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Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main
components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulthydryl oxidase Ervl/ALR. Their precise
functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still
lack knowledge on how Mia40 and Ervl/ALR impact cellular and organism physiology and whether they have functions beyond
their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the
mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of
ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a

discussion of the still mysterious function of Ervl/ALR in liver regeneration.

1. Introduction

Because almost all proteins in eukaryotic cells are synthe-
sized by cytosolic ribosomes, protein translocation across
membranes is critical for organelle biogenesis. The invention
of organelle-specific targeting systems in the cytosol was
instrumental to facilitate correct translocation events and
to avoid mistargeting. These pathways are usually comple-
mented by machineries in the organelle lumen which provide
driving force and ensure directionality. For example, in the
endoplasmic reticulum (ER) and the mitochondrial matrix
members of the Hsp70 family of chaperones bind incoming
substrates and thereby prevent their backsliding (ratchet-
like mechanism) [1]. A similar mechanism is employed for
protein import into the mitochondrial intermembrane space
(IMS). Here formation of inter- and intramolecular disulfide
bonds by the essential mitochondrial disulfide relay is critical
for translocation across the mitochondrial outer membrane
[2-6]. In this review, we will discuss the disulfide relay and
its components, compare and contrast the machineries in
yeast and human cells, and discuss additional potentially
nonoxidative functions of disulfide relay components in
human cells.

2. Substrates of the Mitochondrial
Disulfide Relay

Most proteins that are imported into mitochondria contain
either a mitochondrial targeting signal (MTS) or internal
targeting sequences [4, 7, 8]. They are thereby targeted
into the mitochondrial matrix or to the two mitochondrial
membranes. In contrast, only few of the precursors of IMS
proteins carry the so-called bipartite presequences consisting
of an MTS and a hydrophobic sorting region [8, 9]. The
import of the majority of soluble IMS proteins is facilitated
by the mitochondrial disulfide relay system in a process
that is linked to the oxidative folding of the proteins [3,
10] (Figure1). Most of the so far identified disulfide relay
substrates belong to the families of twin-CX;C proteins
or twin-CXy,C proteins (C, cysteine; X, any amino acid)
(Figure 1(a)). The members of both families are small proteins
with most of them having a size of around 10 kDa. They share
a common simple core structure that consists of two antipar-
allel alpha helices arranged in a helix-loop-helix motif [11].
Each helix contains two cysteines that are separated by either
three or nine amino acids for members of the twin-CX;C
or twin-CX,C families, respectively [11-16]. Twin-CX;C or
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FIGURE 1: Substrates and general outline of the mitochondrial disulfide relay. (a) Mia40 substrates can be classified into three groups: (1)
members of the twin-CX,C and twin-CX,C family, respectively. Members of both families rely on four cysteines localized within two «-
helices for proper import. (2) The proteins scCcsl, scSodl, scAtp23, and Ervl/ALR form a second group of substrates with more complex
folds and disulfide patterns. So far no common signal for the interaction with Mia40 has been identified in these proteins. (3) The two MTS-
containing Mia40 substrates Tim22 and scMia40 are imported in a membrane potential-dependent manner and require Mia40 for proper
folding only. (b) General outline of oxidative folding in the IMS. During substrate oxidation electrons are transferred from the substrate to

Mia40. To reoxidize Mia40 electrons are transferred further via ALR to

cytochrome ¢ (Cyt ¢) and then to cytochrome ¢ oxidase. Molecular

oxygen (O,) is used as final electron acceptor to finally yield water (H,O).

twin-CX, C proteins fulfill diverse functions within the IMS.
They serve as chaperones for newly imported proteins, are
involved in metal transfer and insertion during respiratory
chain biogenesis, or are part of mature respiratory chain
complexes [13,17-22]. In human and yeast cells exist a total of
five proteins that belong to the twin-CX; C family. Conversely,
the twin-CX,C family appears to be significantly larger in
mammalian cells, and in addition numerous proteins exist
that do not adhere exactly to the nine amino acid-wide
spacing (and instead have, e.g., CX;C or CX,,C motifs). So
far more than 30 twin-CX,C family members have been
identified in human cells, and some of them have been
confirmed to be disulfide relay substrates [23, 24].

