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Bone fractures have a high degree of severity. This is usually a result of the physical
trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly
vascular nature, the bone is in a constant state of remodeling. Although those of
younger ages possess bones with high regenerative potential, the impact of a disrupted
vasculature can severely affect the recovery process and cause osteonecrosis. This
is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years,
mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of
afflicted bone. However, the cut-off in blood supply due to bone fractures can lead
to hypoxia-induced changes in engrafted MSCs. Researchers have designed several
oxygen-generating biomaterials and yielded varying degrees of success in enhancing
tissue salvage and preserving cellular metabolism under ischemia. These can be utilized
to further improve stem cell therapy for bone repair. In this review, we touch on
the pathophysiology of these bone fractures and review the application of oxygen-
generating biomaterials to further enhance MSC-mediated repair of fractures in the three
aforementioned parts of the bone.

Keywords: bone ischemia, bone fracture, hypoxia, stem cells, oxygen-releasing biomaterials

BONE ISCHEMIA

This review is mainly focused on the use of oxygen releasing biomaterials with mesenchymal stem
cell therapy to address hypoxia in the treatment of bone fractures (Figure 1). Bone fracture cases
are commonly presented in varying degrees of severity and are usually a manifestation of direct
physical injury or bone-related diseases such as osteoporosis (Burge et al., 2007). With gradual
improvements in healthcare and living, an increase in these cases is predictable because of the
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FIGURE 1 | A schematic diagram of the review summary.

longer life expectancies (Rommens, 2019). Although the bone
is seen as a rigid structure, it is classified as a connective tissue
that constantly remodels itself throughout a human’s lifespan in
a highly vascularized environment (Boskey and Coleman, 2010;
Cowan and Kahai, 2018). Despite having modest regenerative
potential, especially in children, a loss of blood supply in the bone
can impede cellular repair and potentially lead to osteonecrosis
(Shah et al., 2015). This cut-off in blood circulation can be due
to fractures or dislocations that physically cause an interruption.
This pathophysiology is commonly observed in the neck of femur
(Shah et al., 2015), scaphoid (Hayat and Varacallo, 2018), and
talus bone (Matthews and Stitson, 2018).

The femur is a piece of bone in the upper leg that articulates
with the acetabulum of the pelvic bone and the tibia of the
lower leg. A fracture of the femur neck, which connects the
femur head to the shaft, has a high risk of cutting off the blood
supply by damaging the ascending arteries and causing necrosis
(Gumustas et al., 2018). This avascularity in the femur head
was found to arise in about 72% of patients who suffered from
femur neck fractures, and the incidence increases with severity
(Han et al., 2019). One example is a displaced femoral neck
fracture (Figure 2A). Fractures of the scaphoid (Figure 2B)
are common in the carpals, and are often observed in young,
working individuals (Hayat and Varacallo, 2018). Similar to the
femur neck, blood vessel interruption in this wrist bone can
lead to avascularity and even arthritis if treatment is inadequate
(Dias et al., 2016).

Much like how the carpal bones are important for wrist
movement, the talus (Figure 2C) is a bone in the lower foot
that is crucial for movement. Due to its unique retrograde blood
supply, as well as having no direct attachments to any other
bones, physical trauma such as from a heavy fall can displace
the talus and disrupt vascular supply (Clare and Maloney, 2019).
This was found to have a high association with the occurrence of
avascular necrosis (Lindvall et al., 2004).

