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Abstract: Plant-based platforms have been successfully applied for the last two  

decades for the efficient production of pharmaceutical proteins. The number of 

commercialized products biomanufactured in plants is, however, rather discouraging. 

Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune 

disorders and various other related diseases. Because the clinical use of cytokines is limited 

by high production costs they are good candidates for plant-made pharmaceuticals. Several 

research groups explored the possibilities of cost-effective production of animal cytokines 

in plant systems. This review summarizes recent advances in this field. 

Keywords: cytokines; pharmaceutical proteins; plant-based production systems; molecular 

farming; interleukins; transgenic plants 

 

1. Introduction 

Development of DNA recombination and plant transformation techniques resulted in creating the 

novel protein production platforms based on either whole plants or plant cells. The results of the first 

experiments describing the plant-based production of pharmaceutical proteins were published about 

25 years ago. The successful production of the human growth hormone in tobacco and sunflower [1] 

and of albumin in tobacco and potato [2] indicated that plant-based production systems might be used 

for the production of mammalian proteins. The process of using plant-based systems as highly 
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effective production platforms for the molecules with biotechnological (industrial or pharmaceutical) 

significance is named molecular farming, while the pharmaceutical products obtained in the  

plant-based systems are often called plant-made pharmaceuticals (PMPs). At present, a list of PMPs in 

various stages of development or potential commercialization is quite extensive and includes various 

antibodies and their fragments, vaccine antigens, blood substitutes, enzymes, cytokines and other 

important and valuable proteins. Multiple examples of such proteins and the extensive evaluation of 

the advantages and disadvantages of various plant-based platforms for the expression of the particular 

targets can be found in many recent reviews (for example, [3], see also below), therefore this work is 

limited only to a small group of PMPs, the cytokines. 

2. Cytokines and Their Therapeutic Application 

Cytokines are small polypeptides, proteins or glycoproteins involved in the regulation of processes 

as diverse as proliferation, differentiation and mobility of cells. Cytokines are important components of 

the immune system; however they also participate in embryogenesis, affect the hematopoietic system 

and act on neuronal cells. The anatomic and structural distinctions between hormones and cytokines 

are unclear and cytokines are sometimes named the hormones of immune system. They can have an 

affect not only on cells in the close proximity but also those in distant organs. Cytokines  

are characterized by a considerable complexity of actions such as redundancy, pleiotropy, 

multifunctionality, synergistic or antagonistic effects and cascades of positive or negative feedbacks. 

At present, more than 100 different cytokines are known. Several methods of division of this large 

family into subgroups have been used. The most convenient seems to be functional categorization 

according to KEGG (Koto Encyclopedia of Genes and Genomes [4]). As shown in Figure 1, at least 

8 families can be distinguished: Class I cytokines (hematopoietin family), Class II cytokines 

(interferons/IL-10 family), platelet-derived growth factors (PDGF), tumor necrosis factors (TNF 

family), IL-1 family, IL-17 family, tumor growth factor family (TGF-beta family) and chemokines. 

For more information about the cytokines the reader is referred to the Cytokines & Cells Online 

Pathfinder Encyclopedia (COPE) [5]. 

An imbalance in cytokine production or signaling contributes to various pathological immune and 

inflammatory disorders. In addition, plasma levels of various cytokines may give information on the 

presence, or even predictive value of inflammatory processes involved in autoimmune diseases such as 

rheumatoid arthritis. The biological role of cytokines and their dual (immunosuppressive as well as 

immunostimulatory) properties are a strong indication for multiple clinical applications. A number of 

recombinant cytokines have been approved for clinical use (Table 1) and multiple cytokine therapies 

are in clinical trials [6–8]. Not only the cytokines but also cytokine receptors, antagonists of the 

cytokine receptors and the relevant specific antibodies can be used in therapy [8]. Significant numbers 

of cytokines have been tested as potential adjuvants of immunological response, particularly during 

mucosal immunizations, such as oral, intranasal and intravaginal [2,9]. Granulocyte-macrophage 