In addition to twin-CX;C and twin-CX,C proteins sev-
eral more complex substrates exist that rely on the mito-
chondrial disulfide relay for oxidation (Figure 1(a)). In yeast
the import of the dually localized copper chaperone for
superoxide dismutase 1 (Ccsl) and in part also that of
superoxide dismutase 1 (Sodl) depends on the mitochondrial
disulfide relay [25-27]. Likewise, import and oxidation of the
sulthydryl oxidase Ervl which itself is part of the mitochon-
drial disulfide relay (see below) are driven by the disulfide
relay system [28]. Further substrates are the mitochondrial
protease Atp23 and the inner membrane protein Tim22 [29,
30]. The latter protein contains a bipartite presequence and
thus requires oxidation only for folding but not for mito-
chondrial import. Because so far a systematic identification
of interaction partners and substrates of the mitochondrial

disulfide relay system is lacking in yeast and mammalian cells,
we do not know how large the group of disulfide-containing
IMS proteins is. It is likely that it will be significantly larger
than previously anticipated as the recently solved partial
IMS proteome contains numerous proteins that are dually
localized between cytosol and IMS, but lack MTS, and might
therefore be disulfide relay substrates [31].

3. The Mechanism of Oxidation-Dependent
Protein Import by the Mitochondrial
Disulfide Relay System

All proteins of the IMS are synthesized by cytosolic ribosomes
[32] (Figure 2). However, only very few of them contain a
classical MTS or internal targeting signals that guide them to
mitochondria. Instead, most IMS proteins contain conserved
cysteine patterns or other still ill-defined motifs that are
recognized by the IMS-localized mitochondrial disulfide
relay but likely also by so far not identified cytosolic factors
[4, 10]. Such factors could ensure targeting of disulfide relay
substrates to mitochondria for posttranslational import and
maintain them in an import-competent unfolded state. In
addition, disulfide relay substrates have to be kept in a
reduced state in the cytosol. This is facilitated by cytosolic
glutaredoxins in human cells and the thioredoxin system
in yeast [33, 34] and potentially by the presence of zinc
ions that can complex reduced cysteines [35, 36]. In yeast,
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FIGURE 2: The mitochondrial disulfide relay system facilitates protein import and folding into the IMS. Classical substrates of the twin-CX,C
and twin-CX,C families are translated on cytosolic ribosomes. In part, these proteins are degraded by the proteasome, while the majority
becomes posttranslationally imported into the IMS through the TOM pore. Noncovalent and covalent interactions between Mia40 and the
substrate are necessary for translocation and oxidative folding of the substrate. Immediately after the first cysteine of the substrate translocates
a mixed disulfide between Mia40 and substrate is formed. The substrate becomes oxidized by resolving the mixed disulfide complex. Reduced
Mia40 is then reoxidized by the flexible N-terminal domain of one subunit of Ervl/ALR, allowing another round of substrate oxidation. Within
the Ervl/ALR homodimer electrons are transferred from the N-terminal cysteines of one subunit to the C-terminal cysteines of the other
subunit from where they are shuttled to the prosthetic FAD molecule. Ervl/ALR then passes electrons onto cytochrome c—and further to
cytochrome ¢ oxidase and oxygen yielding H,O as product. Alternatively, electrons can be transferred from the FAD directly onto oxygen
thus forming H,0,. (a) The MINOS complex is important for the organization of the IMS in yeast. Both the arrangement of the cristae and the
close proximity of the TOM and TIM pore are mediated by MINOS. Fcjl binds to the MINOS complex and also interacts with Mia40, thereby
placing Mia40 close to the TOM pore. (b) Hydrophobic interactions between the hydrophobic groove of Mia40 and twin-CX,C and twin-
CX,C proteins are necessary for substrate recognition by Mia40. The same hydrophobic patch on Mia40 also mediates its interaction with the
N-terminal domain of ALR. Moreover, the hydrophobic groove of Mia40 also equips the protein with a holdase-like function that can serve
in importing cysteine-less substrates. (c) Several redox control pathways facilitate efficient oxidative import and folding of substrates. In the
cytosol substrate cysteines are maintained in their reduced state mainly by thioredoxins (Trx) and glutaredoxins (Grx) in yeast and human
cells, respectively. During Mia40-dependent oxidation reduced glutathione (GSH) exhibits a proofreading function by reducing wrongly
oxidized substrates and resolving trapped intermediates of substrate and Mia40. Upon becoming reduced, the cysteines of Mia40 are prone
to bind zinc ions, thereby interfering with reoxidation. The zinc chelating protein Hot13 keeps Mia40 zinc free.

the amounts of import-competent substrates are also con-
trolled by the cytosolic proteasome system that degrades
substantial amounts of newly synthesized disulfide relay
system substrates before they can be imported [37]. At present
it remains unclear whether such a degradation pathway is also
found in mammalian cells and under which conditions it may
serve in adapting amounts of imported IMS proteins.

