maleamic acids
(abbreviated as APA series in dependence of the length of the hydrophobic moieties of maleamic acid)
were involved into the complexation with PAA and poly(styrene sodium sulfonate) (NaPSS) [123]
(Scheme 4)
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Scheme 4. The repeating units of APA (Alkyl (or aryl) polyampholytes) series, where R = H (APA-1);
C4H9 (APA-2); C6H5 (APA-3); C6H5(CH2)3CH3 (APA-4) (Reprinted from [123]).

The PPCs with participation of PAA (or NaPSS) and polyampholytes of the APA series are very
compact and represent core–shell particles that are preserved in aqueous solution due to the presence
of carboxylic and amide groups of APA. Table 2 summarizes the compositions of PPC formed between
APA series and PAA or NaPSS.

Table 2. Composition of polyelectrolyte-polyampholyte complexes (PPC) formed between APA and
PAA and NaPSS.

Polyampholytes Polyelectrolytes (PE) PPC, n = [APA]/[PE]

APA-1 PAA 1:1
NaPSS 3:1

APA-2 PAA 1:4
NaPSS 5:2

APA-3 PAA 1:2
NaPSS 5:1

APA-4 PAA 1:2

Interaction of amphoteric dendrimers and proteins with linear and crosslinked anionic and
cationic polyelectrolytes was investigated by Kabanov et al. [124,125]. In acidic and alkaline media
up to pH ~pHIEP, dendritic polyampholytes can form Inter-PEC with flexible linear polyanions
and polycations. The polyampholyte dendrimers are also efficiently sorbed by a polyanionic
(below the IEP) and polycationic hydrogels (above the IEP). The binding degree of polyampholyte
dendrimers with oppositely charged linear or crosslinked polyelectrolytes is ascribed to the competition
between intra-dendrimeric zwitterions and interionic salt bonds of functional groups of dendrimers
and polyelectrolytes.

The BPA binds the anionic and cationic polyelectrolytes more cooperatively in comparison
with statistical and alternating polyampholytes [17,18,88]. Complexation between BPA and anionic
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(or cationic) polyelectrolyte is higher than complexation between the acidic and basic blocks of BPA.
It should be mentioned that BPA binds the cationic (or anionic) initially and later the anionic (or cationic)
polyelectrolytes (Figure 8).
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Figure 8. pH profile of binding degree θ for systems consisting of PMAA-b-P1M4VPCl/PAA
(1), PMAA-b-P1M4VPCl/PDMDAAC (2), (PMAA-b-P1M4VPCl/PDMDAAC)/PAA (3). Curve 4
corresponds to intramolecular complexation within block polyampholyte PMAA-b-P1M4VPCl.
(Reprinted from Ref. [88]).

However, the cooperative character of this process is much lower than the cooperativity of
block polyampholyte–polyelectrolyte pairs. Such Inter-PECs are insoluble and tend to precipitate.
Figure 9 shows the phase diagram of the system consisting of PMAA-b-P1M4VPCl and PVBTMACl in
dependence of PMAA-b-P1M4VPCl concentration and pH of the solution.Polymers 2018, 10, x FOR PEER REVIEW  13 of 36 
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Figure 9. Phase transitions of Inter-PEC consisting of block polyampholyte PMAA-b-P1M4VPCl and
poly(vinylbenzyltrimethylammonium chloride) (PVBTMACl) in water with opaque solution, gelation,
and precipitation regions. (Reprinted from [18]).

The Inter-PEC in the form of opaque solution is formed at CPEC > 0.075 g·dL−1 and pH = 2–12.
The precipitation starts at pH ≥ 5.0 and CPEC <0.075 g·dL−1. The gelation occurs preferentially at
pH < 5.0 and CPEC > 0.075 g·dL−1. Thus there are three phases in this system which are solution,
gel and precipitate. They can be transformed into each other with changes in either PEC concentration
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or pH. Higher CPEC leads to precipitation of inter-PEC particles. At the relatively low CPEC they
are more uniformly distributed to form an opaque solution. Both the phase transition between
precipitate–microgel and between opaque solution–microgel at low pH are subject to the swelling of
Inter-PEC particles and decrease in the interaction among the ionized carboxylic groups of acidic blocks
in Inter-PEC formation. The gel formation process occurs following the release of PMAA “loops” which
form interchain networks with H-bonding. On the basis of the above results, the transitions between
precipitate–opaque solution, precipitate-microgel and opaque solution–microgel can be illustrated as
shown in Scheme 5:Polymers 2018, 10, x FOR PEER REVIEW  14 of 36 
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Scheme 5. Schematic representation of phase transitions of system PMAA-b-P1M4VPCl/PVBTMACl
in dependence of BPA (blockpolyampholyte) concentration and pH of the solution.