colony stimulating factor (GM-CSF) seems to e one of the best candidates for PMP because it is 

relatively stable, consists of one kind of polypeptide, i.e., it is encoded by one gene, and, essentially, it 

is well tolerated by the patients. Numerous new implications of this cytokine have been proposed and 

tested in preclinical and clinical trials, including the combined application of GM-CSF and IL-2 as 
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adjuvants in cutaneous melanoma along with autologous vaccine [10]. However, it is necessary to 

mention that the use of cytokines as adjuvants in vaccines is considered controversial because they can 

sometimes have serious side effects such as vascular leak syndrome [11]. An interesting idea is the 

production and application of ―fusokines‖, hybrid molecules generated after cloning and fusing two 

separate cytokine encoding cDNAs into a single open reading frame, however these experiments have 

been limited to the murine experimental models [12]. 

Figure 1. The families of cytokines (according to the Kyoto Encyclopedia of Genes and 

Genomes [4]). 

 

Table 1. Examples of cytokines approved for use in humans. Modified from [7,8]. 

Cytokine  Disease or Indication Drug Name (Company) 

G-CSF Neutropenia Neupogen/Filgrastim (Hoffmann-La Roche) 

GM-CSF 

Leukemia 

Bone marrow 

Stem cell transplants 

Leukine/Sargramostin (Bayer) 
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Table 1. Cont. 

Cytokine  Disease or Indication Drug Name (Company) 

Interferon-α (INF-α) 

Chronic hepatitis B 

Chronic hepatitis C 

Hairy cell leukemia 

Chronic myeloid leukemia 

Condyloma acuminate 

AIDS-related Kaposi’s sarcoma 

genital warts 

Intron A (Schering Plough) 

Roferon A (Hoffman La Roche) 

Infergen (Three Rivers Pharmaceuticals) 

Alferon N (HEMISPHERx Biopharma) 

Pegasys (Genentech USA/Roche) 

Pegintron (Merck) 

Interferon-β (INF-β) Relapsing multiple sclerosis 
Betaseron (Bayer) 

Avonex (Biogen Idec) 

Interferon-γ (INF-γ) 
Malignant osteopetrosis 

Chronic granulomatous disease  
Actimmune (Intermune Pharma) 

Erythropoietin-α 

(EPO-α) 

Anemia due to chronic renal failure 

HIV infected patients 

Chemotherapy 

Primary bone marrow disorders 

Eprex (Cilag Jansen) 

Epogen (Amgen) 

Procrit (Ortho Biotech) 

IL-2 
Metastatic renal cell cancer 

Metastatic melanoma 

Aldesleukin (Novartis) 

Proleukin (Prometheus Laboratories) 

IL-11 Thrombocytopenia 
Oprelvekin/Neumega (Genetics Institute, Inc./ 

Wyeth/Pfizer)  

3. Recombinant Cytokines from Plant-Based Platforms 

Plant-based production of recombinant cytokines is an emerging area and most previous research 

has concentrated on a few well-characterized cytokines. Some most interesting examples from the list 

shown in Table 2 are briefly discussed below. 

3.1. Hematopoietin Family 

Erythropoietin was one of the first cytokines produced in plant cells [13]. The cDNA encoding 

human erythropoietin was expressed from the 35S promoter of cauliflower mosaic virus (CaMV) in 

the tobacco BY2 cells. The signal peptide at the N-terminus was intended to enable the extracellular 

secretion of the recombinant protein. The secretion was observed in the protoplasts cultures, while in 

the cell cultures erythropoietin was translocated though the cellular membrane but it stayed bound by 

the cell wall and was not secreted into the medium. Most probably, the size of 30 kDa was too large 

for free migration through the cell wall. The protein is glycosylated in animal cells, so was examined 

in plant cells, however the pattern and length of the sugar chain were different. Unfortunately, only a 

low yield (0.0026% of total soluble protein [TSP]) was achieved. The protein was biologically active 

in vitro but not in vivo. The possible explanation for this might be the difference in glycosylation, 

which is known to affect the protein stability in blood.  
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Table 2. Examples of cytokines produced in plant-based systems. Different expression systems are marked differently (no  

background-suspension cultures; light grey-transgenic or transplastomic plants; dark grey-plant virus-based production); nos-nopaline 

transcriptional terminator, MUbi-1 i Scubi-9-polyubiquitin promoters; * Method of transformation: T-Agrobacterium-mediated;  

