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malunion, nonunion of bones, neurological dysfunc-
tion, low back pain, abnormal gait, and bowel/bladder 
problems, and surgical treatment can reduce long-term 
complications [6–9]. Therefore, surgical treatment is 
necessary at the early stage for cases with unstable sacral 
fractures. The operation’s goal is to reconstruct the stabil-
ity of the posterior pelvic ring by reducing and fixing the 
sacral fracture.

Various methods for vertically unstable sacral inju-
ries have been advocated, including transiliac rods [10], 
transiliac plates [11], percutaneous iliosacral screws [12, 
13], and spinopelvic instrumentation [14, 15]. In poste-
rior pelvic ring injury treatment, sacroiliac screw inter-
nal fixation technology is commonly used [16]. Sacroiliac 
screws have significant biomechanical advantages and 

Introduction
Unilateral sacral fractures caused by high-energy injuries 
are rare [1], and most cases are accompanied by poste-
rior ring injuries. Vertical fractures of the sacrum (AO 
type C3.1) are vertically unstable due to complete disrup-
tion of the posterior arch [2–4] and are accompanied by 
high morbidity and mortality [4, 5]. Many studies have 
shown that such fractures cause complications such as 
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Abstract
Objective  To compare the breakage risk of lengthened sacroiliac screws and ordinary sacroiliac screws to treat 
unilateral vertical sacral fractures and provide a reference for clinical application.

Methods  A finite element model of Tile C pelvic ring injury (unilateral type Denis II fracture of the sacrum) was 
produced. The sacral fractures were fixed with a lengthened sacroiliac screw and ordinary sacroiliac screw in 6 types 
of models. The maximal von Mises stresses and stress distributions of the two kinds of screws when standing on both 
feet were measured and compared.

Results  The maximal von Mises stress of the lengthened screw was less than that of the ordinary screw. Compared 
with ordinary screw, the stress distribution in the lengthened screw was more homogeneous.

Conclusions  The breakage risk of screws fixed in double segments is lower than that of screws fixed in single 
segments, the breakage risk of lengthened screws is lower than that of ordinary screws, and the breakage risk of 
screws fixed in S2 segments is lower than that of screws fixed in S1 segments.
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minimally invasive percutaneous puncture advantages in 
treating longitudinal fractures of the sacrum [17].

To maximize the effect of sacroiliac screws, we per-
formed research [18–20] on ordinary sacroiliac screws 
and lengthened sacroiliac screws using radiological ana-
tomical and biomechanical methods. Our previous stud-
ies have shown that the fixation effect can be increased 
when using lengthened sacroiliac screws and fixing S1 
and S2 [19, 20]. However, few studies have assessed the 
breakage risk of lengthened sacroiliac screws and the 
factors involved in screw breakage. Thus, it is unclear 
whether an increase in screw breakage risk accompanies 
an increase in screw length. In other words, what is the 
relationship between the length of sacroiliac screws and 
mechanical safety performance? Solving this problem 
is of great value in guiding the application of sacroiliac 
screws in unilateral sacral fractures. However, no related 
studies have been reported.

This study aims to make a biomechanical comparison 
of two kinds of sacroiliac screws in various modes for 
fixing unilateral longitudinal sacral fractures using the 
three-dimensional finite element technique, assess fac-
tors involved in screw breakage and provide a theoretical 
basis for clinical practice.

Methods
The finite element method [20] was adopted in this 
research, which we established in our earlier studies. 
(Fig.  1) A vertical 600  N load was loaded on the supe-
rior surface of the sacrum to simulate a standing human. 
ABAQUS 6.9.1 (SIMULIA, USA) software was used to 

extract mechanical simulation data from all models. 
We compare and measure the stress distribution and 
von Mises stresses of the two kinds of sacroiliac screws 
in various modes. The material parameters used in the 
model are shown in Tables 1 and 2 [21–23].

