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A brief glimpse of a tangled web
in a small world: Tumor
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A tumor is a result of stepwise accumulation of genetic and epigenetic

alterations. This notion has deepened the understanding of cancer biology and

has introduced the era of targeted therapies. On the other hand, there have

been a series of attempts of using the immune system to treat tumors, dating

back to ancient history, to sporadic reports of inflamed tumors undergoing

spontaneous regression. This was succeeded by modern immunotherapies

and immune checkpoint inhibitors. The recent breakthrough has broadened

the sight to other players within tumor tissue. Tumor microenvironment is a

niche or a system orchestrating reciprocal and dynamic interaction of various

types of cells including tumor cells and non-cellular components. The output

of this complex communication dictates the functions of the constituent

elements present within it. More complicated factors are biochemical and

biophysical settings unique to TME. This mini review provides a brief guide on

a range of factors to consider in the TME research.
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Introduction

The earliest form of cancer immunotherapy using infection started around 1550

BCE (1). In the modern era, an incidental observation of tumor regression after surgical

wound infection was advanced into a more controlled approach using bacterial vaccines

to treat sarcoma (2). This journey was then succeeded by application of Bacillus

Calmette-Guerin (BCG), various types of oncolytic viruses and Immune Checkpoint

Inhibitors (ICIs) (3). Substantial efficacy and superior safety profiles with tumor-agnostic

features have immediately positioned ICIs in the main treatment arm in most advanced

cancers. This has turned the focus from genetic and epigenetic alterations of tumor cells

to immune cells. However, ICIs are no exception in primary or secondary resistance of

drugs. This has led the investigators to place a heavier emphasis on other players and

the surroundings of tumor cells. Long before the era of ICIs, histologic description of

tumor tissues had already provided some insights in tumor surroundings. For instance,

melanomas are characterized by fibrosis, melanophages (a type of macrophage), new

blood vessels and infiltration of lymphocytes in and around the nests of dying tumor

cells (4). Exuberant lymphoid reaction was the hallmark of colorectal cancer (CRC)
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with high microsatellite instability (MSI-high) (5). The study

of CRC with MSI-high, either in Lynch syndrome or sporadic

cases has indicated the hypermutator phenotype and MSI is

still the most relevant predictive biomarker of ICIs currently

(6). It is quite logical to speculate that the tumor mutational

burden (TMB) follows MSI. However, the TMB is not a

one-marker-fit-for-all (7). An example that displays this fact

to the furthest extent was from an animal study where

fibroblasts having inactivated TGF-β type II receptor induced

precancerous lesions and carcinomas from an otherwise normal

epithelium (8). With all these factors to consider, the center

of attention always has been revolving around tumor cells.

Environment is defined as the circumstances, objects, or

conditions by which one is surrounded (9). The circumstances

surrounding tumor cells theoretically ranges from ions, humoral

factors and matrikines to various types of cells and tissues

and even to host itself. Like the stem cell niche, tumor

cells reside in their own niche or TME, and also have a

reciprocal non-static spatiotemporal coordination with each

other to regulate functions and differentiation of tumor

cells and non-tumor cells, under the influence of specific

physicochemical conditions (10–16). The current mini-review

aims to cover as many attributes in this complex system,

ranging from ions to cell and extracellular matrix (ECM), to

physico-chemical properties of TME in an attempt to assist

future studies.

Definition of tumor
microenvironment

The National Cancer Institute defines the TME as “The

normal cells, molecules, and blood vessels that surround and

feed a tumor cell. A tumor can change its microenvironment,

and the microenvironment can affect how a tumor grows

and spreads.” (17). This definition may appear simple at

first, but encompasses the idea of reciprocal interaction and

regulation of a tumor cell behavior. The most common ones

are based on a structural view (18). Regularly emphasized

is the dynamic nature of the cell population, such as

the resident players and non-resident cellular components

(19, 20). However, these definitions do not specifically

identify other elements, such as tumor interstitial fluid,

and physicochemical properties. To better depict a dynamic

symbiotic system, “Seed and Soil,” an analogy of the stem

cell niche, was introduced (14). “The TME comprises of a

diverse cellular and acellular milieu, in which cancer stem cells

(CSCs) develop and thrive, and various stromal and immune

cells are recruited to form and maintain this self-sustained

environment” (21). In that regard, the definition of “seed

and soil” is comprehensive enough to cover all components

in TME.