HYPOXIA LIMITS ORTHOPEDIC
TREATMENT EFFICIENCY

Clinical treatment in these cases depends on the severity of
the fracture and typically involves an immediate fixation or

application of a cast to promote bone union (Matthews and
Stitson, 2018). However, the risk of osteonecrosis remains.
A more severe injury in the talus, for example, gives rise to more
complications regardless of the timing of treatment (Vallier et al.,
2004). Even with surgical or non-surgical treatments, bone union
and cessation of osteonecrosis are not guaranteed, including the
aforementioned bones (Sanders et al., 2004; Dias and Singh, 2011;
Gumustas et al., 2018). In recent years, mesenchymal stem cell
(MSC) therapy has been used to aid in the regeneration of bone
afflicted with osteonecrosis, such as in the femur head (Wang
et al., 2019). Since MSCs are multipotent, these stem cells are able
to differentiate into osteocytes as the cells are derived from the
mesoderm (Fafián-Labora et al., 2019). However, the cut-off in
blood supply due to bone fractures can lead to hypoxia-induced
changes in engrafted MSCs. Hypoxia is known to affect the
proliferation, differentiation, metabolism, and viability of MSCs
in vitro (Ejtehadifar et al., 2015). Exposure to hypoxia leads to
increased cell death, but over time there is an upregulation of
stemness genes such as Oct-4, Sox2, and Nanog, as the cells persist
in an undifferentiated state (Samal et al., 2021). Interestingly,
high oxygen tensions also affect MSCs by reducing proliferative
capacity (Krinner et al., 2009).

Besides lowering cell viability, hypoxia has been shown
to inhibit metabolic switch and osteogenesis of MSCs (Hsu
et al., 2013). The inhibitory effects were demonstrated by
suppressed osteogenic markers expression and mineralization
of MSCs during osteogenic differentiation (He et al., 2010).
Kim et al. (2016) has reported downregulation of calcification,
and osteonectin and osteopontin gene expression, implying
suppression of osteogenesis in adipose-derived stem cells
(ADSCs). It was described that the suppression of osteogenic
differentiation involves the generation of reactive oxygen
species under oxygen deficiency, which activates Mitogen-
Activated Protein Kinase (MAPK) and Phosphatidylinositol
3-Kinase/Akt (PI3K/Akt) signaling pathways and upregulates
intracellular Insulin-like Growth Factor-Binding Protein 3
(IGFBP3) level. Osteogenic differentiation in bone marrow-
derived mesenchymal stem cells (BMSCs) was also suppressed
under low oxygen condition. Hypoxia of 2% oxygen decreased
mineralization and alkaline phosphatase (ALP) activity during
osteogenesis (Huang et al., 2012). As such, hypoxia results
in a reduction of therapeutic efficacy for bone regeneration
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FIGURE 2 | (A) An anteroposterior fluorograph of a displaced femoral neck fracture fixed with cannulated screws. The femoral neck (region around white arrow)
connects the femoral head to the rest of the femur. (B) Plain radiograph of the left anteroposterior carpals of a young adult presented with a full thickness scaphoid
fracture (red arrow). (C) Post-operative plain radiograph of a talus presented with a fracture. Adapted from Patel (2012), Li et al. (2013), and Kim and Yanuck (2018).

due to reduced osteogenesis. Oxygen supplementation can
therefore reverse this, and promote bone regeneration by
introducing normoxic conditions for osteogenic MSCs. However,
this requires careful optimization as too much oxygen supply
can lead to hyperoxia and subsequently cell death due to the
presence of reactive oxygen species, e.g., hydroxyl radicals (OH-)
(Northup and Cassidy, 2008).

Ischemia represents a critical issue during engraftment
procedure, especially in the regions without intact vasculature or
vascular supply, such as femur, talus, and scaphoid. Persistent
ischemia can cause cell death and tissue necrosis (Blaisdell,
2002). Supplementation of oxygen to hypoxic tissue lack of
vascularization can ameliorate hypoxia-induced cell death by
improving cell rescue and viability. The provision of oxygen is
beneficial for tissue regeneration. Supplemental oxygenation of
the engineered tissue scaffold can eliminate the hindrance of
insufficient oxygen in hypoxic tissues, thus reducing dying or
dysfunctional cells in the tissue-engineered graft. Continuous
and localized oxygen supply can also delay the onset of
necrosis in tissue experiencing hypoxia, resulting in extended
tissue viability and improved wound repair. However, the
supply of oxygen to hypoxic tissue during engineered tissue
engraftment remains the main medical challenge. In the effort
to avert ischemia-related cells death, numerous approaches
have been studied for the delivery of oxygen to various
tissues under hypoxia or ischemia. Creating arteriovenous
loops (AV) is one method. In a rat AV loop model, an