M-microbombardment, V-viral vector, L-lipofectin-mediated transformation of protoplasts. The examples concern human cytokines unless 

indicated otherwise. 

Cytokine * Method/Plant Material Selected Elements of the Expression Cassette Expression Level/Yield Reference 

erythropoietin T/tobacco (BY2) cells 

suspension  

35S promoter and terminator 0.0026% TSP; 25 pg/L [13] 

G-CSF  T/tobacco cells suspension  35S promoter with the double enhancer, Ω-translation enhancer; 

nos terminator 

105 μg/L [14] 

GM-CSF T/tobacco cells suspension  35S promoter, translation enhancer from TEV, His tag,  

T7 terminator 

150 µg/L (intercellular); 250 µg/L 

(secretory)  

[15] 

GM-CSF  T/tobacco cells suspension  35S promoter with the double enhancer, nos terminator 180–780 µg/L [16] 

GM-CSF  M/rice cells suspension  rice amylase promoter and signal peptide 129 mg/L 

(25% secreted proteins)  

[17] 

GM-CSF M/rice cells suspension rice amylase promoter and signal peptide, RNAi-mediated 

silencing of α-amylase gene to 8.2% 

280 mg/L [18] 

GM-CSF M/rice cells suspension  rice amylase promoter and signal peptide, RNAi-mediated 

silencing of cysteine proteinase 

290 mg/L [19] 

GM-CSF M/rice cells suspension rice amylase promoter and signal peptide; co-expression  

of gene encoding synthetic protease inhibitor (SPI-II) 

250 mg/L [20] 

GM-CSF M/sugarcane leaves  MUbi-1 promoter from maize or SCubi-9 from sugarcane 0.02% TSP [21] 

GM-CSF  T/tobacco seeds Gt1, Gt3 (glutelin) promoters and signal peptide,  

nos terminator 

0.005–0.03% TSP 

 

[22] 

GM-CSF T/tobacco seeds Gt1 (glutelin) promoter and signal peptide, nos terminator 1.3% TSP [23] 

GM-CSF T/rice seeds Gt13a (glutelin) promoter (specific for seed endosperm) and 

glutelin signal peptide, nos terminator, codon optimalization 

0.5–14 μg/seed [24] 

Murine GM-CSF T/tobacco leaves RbcS1 Promoter; signal peptide, KDEL 19 µg/g fresh leaves; 0.22% [25] 
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Table 2. Cont. 

Cytokine * Method/Plant Material Selected Elements of the Expression Cassette Expression Level/Yield Reference 

GM-CSF  V/N. benthamiana leaves PVX-derived vector: 35S promoter, His tag 0.2–2% TSP [26] 

IL-2  T/tobacco cells suspension  35S promoter, T7 terminator 0.09 mg/L [27] 

IL-2 T/potato tubers  patatin promoter; nos terminator 115 U/mg TSP [28] 

Murine IL-2 T/Arabidopsis seeds 

T/tobacco seeds 

novel binary Gateway vector (pPphasGW) containing  

β-phaseolin promoter from common bean and the signal peptide 

of the Arabidopsis 2S2 seed storage protein gene; KDEL 

Much higher yield in Arabidopsis 

than in tobacco: 0.3 mg/g of seeds 

(0.7% TSP); biologically active  

in vitro 

[29] 

IL-4 T/tobacco leaves  35S promoter with double enhancer, t-CUP-translation 

enhancer, ELP, KDEL, nos terminator  

0.086% TSP [30] 