Cellular component

Histologic observation of tumors shows cancer cells

intricately mixed with various inflammatory cells, fibroblasts,

fibrotic stroma and blood vessels. One of the most studied

examples is colorectal cancer (CRC) with high microsatellite

instability (MSI). The tumor cells exhibit morphologic

alterations such as mucinous change, signet ring cell feature

and medullary histology (22). The presence of other cellular

players is observed such as high number of tumor infiltrating

lymphocytes (TILs) and peritumoral lymphoid follicles

reminiscent of the inflammatory pattern of Crohn’s disease

(5). There are many cases providing morphologic evidence of

multiple players in tumor tissues (6). On the other hand, data-

driven approach was able to characterize complex alterations

from genes to transcription, and has brought in molecular

classifications agnostic about morphology (23). However,

immune cells are still the major focus in the era of ICIs, and

the classification systems based on proportion of these cells

have been proposed (24–26). Two tier system such as a hot

tumor vs. a cold tumor is widely accepted one. A three tier

system, such as immune infiltrated/inflamed, immune excluded,

and immune silent/desert is also a commonly used method of

classification (25).

Back to the role of each population in TME, cells are

generally classified as tumor-promoting vs. tumor-suppressing

(27) (Table 1). In this scheme, players are not simply

dysfunctional in TME, but also actively suppress other immune

cells and promote tumor cells, ranging from growth, invasion,

metastasis to immune evasion (27). Members found to

promote tumors are regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs), M2 tumor-associated macrophages

(TAMs), resident or derived from bone marrow/spleen,

N2 tumor-associated neutrophils (TANs), cancer-associated

fibroblasts (CAFs), tolerogenic dendritic cells (DCs) and more

details are summarized in Table 1 (76–78). Once cells migrate

into the TME, they are polarized or differentiated under the

local condition, and in return, these cells accelerate the immune-

suppressive and tumor-promoting environment (37). Hence,

the state is not static but can be dynamic depending on the

context or milieu of cytokines and signaling molecules. For

example, M1 macrophage can turn into the M2 type and vice

versa, while an intermediate form between M1 and M2 has been

discovered (37). Proportion-wise, cancer-associated fibroblasts

(CAFs) are the most abundant component in the tumor tissue

(13). CAFs have a critical position in all steps, from tumor

initiation to metastasis, and even being related to therapeutic

resistance (8, 79). CAFs are derived from resident fibroblasts and

other cells such as smooth muscle cells, vascular pericytes and

bone marrow-derived mesenchymal cells, adipocytes and this

process is caused by various factors [stromal cell-derived factor

1 (SDF1), platelet-derived growth factor (PDGF), transforming
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growth factor-β (TGF-β), fibroblast growth factor 2 (FGF2)]

produced by tumor cells and immune cells (18, 80–83). CAFs

then reciprocally promote tumor progression by production

of growth factors (PDGF, TGF-β, epidermal growth factor

(EGF), bone morphogenetic proteins (BMP) and C-X-C motif

chemokine 12 (CXCL12), CXCL13) and these cells also stimulate

angiogenesis by secreting vascular endothelial growth factor

(VEGF), CXCL12 and FGF2 (72–75). Recently, focus was

turned to rare cell populations in TME such as mast cells,

basophils, eosinophils (84–86). The next-generation pathology,

together with the single-cell analysis and systems pathology, will

provide new insightful hints for developing effective therapeutic

protocols targeting the TME (87, 88).

Extracellular matrix

Tumor stroma shows fibrosis or even desmoplasia in

certain types of tumors, such as biliary cancer and gray-colored

myxoid change, likely due to the ECM alteration (89, 90).

ECM undergoes a remodeling process in physiologic and

pathologic conditions, and it is an intricate phenomenon

involving more than 700 proteins (91, 92). The characteristics

of the remodeled ECM eventually affect the fate of cells (91, 92).