Translocation of IMS proteins takes place across the
translocase of the outer membrane (TOM). Upon exposure of
a recognition motif termed MISS or ITS (for mitochondrial
intermembrane space sorting and IMS-targeting signal, resp.)
disulfide relay substrates are recognized by the protein Mia40
(for mitochondrial IMS import and assembly; in mam-
malian cells also CHCHD4) [14, 38], which thereby serves



both as import receptor and chaperone and oxidoreductase
[23, 29, 39] (Figure 2, insets (a) and (b)). Mia40 consists
of a structural helix-loop-helix motif with two stabilizing
disulfide bonds that form hydrophobic substrate recognition
and binding groove and a redox-active CPC motif that is
positioned in a flexible helix which hovers over the substrate
binding site [40, 41]. Yeast and human Mia40 share high
homology, except for an N-terminal extension in yeast Mia40
that contains a bipartite presequence which is lacking in
the human protein. Human Mia40 appears in two different
splice variants (CHCHD4.1 and CHCHD4.2) [42, 43]. They
are completely identical except for the very N-terminal part
of the protein. The isoform 1 does contain an additional
cysteine at position four; however, whether the isoforms
exhibit different functionality or substrate specificity is not
known. Like for ALR the import and folding of human Mia40
depend on the disulfide relay system [44]. In contrast, yeast
Mia40 requires the disulfide relay system only for oxidative
folding [45]. In yeast, Mia40 is positioned close to the trans-
side of the TOM complex by its interaction with Fcjl (for
formation of cristae junction; in human cells mitofilin) [46]
(Figure 2, inset (a)). Fcjl is part of the MINOS complex
which organizes the topology of the cristae in the inner
mitochondrial membrane [46-50].

MISS/ITS motifs have been well defined for classical
twin-CX;C and twin-CX,C proteins but their nature has to
be clarified for the growing class of nonclassical substrates
like Atp23. It contains hydrophobic residues, and in most
cases, a single cysteine residue, that are positioned on the
same side of an alpha helix [14, 38] (Figure 2, inset (b)).
After recognition of the MISS/ITS signal by the hydrophobic
binding groove of Mia40, the thiolate anion of a cysteine in
the substrate performs a nucleophilic attack on the oxidized
CPC motif of Mia40 which results in the formation of an
intermolecular disulfide bond [2, 39]. This disulfide bond
together with the hydrophobic interactions between substrate
and Mia40 prevents the backsliding of the incompletely
translocated substrate into the cytosol, thus coupling import
to oxidative protein folding [51]. Consequently, mutation of
critical cysteines in Mia40 substrates also results in very low
amounts of these substrates in the IMS [2]. This indicates
that hydrophobic interactions with Mia40 might be sufficient
to drive IMS import at least of some proteins that neither
contain classical MTS nor cysteines to interact with Mia40.
Furthermore, Mia40 might also contribute to protein folding
as it is capable of stabilizing cysteine-free unfolded proteins
and prevents their aggregation [29] (Figure 2, insert (b)).

The intermolecular disulfide bond between substrate
and Mia40 is resolved by another nucleophilic attack of a
thiolate anion in the substrate leaving an oxidized substrate
molecule and a reduced Mia40 molecule [39]. Thus, for
this import mechanism to work Mia40 substrates have to
contain at least two cysteines. For the introduction of more
than one disulfide bond, multiple oxidized Mia40 molecules
or molecular oxygen are necessary. It has been suggested
that Mia40 can act more efliciently in the introduction of
multiple disulfide bonds by forming a ternary complex with
its substrate and the essential protein Ervl (in mammalian
cells augmenter of liver regeneration (ALR), growth factor
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ervl-like (Gferl), hepatopoietin or hsErvl) [52, 53]. The very
rapid introduction of disulfide bonds after the formation of
the initial intermolecular disulfide bond is supported by the
fact that in vivo no semioxidized intermediates of substrate
proteins can be observed [23].