A phase diagram for triblock and random polyampholyte AA-DMAEM-MMA (0.9:1:1) and
poly(vinyl alcohol) (PVA) was investigated along with polymer concentration, pH, and salt
concentration [126,127]. Phase separation occurred at 10% polymer concentrations. The phase
diagrams of PVA with the block polyampholytes exhibit whole miscibility at acidic and alkaline
pH regardless of salt concentration. Each region of the phase diagram was interpreted in terms of the
formation of cooperative hydrogen bonds between the hydroxyl groups of PVA and carboxyl groups of
the undissociated methacrylic acid residue of polyampholytes. PVA and the random polyampholytes
generally display one-phase behavior in the pH-(KCl) space. The phase behavior of the triblock
polyampholytes with PVA is useful to apply for biological molecule separation including proteins,
and organic molecule contaminants, such as halogenated aromatic hydrocarbons.

Authors [128,129] studied the complexation of polycarbobetaines with NaPSS, DNA and
poly(zwitterion)—poly[3-dimethyl(methacryloyloxyethyl ammonium propane sulfonate)] (PDMAPS)
with polymeric anion: poly(2-acrylamido-2-methyl propane sulfonic acid) (PAMPS) or polymeric
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cations: poly(3-acrylamidopropyltrimethyl ammonium chloride) (PDMAPAA-Q) and x,y-ionene
bromides (x = 3, 6; y = 3,4) (Scheme 6).Polymers 2018, 10, x FOR PEER REVIEW  15 of 36 
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Scheme 6. Chemical structures of polymers used for complexation reactions (Reprinted from [128]).

The phase behavior of PDMAPS is totally altered with the addition of these polyelectrolytes,
and the resulting UCST (upper critical soluble temperature) values are found to be different.
Furthermore, the UCST decreased significantly with addition of PAMPS into the PDMAPS solution
and vanished at high PAMPS concentration. This distinct variation in the UCST indicates the
strong interaction between two polyelectrolytes which is correlated with the geometrical structure of
polyelectrolyte complexes (Scheme 7A–C).
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Scheme 7. Scheme of formation of Inter-PEC between PDMAPS and PAMPS (A), PDMAPAA-Q (B)
and x,y-ionene bromides (C). (Reprinted from [128]).

In the case of PDMAPS–PAMPS, an ammonium cation in the middle interacts with sulfonate anion
of PAMPS. Such Inter-PEC is solubilized in water by free anionic groups of PDMAPS (Scheme 7A).
For solubilization of Inter-PEC consisting of PDMAPAA-Q and PDMAPS, ammonium cation of
PDMAPS is responsible because the sulfonates located at the end of side chain are occupied by
quaternary ammonium groups of PDMAPAA-Q (Scheme 7B). Also, PDMAPS can interact with ionene
through the sulfonates located at the end of side chain (Scheme 7C). Thus, complexation of PDMAPS
with anionic polyelectrolyte drastically increases the viscosity via forming a network and reduces
the UCST with increase in the molar ratio of PAMPS/PDMAPS, which is ascribed to presence of free
sulfonates located at the end of side-chain. However, the complexation of PDMAPS-polycation first
minimizes the UCST, which is also found in the complexation of PDMAPS-PAMPS, then the UCST
value increases with a molar ratio of polycation/PDMAPS without forming the network due to the
presence of the free ammonium cation of PDMAPS in the middle of the side chain.
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The formation of Inter-PEC micelles and vesicles was described by [130–132]. Micelles assembled
from random copolymers of AMPSNa-co-APTAC [132] end-capped by anionic (AMPSNa) or cationic
(APTAC) blocks that show protein antifouling properties (Figure 10).
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Figure 10. Chemical structure of random copolymers of AMPSNa-APTAC containing the anionic
(AMPSNa) and cationic (APTAC) blocks (a) and schematic representation of Inter-PEC micelle
formation together with protein antifouling properties (b). (Reprinted from Ref. [132]).

Inter-PEC vesicles were assembled by mixing aqueous solutions of diblock copolymers consisting
of a hydrophilic poly(2-(methcaryloyloxy)ethylphosphorylcholine (PMPC) block and either a cationic
(APTAC) or anionic (AMPSNa) blocks (Figure 11).
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Figure 11. Chemical structures of PMPC-APTAC and PMPC-AMPSNa diblock copolymers (a),
conceptual illustration of stoichiometric Inter-PEC vesicle formation (b), transmission electron
microsope (TEM) (c) and atomic force microscope (AFM) (d) images of vesicles. (Reprinted from [131]).

Both Inter-PEC micelles and vesicles may be appropriate carriers for bioactive compounds and
used as drug delivery systems.
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Complexation of polyampholyte gels and linear polyelectrolytes is a less considered subject [107].
Mechanism of sorption of polyelectrolytes by amphoteric gel is similar to the penetration of linear
polyelectrolytes within the oppositely charged polyelectrolyte networks, as shown schematically
in Figure 12.
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Figure 12. Penetration of macromolecules into hydrogel matrix via “ion-hopping
transportation” mechanism.

Penetration of macromolecules into hydrogel matrix proceeds via “race-relay ion transport”
(or “ion-hopping transportation”) mechanism resulting in gel contraction. The driving force of this
process is electrostatic binding of anionic or cationic polyelectrolytes with positive or negative charges
of hydrogels, e.g., constant migration of charged macromolecules deeply into the gel volume by
exchanging one fragment of the network to another vacant place. Each transfer taking place at the
gel–solution interface is directed towards the hydrogel phase and leads to the formation of a vacancy
within network that in turn is accessible to other macromolecules for transfer in the same direction.