increase in vascularization was correlated with the increase
in Hypoxia Inducible Factor-1 alpha (HIF-1α) rate (Yuan
et al., 2018). Another method is to pre-vascularized grafts
before transplantation. In a rabbit model, pre-vascularized
synthetic bone grafts lead to neovascularization and enhanced
bone regeneration (Vidal et al., 2020). Apart from these,
the use of scaffolds with oxygen-releasing biomaterials is
particularly promising. These can be produced by incorporating
the compounds on a 2D scaffold surface or as a 3D
capsule. Examples include solid peroxides, liquid peroxides, and
fluorinated compounds that function to provide oxygen to cells
(Suvarnapathaki et al., 2019).

OXYGEN RELEASING BIOMATERIALS

Researchers have designed several oxygen-generating
biomaterials and yielded varying degrees of success in enhancing
tissue salvage and preserving cellular metabolism under ischemia.
Delivering a sustained source of oxygen would represent a major
therapeutic advancement in tissue restoration and regeneration
following acute trauma and bone defect. Harrison et al. (2007)
have reported sustained release of oxygen by Poly(D,L-lactide-co-
glycolic acid) (PLGA) films integrated with sodium percarbonate
(SPO). The implantable oxygen-rich compound SPO can delay
tissue death in the hypoxic milieu. The SPO contains sodium
bicarbonate and hydrogen peroxide, which readily convert to
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oxygen upon contact with water as shown in the following
chemical equation.

[Na2CO3]2 • 3H2O2 → 2Na+ + 2CO−2
3 + 3H2O2

2H2O2 → O2 + 2H2O

The films were also shown to prolong skin cells survival
demonstrated by delayed cells degradation, including apoptosis,
lactate accumulation, and skin discoloration. The in situ
production of oxygen has shown to reduce cellular apoptosis
and tissue necrosis in the ischemic tissue of mouse model. The
effect of cell ischemia continues once the oxygen production is
exhausted. This technology employed as a skin wound healing
agent was able to delay the onset of necrosis up to 3 days
(Harrison et al., 2007). The use of oxygen-releasing peroxide on
PLGA films for enhanced cell viability was also validated on a
hypoxic fibroblast proliferation study in a 3D tissue-engineered
constructs (Oh et al., 2009). Researchers also developed an
injectable composite system of PLGA encapsulated in calcium
peroxide (CaO2)/manganese dioxide (MnO2) microparticles
(Hsieh et al., 2020). Under low oxygen tension-induced cultures,
they were able to promote the differentiation of pre-osteoblast
cells. The enhanced local oxygenation by this composite system
was found to possess improved bone regeneration potential.

Hypoxic conditions can cause interruption to skeletal muscle
metabolism and function. Biomaterials supplementation of
oxygen by active element SPO has been demonstrated to
support resting skeletal muscle homeostasis under ischemia
(Ward et al., 2013). In the study, oxygen-generating SPO
mitigated elevations of muscle cells resting tension following
contractile fatigue under normoxic conditions. Under oxygen
deficiency, SPO lessens HIF-1α build-up, oxidative stress, and
ameliorated intramuscular glycogen depletion. SPO administered
into ischemia rat skeletal muscle enhanced in vivo contractility
and ameliorated intramuscular glycogen depletion (Ward et al.,
2013). The results indicated that SPO can maintain the
contractility of skeletal muscle both in vitro and in vivo under
ischemia. Hypoxia-induced loss of skeletal muscle viability and
metabolic homeostasis can also be prevented in the micro-
environment with no functioning vasculature.

Calcium peroxide is one important source of oxygen
production via its decomposition by water.