IL-4 T/tobacco leaves,  

T/potato tubers  

35S promoter, KDEL sequence 0.1% TSP in tobacco;  

0.08% TSP in potato 

[31] 

IL-4 T/tobacco cells suspension  35S CaMV promoter, T7 terminator 0.45 mg/L [27] 

IL-10  T/tobacco leaves  35S promoter with double enhancer, t-CUP-translation 

enhancer, ELP, KDEL, nos terminator 

0.27% TSP [30] 

IL-10 T/tobacco leaves  (A) promoter 35S CaMV, with or without His tag,  

chloroplast leader peptide 

(B) promotor 35S CaMV, His tag; mitochondria  

leader peptide 

(A) 7 ng/mg TSP (without His);  

43 ng/mg TSP (with His) 

(B) no accumulation 

[32] 

IL-10 T/rice seeds  GluB-1 promoter and signal peptide, His tag, KDEL, 

codon optimization 

2 mg of pure IL-10 per 40 g  

of rice powder 

[33] 

IL-10 T/tobacco leaves 35S promoter with double enhancer; three constructs for each 

viral IL-10 or murine IL-10, ER-targeted, plasma membrane 

(IL-10 facing the apoplast), ER-membrane (IL-10 facing the 

cytosol) assayed in transient expression system, cassettes for 

ER-targeted cytokines were used for the stable expression 

Viral: 10.8 µg/g fresh leaves 

Murine: 37.0 µg/g fresh leaves 

[34] 

IL-12 T/tobacco leaves  35S promoter and terminator 40 ng/g [35] 
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Table 2. Cont. 

Cytokine * Method/Plant Material Selected Elements of the Expression Cassette Expression Level/Yield Reference 

IL-12 T/tomato leaves and fruits  35S promoter with double enhancer; 35S terminator 7.3 μg/g leaves 

4.3 μg/g fruits 

[36,37] 

IL-12 T/tobacco cells suspension  35S promoter with double enhancer; Ω-translation enhancer 175 μg/L [38] 

IL-13 T/tobacco leaves  double 35S promoter; translation enhancer from AMV; KDEL; 

nos terminator 

0.15% TSP [39] 

IL-18 T/tobacco leaves  35S promoter with double enhancer, Ω-translation enhancer, 

nos terminator 

0.004–0.051% TSP; 351 ng/g [40] 

cardiotrophin-1 M/tobacco leaves, chloroplasts 

transformation 

(A) promotor rrn (promoter 16S RNA), translation enhancer 

(5’UTR/leader sequence of the phage T7 gene 10) 

(B) psbA promoter and translation enhancer (5’UTR psbA) 

(A) 0.14 mg/g leaves 

(B) up to 1.14 mg/g leaves  

[41] 

IFN-α2b  

IFN-α8 

T/potato - 560 IU/g of tissue [42] 

IFNα L/tomato (leaf tissue and  

cells suspension) 

P1 portion of the dual ―bi-directional‖ promoter from 

A. tumefaciens cDNA, polyadenylation signal from 

A. tumefaciens gene-7 

923–3029 U/g FW tissue [43] 

IFN-α2 V/squash (Cucurbita pepo) and 

cucumber (Cucumis sativus) 

Viral vector dirived from attenuated zucchini yellow mosaic 

potyvirus (AG) 

max. 430,000 IU/FW of leaves [44] 

IFN-α2b M/tobacco leaves, chloroplasts 

transformation 

Cassette: 5’UTR/HIS/THR/IFNα2b cloned into the chloroplast 

vector pLD-CtV 

3 mg/g, 20% TSP [45] 

IFN-α2b  T/carrot leaves (A) 35S promoter, nos terminator, calreticulin apoplast  

targeting signal  

(B) taproot-specific Mll promoter, nos terminator, calreticulin 

apoplast targeting signal 

Biological activity on average:  

(A) 26.8 × 103 U/g FW of young 

leaves 

(B) 8.56 × 103 U/g FW of roots 

[46] 

IFNβ transient, agroinfiltration of the 

leaves of lettuce 

35S promoter, nos terminator 3.1 × 104 IU/mL [47] 
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Table 2. Cont. 