The swelling–deswelling behavior of amphoteric gel which was made of maleic acid (MA),
N,N’-dimehyldiallylammonium chloride (DMDAAC) and diallylamine (DAA) was studied in the
presence of NaPSS [133]. The swelling degree of the amphoteric gel–NaPSS is minimally in the pH
range between 4 and 8 (Figure 13) and increases significantly in the strong acidic and alkaline regions.
As distinct from amphoteric gel MA-DMDAAC-DAA, which shrinks at the IEP (pH≈ 4.6), the complex
of MA-DMDAAC-DAA with NaPSS collapses over a wide range of pH because the NaPSS entrapped
in the gel network acts as additional physical crosslinker. The complexation of polyampholyte gel with
linear polyelectrolyte considerably broadens the IEP of PPC in comparison with the IEP of amphoteric
gel itself.

Layer-by-layer (LbL) assembling of rigid polyampholyte—sulfonated cardo poly(arylen ether
sulfone) (SPES)—with anionic NaPSS and cationic PDMDAAC was shown by [134]. The formation
of LbL between SPES and NaPSS was not observed in the pH range of 1~12. In contrast, multilayers
were easily fabricated between SPES and PDMDAAC in the same pH range. The reason is that SPES
contain two negative charges and one positive charge with every repeat unit exhibiting preferentially
polyanionic behavior. The remarkable behavior of polyampholytes to change the net charge from
positive to negative through the IEP is a powerful tool to assemble the LbL coatings or films with
both cationic and anionic polyelectrolytes. Such an approach was realized by authors [135] to
obtain pH-sensitive LbL films with an amphoteric copolymer, i.e., poly(diallylamine-co-maleic acid)
(PDAMA). LbL films between the NaPSS and PDAMA were formed at pH 3.0, while LbL films
containing PDAMA and cationic poly(N-ethyl-4-vinylpyridine) (PEVP) were observed at pH 8.0.
Using this methodology, the same authors [136] were able to use PDAMA as a component to construct
free-standing LbL films in combination with the NaPSS or the PDMDAAC. The resulting films were
coated onto a quartz slide at a given pH value of 4.0 and 8.0. Furthermore, the precursor, or so
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called sacrificial layer, was covered with LbL films of poly(allylamine hydrochloride) (PAH) and
NaPSS. After pH dependent dissolution of the PDAMA-PDMDAAC or PDAMA-NaPSS precursor
layer, the resulting free-standing PAH-PSS films are colloidally stable in water for a few months. If the
films are thick enough, they can be stable in air.Polymers 2018, 10, x FOR PEER REVIEW  18 of 36 
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Figure 13. pH dependent swelling of amphoteric gel MA-DMDAAC-DAA (1) and complexes of 

amphoteric gel with NaPSS (2). (Updated from [133]). 

Layer-by-layer (LbL) assembling of rigid polyampholyte—sulfonated cardo poly(arylen ether 

sulfone) (SPES)—with anionic NaPSS and cationic PDMDAAC was shown by [134]. The formation 

of LbL between SPES and NaPSS was not observed in the pH range of 1~12. In contrast, multilayers 

were easily fabricated between SPES and PDMDAAC in the same pH range. The reason is that SPES 

contain two negative charges and one positive charge with every repeat unit exhibiting preferentially 

polyanionic behavior. The remarkable behavior of polyampholytes to change the net charge from 

positive to negative through the IEP is a powerful tool to assemble the LbL coatings or films with 

both cationic and anionic polyelectrolytes. Such an approach was realized by authors [135] to obtain 

pH-sensitive LbL films with an amphoteric copolymer, i.e., poly(diallylamine-co-maleic acid) 

(PDAMA). LbL films between the NaPSS and PDAMA were formed at pH 3.0, while LbL films 

containing PDAMA and cationic poly(N-ethyl-4-vinylpyridine) (PEVP) were observed at pH 8.0. 

Using this methodology, the same authors [136] were able to use PDAMA as a component to 

construct free-standing LbL films in combination with the NaPSS or the PDMDAAC. The resulting 

films were coated onto a quartz slide at a given pH value of 4.0 and 8.0. Furthermore, the precursor, 

or so called sacrificial layer, was covered with LbL films of poly(allylamine hydrochloride) (PAH) 

and NaPSS. After pH dependent dissolution of the PDAMA-PDMDAAC or PDAMA-NaPSS 

precursor layer, the resulting free-standing PAH-PSS films are colloidally stable in water for a few 

months. If the films are thick enough, they can be stable in air. 

5. Realization of the ‘Isoelectric Effect’ at the Isoelectric Point (IEP) of Polyampholytes 

At the IEP the compact globule structure is formed via squeezing out the solvent due to strong 

electrostatic attraction forces between oppositely charged groups. The isoelectric effect taking place 

at the IEP was first reported by authors [137–139] and afterwards confirmed by several researchers 

[140–142]. Moreover, it can be stated that any molecules associated with polyampholytes can 

potentially be discharged at the IEP via controlling their inter- and intramolecular interactions. 