The major alterations of tumor ECM are degradation, stiffening

and physical remodeling (18, 93). In TME, acidic condition,

excessive amount of proteases [i.e., matrix metalloproteases

(MMPs), disintegrin and metalloproteinases (ADAMs),

disintegrin and metalloproteinases with thrombospondin

motifs (ADAMTS)] and production of reactive oxygen species

(ROS) from tumor cells, CAF, TAN and TAM cause degradation

of ECM (18). During this process, Extracellular Matrix-Derived

Fragments are produced. These undertake active biological

functions as matrikines leading to various effects such as

acceleration of matrix production, promoting or suppressing

tumor progression and angiogenesis (93, 94). Neoplastic tumors

are stiffer than adjacent normal tissues and this is due to

an excessive laydown of ECM and altered post-translational

modification (PTM) (18). At first, CAFs secrete ECM in

excess, including collagens, glycoproteins, proteoglycans, and

polysaccharides (18). Then, the hypoxic condition enhances

the cross-linking via production of lysyl oxidase (LOX) and

transglutaminase from CAGs (95, 96). These modified rigid

collagen fibrils are known to facilitate tumor cell migration and

progression (97–100). In addition to the structural changes,

PTM of ECM directly controls the tumor cell behavior by

modulating the function of various growth factors embedded

in the matrix (46, 101–103). For example, heparan sulfate

proteoglycans (HSPGs) have different binding and releasing

capacity of growth factors, depending on the sulphation pattern.

This pattern is modified by the enzyme called endosulphatase

(Sulf). In tumor tissue, the isotypes of Sulf are differentially

expressed that the sulphation pattern made by Sulf1 inhibits

the signaling pathways promoting tumors, while contrastingly,

the other formed by Sulf2 enhances them (101, 102). Altered

glycosylation patterns are reported in tumor tissues, and are

currently under research (22, 104, 105). Lastly, mechanical

force causes physical remodeling of the ECM, and makes fibers

aligned to make routes for tumor cell migration (93). In TME,

the ECM is continuously remodeled in terms of the amount,

structure and chemical properties and this process shapes the

interplay of the components modulating the fate of tumor

cells in their progression (93). High-throughput proteomics

approach is expected to acquire more insight from this process

(91, 106).

Biochemical component

One of the approaches to understand the biochemical

property of TME is to look into the fluid of tumor or tumor

interstitial fluid (TIF) (107, 108). TIF is characterized by high

PCO2, low PO2 and low pH, and these parameters are linked

with each other (11, 12). Hypoxia in tumor tissues is the

major contributor to acidic environment. Rapid proliferation of

tumor cells and insufficient oxygen supply cause hypoxia. This

condition reprograms tumor cells favoring aerobic glycolysis

with production of lactate (109). Major regulators in this process

are hypoxia-inducible factor (HIF)-1α, c-Myc, and p53 (110–

114). Hypoxia induces inhibition of prolyl-hydroxylases and this

stabilizes the HIFs. HIF-1α switches metabolisms in tumor by

upregulating the transcription of enzymes of glycolysis, such

as hexokinase 1/2 (HK I/II) and pyruvate kinase isoenzyme

M2 (PKM2), glucose transporters (Glut) such as Glut-1 and

3, alongside other genes inhibiting oxidative phosphorylation

(115–118). As the dimer form of PKM2 prevails in the tumor,

glucose metabolism is shifted to lactate production (118, 119).

Abnormal vessels are unable to clear hydrogen ions effectively

and hydration of CO2 by carbonic anhydrase IX in hypoxic

areas further increase acidity (120). This altered biochemical

environment reconditions the cells under its influence forming

a selective pressure which favors cancer cells over normal

cells (120–128). This situation promotes tumorigenesis, tumor

progression and immune evasion and is related with a poor

clinical prognosis and resistance to therapy. Recently reported

findings suggest that the lactic acid not only intensifies

acidity but also directly impacts cellular signaling pathways

preferentially polarizing TAM to M2 type (129).

What about the ions in TME? Previous studies have shown

that the concentration of ions in TIF is similar to that in

plasma (130). Recently, this notion has been revisited. More

sophisticated analysis revealed that the potassium concentration

is higher in TIF, while other ions such as sodium, chloride

and magnesium remain within normal range (131). Higher

potassium level was found to suppress activation and effector

function of T cells (131). A starvation response is induced by

local hyperkalemia, and this in turn reduces nutrient uptake,

resulting in the imbalance of Acetyl Co-A (AcCoA) level in
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TABLE 1 Tumor-suppressing and tumor-promoting roles of diverse cells in tumor microenvironment.