Cytokine * Method/Plant Material Selected Elements of the Expression Cassette Expression Level/Yield Reference 

IFNγ T/rice cells suspension (A) constitutive maize ubiquitin promoter, with or without 

αAmy3 leader peptide; His tag;  

(B) sucrose-starvation inducible promoter (rice αAmy3 

promoter); with or without αAmy3 leader peptide; His tag 

(A) 11.1 ng/mL (secretory) and 

699.79 ng/g cell (intracellular) 

(B) 17.4 ng/mL media (secretory) 

and 131.6 ng/g cell (intracellular) 

[48] 

Chicken IFN-α Transient expression, 

agroinfiltration of the  

leaves of lettuce 

35S promoter, nos terminator 0.393 μg/kg tissue, 0.0004% TSP [49] 

Fish IFN- α1 T/rice 

T/potato 

35S promoter with double enhancer, nos terminator 

 

Biological activity: 

in rice-up to 0.82 U/mg leaves; 

in potato-up to 5.4 U/mg leaves 

[50] 

TNF-α  

 

T/potato 35S promoter, Ω-translation enhancer, SEKDEL sequence 15 µg/g tissue [51] 

Fibroblast growth 

factor 8 isoform b 

(FGF8b) 

T/tobacco leaves 35S promoter with double enhancer; 35S terminator ,c-myc, 

His, KDEL 

4.1% TSP [52] 

Insulin like growth 

factor 1 (IGF-1) 

M/tobacco, transplastomic psbA promoter, translantion enhancer (5’UTR psbA)  

and ZZ-tag from S. aureus, codon optimization 

up to 32% TSP [53] 

Insulin like growth 

factor 1 (IGF-1) 

M/rice seeds Glutelin (Gt13a) promoter, the Gt13a signal peptide in  

frame with the fusion protein containing IGF-1 attached  

to the C-terminus of ER luminal binding protein (BipC) ,  

nos terminator 

up to 6.8% of total seed protein; 

biologically active in vivo 

(effectively reduced blood glucose 

in diabetic mice) 

[54] 
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Several independent groups focus on the production of human GM-CSF. Initially, it was produced 

in tobacco [15,16] and rice [17–20] cell suspension cultures. One of the most interesting approaches to 

improve the yield was the addition of either mineral salts or BSA to the growth medium, which 

stabilized the secreted cytokine [15]. A significant (up to 4-fold) increase of the yield was achieved 

due to the addition of 5% (w/v) gelatin to the medium [16]. However, in cultures older than 4 days, 

gelatin inhibited cell growth, presumably by activation of proteolytic enzymes. Much higher efficiency 

was achieved in cultures of rice cell suspension, particularly with the specific promoter of rice 

amylase, Ramy3D [17]. Using this system, a yield of 129 mg/L of culture was achieved in the absence 

of sugar (when this promoter is activated). The system was subsequently optimized in three strategies:  

(i) silencing of the gene encoding a-amylase, a dominant protein secreted by rice cells [18]; 

(ii) silencing of the gene encoding cysteine proteinase secreted by the rice cells to the medium [19]; 

and (iii) co-expression of cytokine with the protease inhibitor [20]. Each of these strategies increased 

the yield of recombinant GM-CSF at least two-fold.  

Whole plant platforms were also used for GM-CSF production. The maximal yield in the leaves of 

transgenic sugarcane was about 0.02% [21] and in tobacco leaves about 0.22% of TSP [25]. In the 

seeds of transgenic rice recombinant GM-CSF accumulated up to 1.3% of TSP [23]. The highest 

expression (up to 2% TSP) was reported for the viral vector based on PVX (potato virus X) with 

modified coat protein [26]. In most cases the biological activity of recombinant GM-CSF was 

confirmed in vitro, while in at least in one case it was also verified in vivo in a mouse model [24]. 