Furthermore, if intrachain interaction of acidic and basic groups within a single macromolecule 

prevails the above releasing phenomena can be realized via overcoming interchain interaction 

between substance and polyampholytes. The realization of the “isoelectric effect” for a series of 

water-soluble polyampholytes was demonstrated for metal ions [143], dye molecules [144], 

polyelectrolytes and proteins [145].  

The existence of the “isoelectric effect” was clearly shown for systems consisting of 

polyampholyte based on 2,5-dimethyl-4-vinylethynylpiperidinol-4 and acrylic acid (DMVEP-co-AA) 

and anionic or cationic polyelectrolytes [145]. The composition of Inter-PEC derived from the 

Figure 13. pH dependent swelling of amphoteric gel MA-DMDAAC-DAA (1) and complexes of
amphoteric gel with NaPSS (2). (Updated from [133]).

5. Realization of the ‘Isoelectric Effect’ at the Isoelectric Point (IEP) of Polyampholytes

At the IEP the compact globule structure is formed via squeezing out the solvent due to
strong electrostatic attraction forces between oppositely charged groups. The isoelectric effect
taking place at the IEP was first reported by authors [137–139] and afterwards confirmed by several
researchers [140–142]. Moreover, it can be stated that any molecules associated with polyampholytes
can potentially be discharged at the IEP via controlling their inter- and intramolecular interactions.
Furthermore, if intrachain interaction of acidic and basic groups within a single macromolecule
prevails the above releasing phenomena can be realized via overcoming interchain interaction between
substance and polyampholytes. The realization of the “isoelectric effect” for a series of water-soluble
polyampholytes was demonstrated for metal ions [143], dye molecules [144], polyelectrolytes and
proteins [145].

The existence of the “isoelectric effect” was clearly shown for systems consisting of polyampholyte
based on 2,5-dimethyl-4-vinylethynylpiperidinol-4 and acrylic acid (DMVEP-co-AA) and anionic
or cationic polyelectrolytes [145]. The composition of Inter-PEC derived from the potentiometric,
conductimetric and turbidimetric curves is identified to be at the ratio of [polyampholyte] to
[polyelectrolyte] = 3:1. Figure 14 shows the correlation of the reduced viscosity with pH for the
individual components and Inter-PEC.

Phase separation for the following two systems occurs at the different pH ranges. For the
system composed of DMVEP-co-AA and PAA it occurs at 3.0 < pH < 5.5 and it occurs at pH > 8.2
for the mixture of DMVEP-co-AA and PDMDAAC. Near the IEP of DMVEP-co-AA (pHiep = 7.0) the
reduced viscosity of associates increases sharply. This is due to destruction of polycomplex particles
into individual components. A cooperative destruction of polycomplex particles near the IEP is
confirmed by an independent sedimentation experiment. Figure 15 shows the sedimentation diagrams
of DMVEP-co-AA, PAA and polycomplexes at various pH.

The sedimentograms of the polyampholyte–polyelectrolyte complex demonstrate a single peak
with sedimentation coefficient S = 4.75 and 4.18 at pH = 6.1 and 6.9, respectively. However at pH = 7.1
two peaks with S = 1.9 (“slow peak”) and 5.6 (“fast peak”) show up. The sedimentation coefficients
for individual PAA and DMVEP-co-AA at pH = 7.1 are 1.06 and 3.53, respectively. Thus the presence
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of “slow” and “fast” sedimentation peaks at narrow interval of pH (∆pH = 0.2) is ascribed to the
destruction of Inter-PEC into the singular macromolecules. Inter-PEC consisting of polyampholyte
and polyelectrolyte is expressed as double strand sequences of pairs formed via ionic and hydrogen
bonds [108]. At the near IEP some acidic and basic groups of polyampholytes displayed on loops
can interact with each other and form Intra-PEC. Scheme 8 represents the speculative mechanism of
destruction of polyampholyte–polyelectrolyte associates near the IEP.
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Figure 14. Effect of pH on the reduced viscosity of PAA (curve 1), PDMDAAC (curve 2), DMVEP-co-AA
(curve 3), and Inter-PEC composed of DMVEP-co-AA/PAA (curve 4) and DMVEP-co-AA/PDMDAAC
(curve 5) in water.
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Figure 15. Sedimentograms of PAA (curve 1), DMVEP-co-AA (curve 2) and polyelectrolyte complexes
composed of [DMVEP-co-AA]/[PAA] = 3:1 (curves 3-5) at pH = 6.1 (curve 3), 6.9 (curve 4), and 7.1
(curves 1, 2, 5).
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Scheme 8. Proposed mechanism for destruction of Inter-PEC near the IEP of polyampholyte.

The dependence of Inter-PEC on pH provides further evidence for the validity of the proposed
mechanism [141]. The yield of Inter-PEC composed of polyampholyte-poly(styrenesulfonate)
(PA-NaPSS) and polyampholyte-poly(N,N-dimethyldiallylammonium chloride) (PA-PDMDAAC)
is close to zero at the IEP of polyampholyte.