The sulthydryl oxidase Ervl/ALR acts to reoxidize the
CPC motif in Mia40 [39]. It is a homodimeric protein in
which each subunit consists of two domains [54]. The first—
N-terminal domain—contains a redox-active CXXC motif
and serves as a “shuttle arm” that mediates the electron
transfer from Mia40 to a CXXC motif in the C-terminal
core domain of Ervl/ALR [39, 55]. To this end, this mainly
unstructured domain interacts with the substrate-binding
groove of Mia40 [56, 57]. Consequently, overexpression of
Ervl/ALR in intact cells delays oxidative protein folding and
IMS import because the N-terminal arm blocks substrate
binding to Mia40 [23]. Both Mia40 and Ervl/ALR are
perfectly adapted to this critical interaction of shuttle arm and
hydrophobic groove. In a heterologous yeast system human
ALR or human Mia40 when expressed individually could to
a large part complement their yeast counterparts. However,
only if human Mia40 and human ALR were concomitantly
used to substitute the respective yeast proteins full comple-
mentation was ensured [44]. After Mia40 reoxidation the
shuttle arm of Ervl/ALR swings over to the core domain
of the second subunit of Ervl/ALR (intersubunit electron
transfer) and becomes reoxidized by the core CXXC motif
[55]. This core CXXC motif is reoxidized by the redox
cofactor of Ervl/ALR-flavin adenine dinucleotide (FAD) by
the formation of a charge-transfer complex [58]. The FAD
is held in place by the very compact four-helix bundle
structure of Ervl/ALR [54, 59, 60]. The dimer of Ervl/ALR
is stabilized by hydrophobic interactions and in mammalian
cells additionally also by disulfide bonds [39, 61]. Finally, the
reduced FAD cofactor is reoxidized by either transferring
electrons directly onto molecular oxygen which gives rise
to the production of hydrogen peroxide or alternatively by
transferring electrons to cytochrome c [39, 62, 63]. To which
extent both pathways are utilized in intact cells remains
unclear although in vitro cytochrome ¢ appears to be the
preferred electron acceptor [39, 58, 62, 64, 65]. At least in
yeast cells Ervl can transfer electrons also onto an anaerobic
electron acceptor [66]. The identity of this acceptor and
whether it is conserved in mammalian cells remains unclear.

In addition to Mia40 and Ervl/ALR further factors
modulate oxidative folding in the IMS—the protein helper
of Tim protein (Hotl3, in mammalian cells RCHY1) and
the local glutathione pool (Figure 2, insert (c)). Hotl3 is
a cysteine-rich protein that is capable of chelating zinc
ions [67]. Although low amounts of zinc ions can facilitate
mitochondrial import in vitro, too high amounts hamper
substrate oxidation and Mia40 reoxidation by binding to
reduced cysteines [36, 67, 68]. It has thus been proposed
that Hotl3 keeps the CPC motif of Mia40 in a zinc-free state
thereby accelerating oxidation-dependent protein import. In
vitro substrate oxidation appears to yield side products with
nonnative disulfides or substrates that are trapped in their
mixed disulfide complex with Mia40 [39]. Formation of these
products is avoided by the presence of reduced glutathione.
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FIGURE 3: Functions of human Mia40. The protein exists in two different isoforms. Differences in function between the isoforms are
not known. Oxidative Import. Mia40 is the main receptor for import and oxidation of twin-CX,C and twin-CX;C proteins in the IMS.
Holdase Function. Mia40 shields hydrophobic patches on proteins imported into the IMS, thus allowing proper folding of these proteins.
Mitochondrial Morphology. Reduced amounts of Mia40 lead to increased mitochondrial fission and the formation of a more fragmented
mitochondrial network. Hypoxia Response. Under normoxic conditions the protein HIFl« is constantly degraded. This degradation is
mediated by hydroxylation by prolyl hydroxylase domain enzymes (PHD) and ubiquitination by the Hippel-Lindau E3 ligase (VHL). Upon
hypoxia oxygen as substrate of PHD is missing resulting in impaired HIFla degradation and increased stability. If not degraded HIFl« can
dimerize with constitutively expressed HIF1f3 and induce the hypoxia response. Silencing Mia40 using RNAi prevents stabilization of HIFler
under hypoxic conditions. In contrast increased amounts of Mia40 as can also be found in certain tumors result in increased stabilization of

HIFla.