Finite element models were constructed from com-
puted tomography (64-slice spiral CT (Philips)) images of 
a normal female (36 years old, 170 cm, 63 kg). The slices 
were 1 mm thick. A virtual 3D model of the sacrum and 
innominate was created from CT data in DICOM for-
mat with image processing software (mimics 10.0). The 
geometric extents of pelvic cortical and trabecular bones 
were defined based on the surface mesh. By using four 
noded linear solid tetrahedral elements with an average 
edge length of 2 mm, we created an unstructured mesh of 
bone trabeculae in Abaqus/CAE. A triangular shell ele-
ment represents the cortical bone surrounding the tra-
becular bone. The thickness of the shell element is 2 mm 
[21]. This setting is a homogeneous model setting and is 
more suitable for comparative studies.

We assumed a tied condition between the inner sur-
face of cortical bone and the surface of the trabecular 
bone. The Young’s modulus and Poisson’s ratio were 
taken to be 150 N/mm2 and 0.2 for trabecular bone and 
18,000  N/mm2 and 0.3 for cortical bone [18]. The sac-
roiliac cartilage and interpubic disc were continuum 
structures occupying the interspace and meshes into 
hexahedron elements. Binding was used between the 
sacrum, iliac bone, and sacroiliac joint, and bilateral 
pubis and pubic symphysis: sacroiliac ligament, sacrospi-
nous ligament, and attachment regions were constructed 

Table 1  Model parameters of pelvic ligaments
Ligament K(N/m) Number of springs
anterior and capsule 700 27

posterior (inner layer) 1400 15

intro-osseus 2800 8

sacrospinous 1400 9

sacrotuberous 1500 15

superior pubic 500 24

arcuate pubic 500 24

Table 2  Model parameters of various kinds of material
Young’s 
modulus(MPa)

Pois-
son’s 
ratio

Element Type

cortical bone 18,000 0.3 shell element

trabecular bone 150 0.2 tetrahedral element

sacroiliac cartilage 1000 0.3 hexahedral element

interpubic disc 5 0.45 hexahedral element

screw 114,000 0.3 hexahedral element

Fig. 1  Pelvic three dimension finite element model. (The left is normal pelvic and the right is unilateral sacral fracture)
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according to a previous study [20]. The bilateral hip joint 
surface was coupled with a rotating centre. The centre 
point was constrained by translational degrees of free-
dom in three directions, simulating the mechanical prop-
erties in a standing state.

We cut the sacrum halfway through the right sacral 
foramina to construct a unilateral sacral fracture (AO 
type C3.1, Denis II) model. The final finite element nor-
mal pelvis and unilateral sacral fracture are shown in 
Fig.  1. In the simulation, we used two 7.3  mm cannu-
lated screws (lengthened sacroiliac screw and sacroiliac 
screw) placed in either the S1 segment or S2 segment or 
both the S1 and S2 segments in a unilateral sacral frac-
ture model. The material for the set screw was titanium 
alloy. The lengthened sacroiliac screw refers to the length 
of the sacroiliac screw that can pass through the contra-
lateral sacroiliac joint and the contralateral iliac bone. 
Ordinary sacroiliac screws were set in this study to reach 
the midline of the sacrum. The proximal and distal ends 

of the screw were bonded to the bone tissue to simulate 
complete osseointegration, and the frictional relationship 
between the smooth rod part of the screw and the bone 
tissue was set as sliding.

Six fixation cases were imitated for finite element 
analysis: ① one lengthened sacroiliac screw fixation in 
S1 segment (LS1) ② one lengthened sacroiliac screw 
fixation in S2 segment (LS2) ③ one lengthened sacroiliac 
screw fixation in S1 and S2 segments respectively(LS12) 
④ one ordinary sacroiliac fixation in S1 segment (OS1) 
⑤one ordinary sacroiliac fixation in S2 segment (OS2) 
⑥ one ordinary sacroiliac fixation in S1 and S2 segments 
respectively (OS12) (Fig. 2–7).