2CaO2 + 4H2O → 2Ca (OH)2 + 2H2O2 → 2Ca (OH)2 +

2H2O + O2

However, the hydrolysis reaction occurs too quickly in
the conversion of solid peroxide to oxygen. This causes
hyperoxide conditions and leads to the accumulation of reaction
intermediate hydrogen peroxide (H2O2). In addition, the
reaction increases the possibility of side reactions such as the
production of hydroxyl radical (OH-) (Northup and Cassidy,
2008). Previously reported oxygen releasing biomaterials have
mutual limitations, which are less controllable reaction kinetics
and short-lived due to the PLGA hydrolytic decomposition.
Moreover, cytotoxicity caused by H2O2 might occur which

can lead to cell death as well as reduced ALP activity and
mineralization during the osteogenic differentiation process
(Lee et al., 2006). Catalase supplementation is always required
to counter H2O2 cytotoxicity by catalyzing its decomposition
(Tiedge et al., 1997). Therefore, utilization of such biomaterials
can be harmful to transplanted MSCs.

A possible solution for a slower and sustained oxygen
release is solid peroxide encapsulation. Calcium peroxide
without encapsulation rapidly generates oxygen via hydrolytic
conversion, leads to spurts of oxygen that are too transient for
cells utilization (Northup and Cassidy, 2008). The bio-stable
and hydrophobic (polydimethylsiloxane) PDMS can serve as
a diffusional barrier which can decrease the reactivity of the
encapsulated calcium peroxide. The capturing of solid peroxide
within PDMS were found to regulate oxygen release into the
surrounding for over 40 days. Oxygen production by the system is
dependent on the water diffusion rate into the PDMS-CaO2 disk
and the amount of solid peroxide in the disks (Watson and Baron,
1996). PDMS is highly permeable for the oxygen generated to
be diffused efficiently out of the system for cellular usage (Robb,
1968). With the controllable features, the concentration of solid
peroxide in the disks, and the disks geometry and dimensions
can be optimized to design an oxygen generating system with
ideal kinetics of oxygen release. The modulation of reactivity of
solid peroxide hydrolysis and rapid clearance of end products
ensure the dynamic of the forward reaction, thus eliminating
the accumulation of hydrogen peroxide intermediate and side
reactions such as hydroxyl radicals. As such, PDMS serves as
a suitable biomaterial for maintaining viability and function of
transplanted cells under ischemic conditions.

Pedraza et al. (2012) have reported the fabrication of
a hydrolytically activated oxygen-producing biomaterial. The
designed disk of solid calcium peroxide (CaO2) encapsulated
in hydrophobic polydimethylsiloxane (PDMS), PDMS-CaO2 can
generate continuous oxygen release for as long as 6 weeks.
A single PDMS-CaO2 disk was sufficient to regulate cells
function of both β cell line and pancreatic rat islets to their
normoxic controls. Hypoxia-induced cell dysfunction and death
were ameliorated, where the cellular metabolic function and the
production of glucose-dependent insulin were regulated as to
that under normoxic conditions. Under experimental ischemia,
the viability of the β cell line was improved for almost a month
with the sustained supply of oxygen from the PDMS-CaO2
disk (Pedraza et al., 2012). Ischemia-induced cells apoptosis
and dysfunction were prevented by suppression of cell stress
pathways activation and shifting to anaerobic metabolism (Lee
et al., 2006). Additionally, scaffolds have been used with CaO2 to
better modulate oxygen release (Touri et al., 2020). These CaO2-
coated scaffolds were found to augment bone formation at the
regions between the scaffolds and the host’s bone. Osteogenic
markers such as osteonectin and osteocalcin were upregulated
compared to the bone treated with uncoated scaffolds. Other
researchers have also developed methods to directly release
molecular oxygen instead of hydrogen peroxide-based methods
that rely on decomposition to generate oxygen. One such team
was able to create hypoxia-sensitive, oxygen molecule-releasing,
microspheres and co-injected them with MSCs into mouse
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ischemic limbs (Guan et al., 2021). They found significant MSCs
survival, proliferation, and angiogenesis without the induction
of inflammation.