Tumor-suppressing Tumor-promoting References

T lymphocyte • Th1→ ↑CTL, M1, NK

• via IFN- γ, IL-2

• CTL??direct killing

• CTL→ ↓angiogenesis via IFN-γ

• Th9→ ↑CTL via IL-9 and ↑NK via IL-21

• Th17 recruit CTL, PMN, DC via CCL2, CCL7,

CCL20, CXCL9, CXCL10

• Treg suppress CTL

• Treg→ ↓costimulatory molecules on DC

• Treg modulate homeostasis of NK via IL-2

• Treg→ ↑tumor growth via GFs

• Treg→ ↑angiogenesis

• Th2→ ↓Th1 and ↑M2

• Th17→ ↑angiogenesis

(25, 28–36)

B lymphocyte • B cell as APC to T cell

• B cell→antibody &

• IFN-γ → ↑CTL

• Breg→ ↓CTL, macrophage, TAN via IL-10, TGF-β (25)

Macrophage • M1 cells as APC to Th1, NK

• M1 produces inflammatory cytokine, ROS, RNS and

ADCC→killing tumor cells

• M2 produce IL-10→induce PD-L1 on monocyte

→ ↑infiltration of Treg and ↓CTL

• M2→ ↑PD-1→ ↓macrophage phagocytosis via tumor

PD-L1

• M2→ ↑PD-L2→immune escape and tumor promotion

via PD-1

• M2→ ↑tumor growth via EGF, FGF, PDGF, IL-4

• M2→ ↑angiogenesis via VEFG, IL-8, FGF, MMP-9

(25, 37–43)

Dendritic cell • DC as APC and stimulate CTL via ICAM-1, CD86,

CD40, CD80

• DC recruit naïve T cell via CCL17, CCL19, CCL22,

IL-32

• DC stimulate Th1, CTL, NK via IL-12, IL-15

• DC→ ↑Ag expression by tumor via TNF-α, IL-6

• IL-10, TGF-β in TME→ ↑PD-1 on DC

→immune-suppressive DC

• DC→ ↑Treg but ↓CTL, Th, macrophage, PMNs via

IL-10, PDL1, IDO, Arginase-1

(44–50)

NKT cell • NKT as APC via CD1d

• NKT activates NK, DC, CTL via IL-12, CD40

• NKT II→ ↑M2, MDSC and ↓CTL via IL-4, IL-13 (51, 52)

NK cell • NK kill tumor cells via ADCC, Fas-FasL,

perforin-granzyme and cytokines (TNF, IFN-γ,

GM-CSF, IL-6, and CCL5)

• NK stimulate DCs via FLT3L

• TGF-β in TME→ ↑dysfunctional NK

• NK→ ↑autonomous inhibitory checkpoint molecules

(PD-1, TIGIT, CD96, TIM-3, LAG-3, CTLA-4,

KIR2DL-1/2/3 and NKG2A)

(53–56)

Neutrophil • N1 TANs kill tumor cells via ADCC and

pro-inflammatory factors (IFN-γ, MMP-8) & ROS

• N1 TAN recruit DC via CCL19, CCL20 and T cells

via CXCL9, CXCL10 and stimulate CTL, NK

via TNF-α

• Tumor cells produce GM-CSF→ PD-L1 expression in

TAN via JAK/STAT pathway→PD-L1+ TAN inhibit

T-cell immunity (N2 TAN)

• TAN suppress immune cells via Arginase-1, i-NOS

• TAN recruit Treg via CCL17

• TAN→ ↑angiogenesis viaMMP-9, VEGF

(25, 57–62)

Myeloid-Derived

Suppressor Cell

(MDSC)

• MDSC→ ↓immune cells via TGF-β, ROS, NO,

Arginase-1, PGE-2 through PD-L1/PD-1

• MDSC→ ↓metabolites in TME

• MDSC block lymphocyte homing via ↓e-selectin

• MDSC→ ↑angiogenesis via VEGF

(56, 63–65)

Mast cell • Mast cells regulate immune cells (T, B, APC)

via cytokines

• Mast cells secrete angiogenic (VEGF-A, CXCL8, and

MMP-9) and lymphangiogenic factors (VEGF-C and

VEGF-F)

• Mast cells secrete IL10→ ↑Treg in draining lymph nodes

• Tumor cells secrete TNF-α → ↑PD-L1 in mast cells via

NF-κB pathway

(66–69)