The “isoelectric effect” can also smartly be used for matrix polyreactions [146]. Scheme 9 explains
the synthesis reaction of poly(N-vinylpyrrolidone) on block polyampholyte matrix. Application of
block polyampholyte as polymerization matrix has the following advantages in comparison with
polyacids and polybases alone: (1) each block (anionic or cationic) can serve as polymerization matrix;
(2) the product of matrix polymerization is water-soluble and preserved from the precipitation due
to free (non-loaded) acidic or basic blocks; (3) the “daughter” chain can easily be separated from the
matrix as a result of competition between inter- and intramacromolecular complexation; (4) molecular
weight of products can be to some degree controlled by the length of polymer matrix; (5) block
polyampholyte can be used for matrix polyreactions several times.
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Scheme 9. Realization of the “isoelectric effect” in synthesis of poly(N-vinylpyrrolidone) on
blockpolyampholyte matrix.

The method of protein separation by water-soluble polyampholytes is selective complexation
of polyampholyte with one of the proteins, which has predominating positive or negative
charge [93,147–150]. Upon addition of polyampholyte to a mixture of proteins, some proteins form a
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complex with the polyampholyte, as the others stay in the supernatant phase [151]. The precipitated
protein–polyampholyte complex may be isolated from the system and then redissolved at a different pH
or else can be destroyed at the IEP, where the full precipitation of polyampholyte itself takes place [152].

Unique separation of protein mixture was performed at the IEP of block polyampholytes [153].
In this case one of the blocks of polyampholyte interacts with one charge of protein, which is opposite
to its charge, while the main chain (or other block)—with another protein charge as illustrated
in Scheme 10.
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In both cases protein release process occurs at the IEP of polyampholyte due to the formation of
intraionic polyelectrolyte complexes (Intra-PEC).

It is interesting to note that the “isoelectric effect” was observed for complexes of polyampholyte
dendrimers with highly swelling sodium poly(2-acrylamido-2-methylpropanesufonate) (PAMPSNa)
and PDMDAAC used as polyelectrolyte networks [154]. Polyampholyte dendrimers represent
the carboxylated poly(propylenimine) dendrimers (PPID) of five generations abbreviated as
PPID-(COOH)x, where x = 4, 8, 16, 32 and 64. As seen from Figure 16 at the IEP of polyampholyte
dendrimer the relative weight of Inter-PEC samples m/m0 (where m is the equilibrium weight of the
product of completed sorption at a given pH of the equilibrium solution, m0 is the weight of initial
equilibrium swollen gel in water) increases significantly due to destruction of Inter-PEC and release
of polyampholyte dendrimer to outer solution from the polyelectrolyte network. If such a sample is
washed with distilled water, its relative weight becomes close to unity.

Thus at the IEP of polyampholyte dendrimer the detachment of amphoteric macromolecules
from the gel matrix of polyelectrolytes takes place. This statement is very important because the
“isoelectric effect” can be realized not only for linear polyampholyte–polyelectrolyte complexes,
but also for water-soluble dendrimeric polyampholyte-polyelectrolyte gels. The mechanism of release
of polyelectrolytes or polyampholytes can be explained by competition between Intra-PEC and
Inter-PEC formation. The data of Figure 16 suggest that the polyampholyte dendrimer can pass
from the Inter-PEC containing the anionic gel to a new Inter-PEC formed by the cationic gel, and vice
versa, with fine-tuning of pH near the IEP. The transfer of polyampholyte dendrimer from anionic to
cationic gel in dependence of pH is schematically illustrated in Scheme 11.

At pH 4.0–4.5 sorption of polyampholyte dendrimer by anionic gel AMPSNa leads to shrinking of
the gel layer and concavation of gel sample. At pH 6.5–7.0 the polyampholyte dendrimer is desorbed
from AMPSNa and absorbed by PDMDAAC. The formation of Inter-PEC between polyampholyte
dendrimer and PDMDAAC gel results in gel contraction and concavation of sample.

The feasibility of the “isoelectric effect” was tested for crosslinked amphoteric macroporous
cryogels consisting of N,N-dimethylaminoethylmethacrylate and methacrylic acid (DMAEM-co-MAA)
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with respect to surfactant—sodium dodecylbenzene sulfonate (SDBS), dyes methylene blue (MB) and
methyl orange (MO), and protein lysozyme [155]. It was found that the release efficiency of dye,
surfactant and protein at the IEP from amphoteric cryogel (pHIEP = 7.1) can reach up to 98%. Figure 17
shows release mechanism of low- and high-molecular compounds at the IEP of amphoteric cryogel.

At the IEP of amphoteric cryogel the cooperativity of intrachain interactions between the acidic
and basic groups within a cryogel chain exceeds those of interchain interactions between cryogel and
protein (surfactant and dye molecules). As a result, at the IEP of amphoteric cryogel (pHIEP = 7.1) the
lysozyme, MB, MO and SDBS are released from the cryogel matrix to the outer solution.