The first report about the expression of recombinant IL-2 and IL-4 in tobacco cell suspension 

cultures was published in 1998 [27]. The authors assumed that the presence of intrinsic signal peptide 

would provide an efficient extracellular secretion of recombinant proteins. In fact, most of the cytokine 

produced was retained in the cells and only the secreted proteins had biological activity. Other 

strategies include targeting of the recombinant IL-4 proteins into endoplasmic reticulum, using the 

promoter specific to potato tubers or expression as a protein fusion with elastin, however the reported 

yield was never higher than 0.08% for IL-4 [30] or 115 U/g of potato tuber for IL-2 [28]. 

Other examples of cytokines from this group produced in plant-based platforms include 

cardiotrophin 1 [41], interleukin 12 [35–38], interleukin 13 [39] and interleukin 18 [40]. Interestingly, 

IL-12 was produced as a multimeric protein at levels exceeding 5% of TSP after coinfiltration of 

Nicotiana benthamiana leaves with two Agrobacterium strains individually encoding each subunit [55]. 

Cardiotrophin 1 was produced in transplastomic tobacco plants with an efficiency of about 5%. In 

addition, it appeared that its biological activity is inhibited by light, which most probably destroys the 

protein conformation [41]. 

3.2. Interferon and IL-10 Family 

Interferons have been frequently selected as candidates for production in plant-based systems. The 

first reports about the plan-based production of human interferon date back to the beginning of the  

90 s [56], however it was the usage of transplanstomic plants that allowed for the huge increase of 

yield, up to 20% of TSP [45]. It is worth mentioning that not only human interferons but also 

interferons from chicken [49] and salmon [50] were successfully produced in plant-based systems. 
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In plant-based systems, interleukin 10 was targeted either to chloroplasts or mitochondria, with 

better results for the former organelle [32]. In the case of this cytokine, the best yield of 0.27% TSP 

was achieved after expression of IL-10 in fusion with elastin [30]. 

3.3. Other Families 

The single representatives of the other families of cytokine were produced in plant systems 

(Table 2). 

Tumor necrosis factor (TNF-α), which is a member of the TNF family, has been produced in  

potatoes [51]. The authors used two types of expression cassettes, both containing 35S promoter of 

CaMV and the translation enhancer from TMV. One of the cassettes had additional sequences 

encoding the N-terminal signal peptide and the C-terminal SEQDEL peptide, responsible for ER 

targeting. However, this strategy did not result in any significant increase of cytokine accumulation.  

In both cases the yield was similar and reached about 15 µg of biologically active TNF-α per 1 g of  

plant tissue. 

Interleukin 18 belongs to the IL-1 family. In this case, the enhanced 35S promoter and the 

translation enhancer from TMV were used; however the yield was moderate, up to 0.05% of TSP [40]. 

Bioactive human fibroblast growth factor 8b (FGF), a member of PDGF family, was produced in 

tobacco plants [52]. The cDNA coding hFGF8b was cloned under control of the double CaMV 35S 

promoter (CaMV35SS). In an Agrobacterium-mediated transient expression system after vacuum 

leaves infiltration the yield of the Ni-NTA affinity chromatography purified proteins c-myc-His tagged 

FGF8b and His-KDEL tagged FGF8b was 2.7% and 4.1% of TSP (90 and 150 µg/g FW), respectively. 

Another member of the same PDGF family, Insulin-like Growth Factor 1 (IGF-1), was efficiently 

produced in transplastomic plants [53]. Cell proliferation assays in human HU-3 cells demonstrated the 

biological activity of this recombinant protein. 

4. Prospects for Commercialization Plant-Produced Cytokines 

The successful introduction of plant-produced recombinant cytokines into the market might 

encounter problems similar to those encountered in the commercialization of any other PMPs [57]. 

These problems can be divided into two main categories: (i) technological (such as low yield, poor 

performance of the recombinant product or problems with postharvest bioprocessing) making the 

platforms economically uncompetitive and (ii) legal (such as public objections and stringent regulatory 

requirements for open-field cultivation of transgenic plants, high regulatory-approval costs and long 

timelines), which result in a long timeframe-to-market and a lack of interest from the potential investors.  