Also in intact cells reduced glutathione seems to be beneficial
for oxidation-dependent protein import: on the one hand by
contributing to the reduced redox state of Mia40 substrates in
the mammalian cytosol, and on the other hand by accelerat-
ing oxidative protein folding by a still unresolved mechanism
[23]. Like zinc ions glutathione might be a two-edged sword.
The IMS glutathione pool in yeast and mammalian cells has
been measured to be as reducing as the one in the cytosol
[23, 69]. The IMS glutathione redox potential is thereby in
the range of the redox potential of Mia40 substrates, raising
the question of how these substrates can be oxidized and
maintained in an oxidized state [35, 65, 69-73]. Although
this point has not been addressed experimentally, it is likely
that the thermodynamically feasible reduction of Mia40
substrates is kinetically prevented, for example, hampering
the equilibration between protein thiols and glutathione.
In principle glutathione can affect IMS proteins in vivo
as the CPC motif of Mia40 is affected by glutathione in
intact cells [23, 69]. Consequently, Mia40 is maintained in a
partially reduced state in yeast cells [69]. The reduced part
of molecules might well be involved in either isomerisation
or reduction reactions like oxidoreductases in other systems
that facilitate oxidative protein folding. However, such a novel
role of Mia40 has not been shown.

Besides their function in oxidative protein folding in
mitochondria Mia40 and Ervl/ALR also function in poten-
tially unrelated (nonmitochondrial) pathways. Mia40 was
shown to be critical for mitochondrial dynamics and the
hypoxia response [43] (Figure 3). For Ervl/ALR, a plethora of
different cellular and physiological functions were described
(Figure 4). Ervl/ALR influences fusion and fission processes
of mitochondria [74-77]; it is important for the develop-
ment of certain organs during embryogenesis [78, 79] and
functions as mitogen to enhance regenerative capacities of
liver tissue [80-82]. These functions will be discussed in the
following.

4. Physiological Impact of Mia40
and Ervl/ALR

4.1. A Function of Mia40 in Hypoxia. Mia40 is not only
necessary for proper assembly of the respiratory chain but
is also involved in the stabilization of hypoxia inducing
factor 1o (HIFlx) [43, 74] (Figure 3). In the presence of
high amounts of oxygen HIFla is continuously degraded
by the proteasome after hydroxylation by oxygen-dependent
prolyl hydroxylase domain (PHD) enzymes and subsequent
ubiquitinylation by the E3 ligase VHL (von Hippel-Lindau)
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FIGURE 4: Functions of Ervl/ALR. Oxidative Import. Ervl/ALR reoxidizes Mia40. Fe/S Biogenesis. In yeast Ervl/ALR is required for the
biogenesis of cytosolic Fe/S proteins but not for mitochondrial Fe/S proteins. Development. Ervl/ALR is expressed during development.
Knockdown or chemical inhibition of Ervl/ALR leads to impaired development of organs such as liver and hamper cardiac outgrowth.
Mitochondrial Morphology. Ervl/ALR is important for mitochondrial morphology in undifferentiated cells. Knockdown of Ervl/ALR in
mouse embryonic stem cells leads to mitochondrial fragmentation and increased levels of Drpl (dynamin-related protein 1). Hepatic Growth
Factor. Extracellular Ervl/ALR increases regenerative capacities of liver tissue. Extracellular Ervl/ALR can bind to a so far unknown receptor.

Upon binding tyrosine-phosphorylation of the epidermal growth factor

receptor (EGFR) is enhanced which promotes phosphorylation and

activation of mitogen activated protein kinase (MAPK). Gene Regulation. A truncated cytosolic form of Ervl/ALR can bind to Jun activating
binding protein1(JABI). Binding to JABl increases JABl-mediated phosphorylation of c-Jun. Upon phosphorylation c-Jun can form a complex
with AP-1 complex (activator protein 1). In hematopoietic stem cells (HSC) sequestering of JAB1 by ALR prevents binding of JABI to p27(kip).

[83-85]. Under low oxygen conditions PHDs lack oxygen
and fail to completely hydroxylate HIF1x. Moreover, reactive
oxygen species take part in the stabilization process by further
inhibiting PHD [86, 87]. The stabilization of HIFl«x by low
oxygen concentrations can be mimicked by incubating cells
with iron chelators as PHD activity depends on an iron
cofactor [88-90].