An alternative way of protein separation is molecularly imprinted polyampholyte (MIP) hydrogels
and cryogels that are synthesized by crosslinking acid-base monomers in the presence of template
proteins forming polyampholyte–protein complexes within the network [156–158]. After removing of
the template a cavity with a complementary shape and selective recognition properties to template
molecules is maintained [159]. The stimuli sensitive ability of MIP networks to switch on/off the
affinity of the networks for the imprinted molecules by fine-tuning of temperature, pH, and ionic
strength is promising for biomedical applications [160,161].
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Figure 17. Schematic representation of adsorption of sodium dodecylbenzene sulfonate (SDBS) at pH
5.3 (route 1), lysozyme at pH 9.5 (route 2) and their release at pH 7.1, eg. at the IEP of amphoteric
cryogel (route 3). (Reprinted from [155]).

6. Amphoteric Behavior of Interpolyelectrolyte Complexes

Polyelectrolyte complexes (PEC) are the products of interaction of weak or strong polyelectrolytes
in various combinations [102–107,162]. The formation of PEC has no analogues in chemistry of
low-molecular-weight compounds because the stabilization of the final products is mainly due to
the entropy factor. From the thermodynamic point of view, the complementarity of macromolecules
bearing cationic and anionic groups is the driving force of PEC formation that is also responsible for
self-organization of biopolymers. Depending on the charge density of interacting polyelectrolytes,
concentration, stoichiometry, pH, ionic strength, organic solvent additive PEC particles can be
maintained as clear solution, opaque solution, precipitation and gel state. The preparation procedure
of PEC films, fibers or coatings includes the dissolution of PEC in ternary system consisting of
water, salt and organic solvent. A thin interfacial PEC film can rapidly be formed when two high
concentrated polyelectrolytes are mixed [102]. PEC membranes can also be designed on the boundary
of water–organic solvents [163–169]. In recent years the layer-by-layer deposition technique received
a lot of interest [170–173]. The existence of stoichiometric (SPEC) and non-stoichiometric (NPEC)
polyelectrolyte complexes is commonly recognized today [162]. As distinct from SPEC, where the
molar ratio of oppositely charged polyelectrolytes involved into complexation reaction is 1:1, NPEC are
the products of cooperative interpolyelectrolyte reactions between oppositely charged polyelectrolytes
with different polymerization degrees or chain lengths taken in non-equivalent ratios.

Block polyampholytes with the equal number of oppositely charged polyelectrolyte blocks are very
close to SPEC, while block polyampholytes with the excess of positively or negatively charged blocks
are analogous to NPEC [17,18]. However the main difference between block polyampholytes and PECs
is that the interactions between two blocks result in a loss of conformational and translational entropy.
The electrophoretic mobilities and radius of the particles of block polyampholyte PDMAEM-b-PMANa
(the molar ratio of base/acid segment is 1/1.8) and the mixture of PDMAEM and sodium salt of PMAA
with the same molar ratio of polybase:polyacid = 1:1.8 are compared in Figure 18 [86].

The IEPs of both systems are 6.0. The instability regions for the mixture of homopolyelectrolytes
and the blockpolyampholytes are also similar and displaced near the IEP. However, for the mixture of
homopolyelectrolytes the strong complexation starts at 4.5 < pH < 9.0, and for block polyampholyte
at 5.5 < pH < 8.0. This fact is probably explained by additional hydrophobic stabilization of
interpolyelectrolyte complex particles. The stable homopolymer complexes at pH below 4.5 and
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above pH 9.0 have smaller size than the copolymer does even if the homopolymer molecules have
longer length.

Isotachophoretic and viscometric results obtained for SPEC consisting of sodium salt of PAA
(NaPAA) and poly[2-(N,N-diethyl-N-methylamino)ethyl acrylate] show positive and negative charges
at pH = 4.6 and 8.3, respectively, and neutrality at pH = 7.0 [167,168,174,175]. Whereas for NPEC
consisting of poly(sodium acrylate-co-acrylamide) and poly[2-(N,N-diethyl-N-methylamino)ethyl
acrylate] the isoelectric pH corresponds to 4.0. The value of the reduced viscosity at the IEP increases
with the growth of the ionic strength as in the case of polyampholytes (Figure 19).
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(Reprinted from Ref. [86]).
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Figure 19. The relationship between the reduced viscosity of the system [poly(sodium acrylate-co-
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Figure 19. The relationship between the reduced viscosity of the system [poly(sodium
acrylate-co-acrylamide)]/[poly-2-(N,N-diethyl-N-methylamino)ethyl acrylate] and pH at µ = 0.05
(curve 1), 0.075 (curve 2), 0.25 (curve 3), and 0.5 (curve 4). (Reprinted from [174]).

The conformational behavior of equimolar polyampholytes on the basis of vinyl- and
styrenesulfonic acids and aminoalkylmethacrylates [176] repeats the properties of semi-interpenetrating
polyelectrolyte networks (semi-IPPN) composed of crosslinked polybase and linear polyacid [177–179].
The invariability of the reduced viscosity at 2.8 < pH < 6.0 is an indication of the constant hydrodynamic
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volume of polyampholyte particles at the IEP [176]. The semi-IPPN [174] also collapses in the range
of 3 < pH < 8 due to formation of interpolyelectrolyte complexes between oppositely charged groups.
The swelling of semi-IPPN [179] at the IEP with increasing of the ionic strength can be accounted
for the screening of ionic network by small ions. PEC membranes derived from the polyelectrolyte
complexes [166–169,180,181] also show amphoteric character [182]. A minimum swelling degree of
the membranes is ensured by Coulombic attractions between long sequences of acidic and basic
groups of polyelectrolytes (Figure 20). The isoelectric point of PEC solution and membrane where the
macromolecule is electroneutral is observed at pH ∼= 6.5.