Assembly was accomplished by placing constraints 
between interacting surfaces. These interaction surfaces 
were located at the bone–implant interface between the 
sacrum, the sacroiliac cartilage and the ilium, the pubic 
rami and interpubic disc, and the bone–implant inter-
faces in the screw thread. In the screw stem regions, 

Fig. 5  Sketch map of OS1

 

Fig. 4  Sketch map of LS12

 

Fig. 3  Sketch map of LS2

 

Fig. 2  Sketch map of LS1
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frictionless sliding contact was used between the interac-
tion surfaces of the bone–implant interfaces. We apply a 
penalty contact with a coefficient of friction of 0.3 on the 
fracture interaction surface. They were used to simulate 
sliding patterns between fracture interaction surfaces. 
The acetabular rotation centre was taken as the fixed 
point to fix the acetabulum to simulate the mechanical 
transfer of bipedal standing.

Results
The results of this study show the following:

 	• In either model, the stress concentration area of the 
screw was found in the corresponding screw area of 
the sacral fracture area.

 	• The stress distribution of the lengthened sacroiliac 
screw was more homogeneous than that of the 
ordinary sacroiliac screw.

 	• The screw stress distribution in the model of 
different fixed segments of the same screw was more 

concentrated in the fixed single sacral segment than 
in the fixed two sacral segments.

 	• When both sacral segments were fixed, the 
distribution of screw stress in the upper segment was 
more concentrated, and the distribution of screw 
stress in the next stage was more uniform.

 	• The maximal von Mises stress of one sacroiliac screw 
fixation in the S1 or S2 segment was greater than 
that of one lengthened sacroiliac screw fixation in 
the same sacral segment;

 	• The maximal von Mises stress of one sacroiliac screw 
fixation in the S1 and S2 segments was greater than 
that of one lengthened sacroiliac screw fixation in 
the S1 and S2 segments;

 	• The maximal von Mises stress of one lengthened 
sacroiliac screw fixation in the S1 or S2 segments 
was greater than that of one lengthened sacroiliac 
screw fixation in the S1 and S2 segments;

 	• The maximal von Mises stress of one sacroiliac screw 
fixation in S1 or S2 segments was greater than that of 
one sacroiliac screw fixation in S1 and S2 segments 
(Table 3).

Discussion
Sacral fracture is a common occurrence in pelvic ring 
injury. The most common type is a unilateral sacral injury 
with anterior impaction of the sacrum, a lateral com-
pression type 1 (LC-1) injury, which is usually associ-
ated with posterior ring instability and requires clinical 
treatment. A sacroiliac screw is a conventional internal 
fixation technique for posterior pelvic ring injury [16]. 
Sacroiliac screws are commonly used to stabilize the 
posterior ring. However, some clinical studies have sug-
gested that conventional sacroiliac screw fixation may 
not provide sufficient stability universally. Keating et al. 
[24] applied sacroiliac screws to achieve 84% anatomic 
or near-anatomic reduction of pelvic fractures, but the 
final malunion rate was 44%. Damian et al. [12] showed 
that sacroiliac screws are clinically unreliable for vertical 
sacrum fractures. More recently, lengthened sacroiliac 
screws have come into use.Our paper described these 
as “lengthened sacroiliac screws.“ The screw is inserted 
from the external surface of the ilium across the contra-
lateral sacroiliac joint and exits the ilium. Gardner et al. 

Table 3  The maximal Von Mises stress of screws (MPa)
S1 segment S2 segment

LS1 55.61

LS2 49.61

LS12 36.98 38.85

S1 segment S2 segment
OS1 70.49

OS2 50.77

OS12 46.49 44.14

Fig. 7  Sketch map of OS12

 

Fig. 6  Sketch map of OS2
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[25] described the advantages and theoretical basis of 
using a lengthened sacroiliac screw. First, lengthening 
sacroiliac screws has the characteristics of better vertical 
shear load distribution, lower tip stress, and resistance to 
displacement. Second, in addition to the absolute length 
of the screw, the lengthened sacroiliac screw allows for 
more threads to bind to the bone, which may increase 
holding power. Third, the lengthened sacroiliac screw 
provides anchorage in the iliac cortical bone, which may 
increase the role of the screw in maintaining reduction. 
Our sacral fractures based on biomechanical investiga-
tions [19, 20] showed that lengthened sacroiliac screws 
provide better stability than ordinary screws. However, it 
was not previously reported whether an increased risk of 
breakage accompanies the application of lengthened sac-
roiliac screws.