The modulation of Mia40 levels affects HIFlx stabi-
lization at low oxygen concentration but not by treatment
with iron chelators [43]. Upon depletion of Mia40 using
siRNA-mediated knockdown HIFlx failed to accumulate
under low oxygen conditions, while Mia40 overexpression
enhanced HIF-lx stabilization under hypoxic conditions.
Since the hypoxia response is critical for tumor growth
Mia40 depletion effectively inhibited tumor growth and
angiogenesis in vivo [43]. In line with these findings in human
cancer, increased Mia40 expression was found to correlate
with the signature of hypoxia gene expression [43]. Whether
the described effect of Mia40 on the stabilization of HIFlx

arises from a direct interaction or is indirectly mediated by an
impaired respiratory chain remains unclear and is an exciting
question for future research.

4.2. Physiological Functions of ErvlI/ALR—in Mitochondria
and the Cytosol? Human patients with a homozygous
mutation in Ervl/ALR exhibit respiratory-chain deficiency,
myopathy, congenital cataract, sensorineural hearing loss,
and delayed development [59, 91] (Figure 4). In zebrafish
the formation of heart and liver is impaired upon chemical
inhibition or silencing of Ervl/ALR [78, 79]. In addition,
chemical inhibition of Ervl/ALR induces apoptosis in human
embryonic stem cells [79]. Likewise, silencing of Ervl/ALR
in mouse embryonic stem cells results in caspase-induced
apoptosis as well as in excessive fragmentation of mito-
chondria and elimination of damaged mitochondria through
mitophagy [76, 77]. Taken together these data underline
the importance of Ervl/ALR for mitochondrial functionality
especially during development.
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Most of those physiological effects of Ervl/ALR likely
derive directly or indirectly from its role in the mitochondrial
disulfide relay (Figures 2 and 4). However, they might also
be linked to a role in the biogenesis of cytosolic iron sulfur
proteins which has been described for yeast Ervl [92].
Moreover, they may derive from a so far unappreciated
function of Ervl/ALR in the cytosol where overexpressed
and tagged Ervl/ALR could be detected in some studies [92].
Unfortunately, overexpression of IMS proteins without bipar-
tite MTS frequently results in mislocalization to the cytosol
[23]. It thus remains unclear whether endogenous Ervl/ALR
also is dually localized. Besides full length Ervl/ALR a shorter
isoform consisting only of the C-terminal core domain
has been described to exist in the cytosol and nucleus of
mammalian cells and to be secreted as a growth factor [93,
94]. The existence of this isoform has been confirmed by
immunoblotting of human cell lysate against endogenous
ALR although specificity controls using siRNA-mediated
knockdown were lacking in these studies.

4.3. A Role for ErvlI/ALR in Liver Regeneration. Ervl/ALR
has been described to enhance the regenerative capacities of
liver tissue [95-97]. For this role of Ervl/ALR two different
mechanisms were proposed. In one model Ervl/ALR acts
extracellularly as mitogen [81]. Several studies describe the
regeneration-enhancing abilities of Ervl/ALR on damaged
liver tissue after application of the purified C-terminal
domain of human or rat Ervl/ALR [80]. The C-terminal
domain can be cross-linked to a 60kDa protein which is
probably located at the cellular surface [81]. The putative
Ervl/ALR receptor does not interact with other mitogenic
factors such as epidermal growth factor (EGF), transform-
ing growth factor o (TGF-«), or insulin [81]. Binding of
Ervl/ALR to its receptor triggers EGF-receptor phosphoryla-
tion which then results in activation of the mitogen-activated
protein kinase (MAPK) signaling cascade [82].

In a second model cytosolic Ervl/ALR acts independently
of the MAPK pathway. Cytosolic Ervl/ALR thereby interacts
with Jun-activating domain-binding protein 1 (JAB1) which
promotes phosphorylation of c-Jun and therefore formation
of the c-Jun/activator protein-1 (AP-1) transcription factor
complex [98]. C-Jun is part of the cytosolic COP9 signalo-
some that has also been shown to interact with Ervl/ALR
[99]. The interaction between Ervl/ALR and JABI depends
on the presence of the CXXC motif in the C-terminal
core domain of Ervl/ALR because mutation of the motif to
CXXS prevented phosphorylation of c-Jun [100]. The studies
addressing the cytosolic function of Ervl/ALR were all either
performed in vitro using recombinant proteins or by overex-
pressing Ervl/ALR. As already stated above overexpression
of IMS proteins leads to cytosolic or nuclear mislocalization
[23]. This is especially true for Ervl/ALR which becomes
imported and folded more slowly than classical substrates of
the disulfide relay.