Polymers 2018, 10, x FOR PEER REVIEW  26 of 36 

 

0 2 4 6 8 10 12 14
0

400

800

1200

 

T
h
e

 d
e
g

re
e

 o
f 
s
w

e
lli

n
g

, 
w

t.
%

pH
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Shashua [183] observed the oscillation of the electric potential across an ultrathin PEC membrane
designed from co(acrylic acid-acrylamide) and PDMAEA in the presence of 0.15M NaCl. Shashua’s
membrane consists of a cation selective polyacidic zone (a), an anion-selective polybasic zone (b)
and a neutral polyampholytic zone (c). Under an externally imposed potential across the membrane,
the cations will migrate from left to right while the anions will act oppositely. The salt accumulation
takes place in the ampholytic region. Such salt accumulation invokes two effects. The generated
osmotic pressure in the ampholytic zone (c) will cause water flow and induce an increase of hydrostatic
pressure. Simultaneously, the accumulated salt will cause the contraction of polyanionic (a) and
polycationic (b) zones. If the hydrostatic pressure generated from the polyelectrolyte configurational
change overcomes the osmotic pressure, the solvent flow will be reversed. The process can be
regenerated with the addition of salt which subsequently forces solvent from the zone c, thereby driving
the concentration yet higher. In the regenerative step, salt will move out of the ampholytic region
because of its high concentration gradient, and will continue its flow out until the membrane has
reached the point of maximum contraction. Thus the process moves into the stage of diminishing
salt concentration, following the relaxation of the PEC membrane matrix, and eventual return of the
membrane to its initial state. The analytical solution of this phenomenon has been presented.

7. Conclusions

Intra- and interpolyelectrolyte complexes of polyampholytes represent an unusual category
of the polyelectrolyte complexes (PEC) that are the products of interaction of oppositely
charged polyelectrolytes. The formation of polyelectrolyte-polyampholyte complexes (PPC) with
participation of random, regular, block, dendritic polyampholytes has no analogues in chemistry
of low-molecular-weight compounds because the stabilization of final products is mainly due to
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electrostatic attraction between the opposite charges and entropy factor arising from the release of
counterions. As evidenced in recent experiments [184,185], the driving entropy forces also originate
from the rearrangement of water molecules around the polymer chains during the complexation.
The complementarity of interacting macromolecules bearing charged groups is the driving force of
PPC formation that is also responsible for the self-organization of biopolymers. In a dependence
with charge density of interacting components, concentration, stoichiometry, pH, ionic strength,
organic solvent additives, the PPC can be formed as clear solution, opaque solution, precipitation
and gel state. As distinct from homopolyelectrolytes, polyampholytes can interact with both anionic
and cationic macromolecules. This is especially specific for block polyampholytes. In turn the
complexation of the equal number of oppositely charged polyelectrolyte blocks are very close to
the formation of stoichiometric PEC, while block polyampholytes with the excess of positively or
negatively charged blocks are able to form non-stoichiometric PEC. However the main difference
between blockpolyampholytes and PECs is a loss of conformational and translational entropy caused
by the interaction between two blocks. The stability order of PPC is theoretically predicted and
experimentally confirmed as shown in the following order: block polyampholyte–polyelectrolyte
> statistical polyampholyte–polyelectrolyte > alternating polyampholyte–polyelectrolyte. In most
cases the suggested theoretical models describe the solution behavior and complexation properties of
polyampholytes reasonably well. Several fundamental properties of polyampholytes were discovered
in the last century. One of them is the so-called “antipolyelectrolyte” effect predicted by Ehrlich
and Doty [186], theoretically concluded by Higgs and Joanny [42] and confirmed experimentally
by many research groups [187–190]. The “antipolyelectrolyte” effect is related to the hydrodynamic
size (or unfolding) of amphoteric macromolecules at the isoelectric point (IEP) upon addition of
low-molecular-weight salts. Afterwards, this statement was confirmed for statistical-, alternating-
and block-polyampholytes of various natures and structures as well as for polyampholyte hydrogels.
Another fundamental discovery is the so called “isoelectric effect” described in subsection 5. Briefly,
any substances bound to polyampholytes may be discharged at the IEP via governing forces among
inter- and intramolecular paths. Furthermore, as the intrachain interaction of acidic and basic groups
within a single macromolecule is superior to the interchain interaction, releasing the loaded substance
from the polyampholytes carrier can be fulfilled. The realization of the “isoelectric effect” for a series
of water-soluble polyampholytes, amphoteric hydrogels and cryogels was demonstrated with respect
to surfactants, dye molecules, polyelectrolytes and proteins. The third finding is the structural
and behavioral similarity of stoichiometric and non-stoichiometric polyelectrolyte complexes as
well as interpenetrating polyelectrolyte networks to polyampholytes that is formulated as follows:
(1) stoichiometric and nonstoichiometric PEC can serve as model of balanced or neutral (the same
number of negative and positive charges) and unbalanced or non-neutral (an excess of positive or
negative charges) polyampholytes; (2) stoichiometric and nonstoichiometric PEC have a compact
structure and minimum solubility at the isoelectric pH; (3) near the IEP both PECs and polyampholytes
are able to swell at high salinity media; (4) the oscillation mechanism of PEC membranes and
polyampholyte gels has the same nature and explanation; (5) the “isoelectric” effect found at the IEP of
polyampholytes is also observed for PEC. An open problem in the behavior of polyampholytes is the
globular structure of macromolecules that can be considered as dense three-dimensional nucleations
consisting of a “core” from which the monomers “force out” the solvent and surrounded by a
hydrophilic “edge”. The possibility of formation of a highly ordered (crystaline) structure at the
IEP of water-soluble polyampholytes is also a challenging task. Here, theoretical, computational and
simulation approaches for better understanding of intra- and interpolyelectrolyte complexation of
polyampholytes are required.