Another approach was conducted to encapsulate pure H2O2
into a dual-layer matrix to produce clean oxygen for tissue salvage
applications (Abdi et al., 2013). The direct usage of encapsulated
H2O2 can prevent the generation of by-products including metal
cations, and only yield oxygen and water which are non-toxic
(Fatokun et al., 2006). Encapsulated raw H2O2 normally diffuses
out of the biological matrix at a slow pace, increases its direct
contact with the cells and the possibility of exerting cytotoxic
effect (Abdi et al., 2011). Therefore, the PLGA matrix was coated
with catalase-grafted alginate in the study to serve as a protective
layer and promote H2O2 decomposition. In this method, oxygen
release can be controlled by manipulating alginate concentration
in the microspheres encapsulating H2O2. Sustained oxygen
supply from decomposition of encapsulated H2O2 in the
fabricated dual layered system has shown to enhance cell survival
under ischemia (Abdi et al., 2011). The study also revealed
optimum H2O2 concentration to generate efficient amount of
oxygen to maintain muscle cells viability under controlled release
manner (Abdi et al., 2013). Some researchers have produced a
bile acid-based dual-functional prodrug nanoparticle that can
scavenge H2O2, promote osteogenesis, and inhibit adipogenesis
of MSCs in a bone defect rat model (Arai et al., 2020). They
found a significant improvement in bone regeneration as well
as potent anti-inflammatory activities in the MSCs. Other than
that, catalase enzymes could be grafted onto microspheres such
as poly (L-lactic acid) (PLLA) to speed up the conversion of
H2O2 (Mohseni-Vadeghani et al., 2021). Additionally, by using
PLLA to load CaO2 and allowing mesenchymal stem cells to
adhere to the surface, the oxygen release profile of this system
was found to be further sustained. This led to the thought of a
potential microcarrier with an injectable cell system for improved
bone regeneration.

CONCLUSION

Engineered graft implants face major challenges of tissue necrosis
and cellular apoptosis upon contact with the hypoxic micro-
environment. Provision of sufficient oxygen to the surgery
site is of utmost importance for maximum survival and
integration of transplanted cells to the wound. Technology to
generate oxygen releasing biomaterials as transplantable graft
can provide a sustained infusion of oxygen to the local tissue
to accelerate tissue regeneration, thereby represents a viable

solution for rescuing hypoxic cells. There are, however, potential
limitations to this method. A compromised vasculature in
the bone defect that persists over the long term could limit
the effectiveness of the oxygen-releasing biomaterial since it
is transient. Revascularization as a more general treatment
against osteonecrosis may yield better long-term recovery, but
this requires in-depth studies. Not only that, the failure of
mesenchymal stem cell survival after implantation may be due to
glucose shortage rather than hypoxia (Moya et al., 2018). As such,
exploring glucose-releasing biomaterials could yield surprising
results. Still, the importance of vascularization in transplantation
and bone repair should still be investigated.

The concept of supplemental oxygen by biomaterials is
particularly attractive in orthopedics tissue salvage application.
The early bone graft transplantation stages in femur, talus,
and scaphoid are susceptible to failure due to the absence of
sufficient oxygenation and vascular infiltration. The introduction
of engineered tissue graft further aggravates ischemia due to
higher metabolic requirements. Sustained in situ production of
supplemental oxygen appears to be promising for tissue repair
applications as tissue graft can remain viable during surgery and
proliferate as normal in the hypoxic milieu. The biomaterials
help to prevent the development of harmful oxygen gradients
that might occur in tissue-engineered implants. Furthermore,
oxygenation by biomaterials omits the need for multiple
operations to refill engineered tissue grafts due to hypoxic-
induced cell loss. Therefore, the provision of supplementary
oxygen would serve to enhance cellular viability and benefit the
wound healing process. Thus, oxygen-producing biomaterials
represent an ideal tool for mitigating oxygenation of orthopedics
engineered tissue transplant, specifically for femur, talus, and
scaphoid.
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