(Continued)
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TABLE 1 Continued

Tumor-suppressing Tumor-promoting References

Endothelial cell • Tumor-derived HIF→↑endothelial cell sprouting via

PDGF, EGF, VEGF, FGF, Ang2, IL-8→ ↑endothelial cell

migration→ support nutrient and metabolite to tumor

cells

• ↓ICAM-1, VCAM on endotheleial cells→ ↓immune cell

infiltration

• ↑TGF-β, BMP in TME convert endothelial cells to CAF

(25, 70, 71)

Cancer

Associated

Fibroblast (CAF)

• Tumor cells secrete FGF, PDGF, SDF→ ↑CAF→ ↑PDGF,

TGF-β →↑tumor growth

• CAF→immunosuppression via TGF-β

• CAF→ ↑angiogenesis via VEGF, CXCL12

• CAF→ ↑MDSC recruitment via CCL7

• CAF→glucosaminoglycans and

MMP-2→ ↑tumor migration

(72–75)

ADCC, antibody-dependent cellular cytotoxicity; Ag, antigen; Ang, angiopoietin; APC, antigen presenting cell; BMP, bone morphogenetic protein; Breg, B-regulatory lymphocyte; CAF,

cancer-associated fibroblast; CAM, cell adhesion molecule; CAR, chimeric antigen receptor; CCL, CXCL, chemokines; CD, Cluster of differentiation; CTL, cytotoxic lymphocyte; DC,

dendritic cell; ECM, extracellular matrix; EGF, epidermal growth factor; FasL, Fas-ligand; FGF, fibroblast growth factor; GF, growth factors; HIF-1, hypoxia-inducible factor-1; ICOS,

inducible T-cell costimulator; IDO, Indoleamine 2, 3-dioxygenase; IL, interleukin; i-NOS, inducible nitric oxide synthase; M1, M1 macrophage; M2, M2 macrophage; MAB, monoclonal

antibody; MDSC, myeloid-derived suppressor cell; MMP, matrix metalloproteinase; NK cell, natural killer cell; NKT cell, natural killer T cell; NKT II; type II NKT cells; NO, nitric oxide;

PDL-1, programmed death-ligand-1; PGE2, prostaglandin E2; PMN, Polymorphonuclear neutrophil; RNS, reactive nitrogen species; ROS, reactive oxygen species; TAN, Tumor associated

neutrophil; N2 TAN, N2 type tumor associated neutrophil; TGF-β , transforming growth factor-β ; Th, T helper lymphocyte; Th1, type 1 T helper lymphocyte; Th17, T helper lymphocyte

17; Th2, type 1 T helper lymphocyte; Th9, T helper lymphocyte 9; TLR, Toll-like receptors; TME, tumor microenvironment; TNF-α, tumor necrosis factor-α; TRAIL, TNF-related

apoptosis-inducing ligand; Treg, T regulatory lymphocyte; VEGF, vascular endothelial growth factor;→, influence; ↑, increase; ↓, decrease.

subcellular compartments (132). In this setting, mitochondrial

AcCoA is relatively higher than nucleocytosolic AcCoA, and this

disproportionate state causes reduction of histone acetylation

promoting stemness of T cells, eventually impeding the

activation of effector genes (132).

ROS are known as the byproduct of hypoxic environment

produced by tumor cells in TME, and the up-to-date

interpretation is that ROS are not only radicals having

damaging effect, but also have diverse biologic effects such

as stabilization of HIFs to promote angiogenesis, activation

of cell proliferation, as well as survival pathways, metabolic

reprogramming, differentiation of CAFs and deregulation of

immune cells (133). Reactive Nitrogen Species (RNS) are also

rich in TME, due to an increase in arginine metabolism within

tumor cells and tumor-infiltrating myeloid cells (134). RNS

causes nitration of chemokine (C-Cmotif) ligand 2 (CCL2), and

this modification suppresses infiltration and effector function of

lymphocytes (134, 135).

Altered metabolic condition is a common survival strategy

by tumor cells (136–139). Clinically, cachexia represents

increased catabolic status to feed cancer cells (140, 141).