Author Contributions: Writing-Original Draft Preparation, S.E.K; Writing-Review & Editing, N.N.

Funding: This research was funded by Ministry of Education and Science of the Republic of Kazakhstan IRN
AP05131003, 2018–2010 and ACSPRF (57095-DN17).



Polymers 2018, 10, 1146 26 of 34

Acknowledgments: Financial support from the Ministry of Education and Science of the Republic of Kazakhstan
(IRN AP05131003, 2018–2020) is greatly acknowledged. N.N greatly acknowledges the financial support of
ACSPRF (57095-DN17).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Candau, F.; Joanny, J.F. Polyampholytes (Properties in aqueous solution). In Polymeric Materials Encyclopedia;
Salamone, J.C., Ed.; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1996; pp. 5476–5488.

2. Kudaibergenov, S. Polyampholytes: Synthesis, Characterization and Application; Kluwer Academic/Plenum
Publishers: New York, NY, USA, 2002; p. 220, ISBN 978-1-4613-5165-8.

3. Dobrynin, A.V.; Colby, R.H.; Rubinstein, M. Polyampholytes. J. Polym. Sci. Part B 2004, 42, 3513–3538.
[CrossRef]

4. Kudaibergenov, S. Polyampholytes. In Encyclopedia of Polymer Science and Technology; John Wiley Interscience:
Hoboken, NJ, USA, 2008; pp. 1–30.

5. Ciferri, A.; Kudaibergenov, S. Natural and synthetic polyampholytes. 1. Theory and basic structure.
Macromol. Rapid Commun. 2007, 28, 1953–1968. [CrossRef]

6. Hess, M.; Jones, R.G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R.F.;
Tabak, D.; Vohlídal, J.; et al. Terminology of polymers containing ionizable or ionic groups and of polymers
containing ions (IUPAC Recommendations 2006). Pure Appl. Chem. 2006, 78, 2067–2074. [CrossRef]

7. Kudaibergenov, S.; Jaeger, W.; Laschewsky, A. Polymeric betaines: Synthesis, characterization and application.
Adv. Polym. Sci. 2006, 201, 157–224.

8. Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002,
102, 4177–4189. [CrossRef] [PubMed]

9. Laschewsky, A. Structures and synthesis of zwitterionic polymers. Polymers 2014, 6, 1544–1601. [CrossRef]
10. Luca, C.; Neagu, V.; Vasiliu, S.; Barboiu, V. Synthetic polybetaines. Synthesis and properties. In Focus on Ionic

Polymers; Dragan, E.S., Ed.; Research Signpost: Kerala, India, 2005; pp. 1–36; ISBN 81-7736-285-2.
11. Ascoli, F.; Botre, C. Amphoteric behavior of a copolymer: N,N-diethylallylamine-acrylic acid. J. Polym. Sci.

1962, 62, S56–S59. [CrossRef]
12. Masuda, S.; Minagawa, K.; Tsuda, M.; Tanaka, M. Spontaneous copolymerization of acrylic acid with

4-vinylpyridine and microscopic acid dissociation of the alternating copolymer. Eur. Polym. J. 2001,
37, 705–710. [CrossRef]

13. Merle, Y. Synthetic polyampholytes. 5. Influence of nearest-neighbor interaction on potentiometric curves.
J. Phys. Chem. 1987, 91, 3092–3098. [CrossRef]

14. Kudaibergenov, S.E.; Zhaimina, G.M.; Sigitov, V.B.; Bekturov, E.A. Complexation of polyampholyte based
on 1-vinylimidazole and acrylic acid with transition metal ions. In Proceedings of the 32nd International
Symposium on Macromolecules, Kyoto, Japan, 1–5 August 1988; p. 741.

15. Su, S.; Wu, R.; Huang, X.; Cao, L.; Wang, J. Effect of the anionic-group/cationic group ratio on the swelling
behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic
acid-co-diallyldimethylammonium chloride. J. Appl. Polym. Sci. 2006, 102, 986–989. [CrossRef]
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