The interaction of Ervl/ALR with JABI is not limited to
liver cells. Knockdown of Ervl/ALR in hematopoietic stem
cells leads to an increased inhibition of the cyclin-dependent
kinase inhibitor p27(kip) by JAB1 while overexpression of

ALR leads to a decreased inhibition of p27(kip), probably
because JABI is sequestered by ALR [101]. Furthermore,
it was shown that the quiescence promoting properties of
ALR in HSC are dependent on Camk4 (Ca**/calmodulin-
dependent protein kinase 4). HSCs isolated from Camk4 ™/~
mice possessed reduced levels of ALR and p27(kip) and were
deficient in proliferation, which could be restored by ectopic
expression of ALR [102].

A complementing explanation for the enhancement of
liver regeneration is that Ervl/ALR treatment decreases cyto-
toxicity of natural killer cells and decreases IFN-y (interferon-
gamma) levels [103, 104]. Alternatively, it has been proposed
that extracellularly administrated Ervl/ALR enhances liver
regeneration by inducing anti apoptotic gene expression,
thereby improving cell survival [105]. However, this anti
apoptotic effect does not seem to be limited only to hepato-
cytes because in human lymphocytes recombinant Ervl/ALR
also inhibited apoptosis [106]. Recently, it was shown that in
primary hepatocytes the increased expression and synthesis
of ALR after liver damage is regulated by the transcription
factor Nrf2 [107]. This indicates that the regenerative abilities
of ALR are not only achieved by extracellular treatment of
damaged cells but might constitute physiological relevant
cellular survival mechanisms.

4.4. The Disulfide Relay System—OQOpen Questions. Mia40 and
Ervl/ALR are well characterized regarding their functions
as oxidoreductase and sulthydryl oxidase of the mitochon-
drial disulfide relay, respectively. Still several open questions
remain (Figure 5): first, despite the identification of many
human twin-CX,C proteins by in silico approaches, a concise
identification of disulfide relay substrates is still lacking.
This becomes especially important because in recent years
several proteins with complex structures have been identified
as Mia40 substrates. Since these substrates do not adhere
to classical cysteine patterns, they cannot be predicted by
in silico approaches. This might indicate that the substrate
range of the disulfide relay is much wider than previously
anticipated. It might also include targets for thiol-dependent
redox regulation that cycle between oxidized and reduced
states and consequently adapt their activities.

Secondly, while we understand oxidative protein folding
in the IMS in detail, little is known about the cytosolic
processes that take place before translocation across the
outer membrane. In previous studies, cytosolic factors were
identified which facilitate the import of MTS-containing
proteins. However, most disulfide relay substrates lack such
targeting information and thus appear like cytosolic proteins.
It will therefore be exciting to identify factors that interact
with IMS proteins after their translation and guide them to
mitochondria or mediate their degradation.

Thirdly, the role of Mia40 and Ervl/ALR in processes that
appear not directly linked to mitochondria such as hypoxia
and liver regeneration is still mechanistically ill-defined. It
especially remains unclear whether the functions of both
proteins in each case are connected to their function in
the disulfide relay or if they operate by completely different
mechanisms. We think that it will be exciting to establish
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FIGURE 5: Open questions. Hypoxia. Why Mia40 is required for the stabilization of HIFla under hypoxic conditions is unknown. It will
be interesting to reveal the underlying mechanism and if the influence of Mia40 is direct or indirect. New Substrates. During the last years
proteins were found to be dependent on Mia40 that do not share the same motifs as the classical twin-CX,C and twin-CX;C substrates. They
are either dependent on the function of Mia40 as oxidoreductase or holdase. Initial Degradation and Cytosolic Chaperones/Targeting Factors.
In yeast a portion of IMS proteins is directly degraded after translation. However, it is not known if this takes place in other organisms, how it
is regulated, and how it works at the molecular level. Moreover, it remains unclear how proteins after translation are kept import competent
and targeted to mitochondria. Redox Regulation. The mitochondrial disulfide relay is known to introduce structural disulfide bonds which are
required for protein stability. However, it is not known if Mia40 or Ervl/ALR can regulate the activity of IMS proteins by reversible oxidation

or reduction.

in detail the molecular mechanisms that underlie these
potentially extra-mitochondrial functions and thus link the
biochemistry of thiol oxidation with its physiological impact.
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