Abnormally increased anabolism is also seen in cancer

patients. Non-Islet Cell Tumor Hypoglycemia (NICTH) is a

paraneoplastic syndrome where non-endocrine tumors cause

hypoglycemia, while promoting anabolism of tumor cells

by aberrantly producing insulin-like growth factor II (IGF-

II), insulin receptor antibodies and various cytokines (tumor

necrosis factor-α, interleukin-1 and−6) (142–145). Metabolic

condition comes into play at microscopic level as well.

As immune cells enter into tumor tissue, those cells face

hypoglycemia and a scant amount of essential amino acids

including glutamine and lipids. This condition hinders all steps

of immune cell functions such as infiltration, proliferation

and effector because these tasks have great demand for

energy, nutrition andmetabolic reprogramming (136–139). This

competitive condition places the immune system in an anergy

and exhaustion state (146, 147).

Extracellular vesicles (EVs) are rich in TIF (148). EVs

such as exosomes, microvesicles, and apoptotic bodies carry

active signaling and regulatory molecules like mRMA, miRNA,

signaling proteins, microRNAs (miRNAs), long non-coding

RNAs (LncRNAs), and circular RNAs (circRNAs) (149–151).

All types of cells including cancer stem cells are known to

secrete them (152, 153). Isolated EVs enriched in TME have

the capability of promoting angiogenesis, modulating immune

cells, enhancing tumor migration and epithelial-mesenchymal

transition (EMT), metastasis and increasing drug resistance

(148, 154, 155). However, EVs in TIF are not always tumor-

promoting. Some EVs were found to exhibit anti-tumor

effects (156, 157). This concept can be applied to patient

treatment via an EV engineering. EVs derived from proven

fighters such as active TILs and chimeric antigen receptor

(CAR)-T cells may potentially recondition dysfunctional or

anergic immune cells in tumor tissue (158–162). There
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are other humoral factors not mentioned here. Proteomic

approach is expected to find unique signatures of TIF and

further develop our understanding of the complex nature

of TME.

Biophysical component

Highly cellular tumors like lymphoma, seminoma, and

Ewing sarcoma frequently present characteristic bulging cut

surfaces. These features are related to an increased pressure

inside tumor tissue (163). High tissue pressure is due to an

increase in the proliferation and migration of tumor cells,

alteration of ECM and increased interstitial fluid pressure

(IFP) (163). The increased IFP is caused by the abnormal

vessels having higher permeability, lack of pericytes, vascular

compression by tumor growth and abundant ECM (164–

167). IFP is elevated by 10–40 mmHg in tumor tissues (168,

169). Increased IFP generates an outward tissue flow and cell

velocity flow, which hinders an inward penetration of cells,

antibodies and drugs (164, 165, 170, 171). Interestingly, high

pressure itself has been shown to enhance tumor proliferation

and is often related to a poor clinical outcome (172–174).

Vascular endothelial growth factor inhibitors, pegylated human

recombinant hyaluronidase-α, collagenase and angiotensin

inhibitors are suggested for potential drugs which can reduce

IFP and promote the delivery of various molecules into tumor

tissues (165). Migration and homing of immune cells is an

entrenched process involving various chemokines, gradients and

APC interaction (175–179). However, movement of immune

cells under high IFP and altered ECM are not well studied,

requiring further research.

Conclusion

The main stream in cancer research has been about

decoding genetic and epigenetic alterations in tumor cells. This

scheme has been powerful to understand the nature of cancer

diseases, and has led to the discovery of means to restore it.

Meanwhile, a distinct course of ideas appeared long ago from

the ancient time to the modern concept of immunotherapies

and ICIs. This different perspective has widened sight to other

attributes within tumor tissue. TME is a system consisting of a

reciprocal communication network among components under

unique physicochemical conditions. This process influences all

components and the output influences TME in an iterative way.

Various attempts such as data-driven approaches will rapidly

improve understanding of surroundings of tumor cells and lead

to several discoveries of predictive biomarkers and an eventual

control of resistance. Another aspect not discussed in this mini

review is about the host factors such as host genetic makeup.

Certain single nucleotide polymorphisms (SNPs) in genes of the

immune system were found to affect cancer susceptibility of an

individual and these may also influence response to ICIs (180–

182). There are case reports on renal cell carcinomas undergoing

regression after transfusion of plasma from another patient of

the same family (183, 184). This may indicate the presence

of an inherited resistance to cancer. Even though these are

still speculative and can be explained by other mechanisms,

this macro-environment also needs to be considered in the

dimension of future studies.
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