The maximum von Mises stress, one of the fundamen-
tal safety indicators of screws, increased with increasing 
screw fracture risk. The higher the stress is, the greater 
the likelihood of screw failure. The following results can 
be summarized from this study. When comparing dif-
ferent fixation modes with the same kind of screws, we 
found that the maximum von Mises stress was the larg-
est, with only fixed S1 segments, and the minor model, 
with only fixed S2 segments. At least in the model, S1 
and S2 are both fixed. Second, when fixing the S1 seg-
ment and S2 segment simultaneously, the maximum von 
Mises stress of the S1 segment screw in the same model 
was similar to that of the S2 segment screw, regardless of 
whether it was a lengthened screw model or an ordinary 
screw model. Third, if considered from the fixed seg-
ment, the screw fracture risk of double-segment fixation 
was lower than that of single-segment fixation. In dou-
ble-segment fixation, the fracture risk of the two screws 
was similar. When different screws were used to compare 
the same fixed segment, we found that the maximal von 
Mises stress of the lengthened screw was lower than that 
of the ordinary screw, and the lengthened screw had a 
lower fracture risk than the ordinary screw.

In summary, from the perspective of screw safety, it 
is recommended to use lengthened screws for fixation. 
The safest method is to fix the S1 and S2 segments with 
extended sacroiliac screws. Normal sacroiliac screws 
are recommended for S1 and S2, even in the absence of 
lengthening sacroiliac screws. If only one screw can be 
used, S2 segment fixation is recommended regardless of 
the sacroiliac screw. The results of the screw safety analy-
sis are consistent with those of the stability analysis.

The risk of a fatigue fracture in internal fixation can be 
reduced by avoiding excessive concentration in certain 
parts through the uniform distribution of stress in inter-
nal fixation. However, in this study, when we compared 
the stress distribution, we found that the stress distribu-
tion of screws was not uniform in any model. Compared 

with the different kinds of screws we used, the stress dis-
tribution of the lengthened sacroiliac screw was more 
uniform. Compared with different fixed segments, the 
stress distribution of double-segment fixed screws was 
more uniform. Similarly, these findings are consistent 
with the stability analysis results and the maximum von 
Mises stress analysis.

The following points need to be noted in this study. 
First, although anterior ring instability is characteristic 
of type C pelvic ring injuries, considering the multiple 
fixation methods of anterior ring fractures may affect 
the stability of the posterior pelvic ring. This study did 
not imitate the anterior pelvic ring’s injury and fixation 
but only maintained the anterior pelvic ring’s normal 
state. The anterior pelvic ring had a slight effect on the 
stability of the posterior pelvic ring and did not affect 
our comparison of several study models. Second, to best 
simulate pelvic stability, we reserved multiple important 
pelvic ligaments in our research. Meanwhile, to elimi-
nate any unpredictable forces that might affect the mea-
surements, we did not simulate muscles to simulate the 
extra stability they would cause. Muscle parameters, joint 
data parameters, and joint flexibility settings will quali-
tatively influence the results. However, the calculation is 
too complicated to complete the experiment, so they are 
simplified [26, 27]. Third, it was not feasible to simulate 
all the features of comminuted sacral fractures accurately. 
In our study, we used a well-accepted method to imitate 
a unilateral sacral sagittal fracture through the unilateral 
sacral foramen, which is considered the typical type of 
simulated sacral fracture (Denis II). Moreover, our model 
method had a straight and smooth fracture, which facili-
tated the standardization of the model and did not affect 
the accuracy of mesh generation and subsequent calcula-
tion. Fourth, to best mimic the normal state of the pelvis 
while standing, we positioned the pelvis so that the upper 
surface of the symphysis pubis was aligned with the lower 
surface of the sacrum. Fifth, the finite element model we 
studied was bone independent, and our conclusions were 
theoretically applied to patients who still have cartilage.

Conclusion
The breakage risk of screws fixed in double segments is 
lower than that of screws fixed in single segments, the 
breakage risk of lengthened screws is lower than that of 
ordinary screws, and the breakage risk of screws fixed 
in S2 segments is lower than that of screws fixed in S1 
segments.
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