4.1. Strategies Used to Improve the Performance of Plant-Base Production Platforms 

The researchers dealing with molecular farming issues have always been aware of the needs for 

technological improvement. Various factors limit the yield of PMPs and there are multiple possibilities 

to overcome the yield and economic constrains. These problems have been frequently considered in 

many excellent reviews [58–60]. The concerns generally expressed with regard to PMPs also pertain to 

the plant-produced cytokines. Therefore, we would like to mention briefly only a few strategies, which 
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were successfully applied in the case of this type of therapeutics. First of all, some PMPs can be 

produced in edible crops to eliminate the need for purification of the desired products in the case of 

oral application of the recombinant proteins. In addition, several critical elements must be optimized to 

get a high yield of PMP, including the use of tissue specific promoter or optimization of the codons 

within the transgene to match the optimal codons of the host. For example, efficient accumulation 

Insulin-like Growth Factor I (IGF) was achieved in transgenic tobacco chloroplasts after codon 

optimization of the transgene [34,53]. The native IGF gene (IGF-n) with less than optimal for 

chloroplast AT content of 41% or synthetic (IGF-s) gene with optimized 60% AT were cloned into a 

vector containing the psbA promoter, 5’UTR (which enhances translation under illumination) and 

3’UTR (which increases the stability of the transcript). The IGF-n transgenic plants had an expression 

level of 9.5% TSP. In IGF-s plants, expression level increased to 11.3% TSP, however the expression 

of IGF was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory 

elements. The importance of protein stability is illustrated by other reported cases, where significant 

elevation of the yield was achieved by targeting the PMP into the storage organs such as seeds or 

grains [22–24,33]. For example, a strong endosperm-specific promoter (Gt13a) and rice-preferred 

codons optimization improved the transcription and translation of hGM-CSF, giving the yield of 

14 µg/seed [24]. In this case also a signal peptide that targeted recombinant protein into the 

endomembrane system of rice endosperm such as the ER and protein bodies was used to protect 

against degradation by proteases. Additionally, it is worth mentioning that accumulation in seeds might 

eliminate the need for low temperature maintenance during transport and long-term storage of PMPs. 

There are also successful examples of fusion strategies being used to obtain the high yield of 

recombinant cytokines in plants, including IGF-1 produced in fusion with the C-terminus of a rice 

luminal binding protein [54]. The appropriately designed fusion, which does not interfere with the 

biological activity of the recombinant proteins, might be a safe and effective oral delivery system for 

cytokins in general.  

Proteomic analysis of the effects of massive over-accumulation of GM-CSF in plants gave us some 

information about the fate of recombinant proteins in plant cells [61]. This work also indicated that the 

presence of recombinant protein might affect the total proteome of grain cells. For example, the major 

endogenous storage proteins, glutelin, globulin and prolamin, and a majority of carbohydrate-related 

proteins were down-regulated, while 26S proteasome-related proteins and molecular chaperons were 

up-regulated in transgenic rice endosperm. The author concluded that over expression of recombinant 

proteins induced unfolded protein response and that overall protein trafficking in rice endosperm was 

affected. This work shows that the influence of transgene expression on host metabolism is an 

important issue. 

4.2. Other Problems to Consider 

The initial pictures describing the feasibility of the production of edible plant-made pharmaceuticals 

or vaccines in carrots or bananas appeared somewhat naive. A direct consumption (oral application) of 

plant parts containing recombinant therapeutics might be controversial because of the need to meet the 

existing rigorous regulations concerning consistent composition of medicines for humans. Most legal 

and regulatory issues linked to the commercialization of PMPs were extensively discussed in a number 



Int. J. Mol. Sci. 2011, 12             

 

 

3547 

of recent reviews [57,62,63] and they will not be repeated here. There are also other problems and 

questions regarding the use of genetically modified plants and their effects on the human health and 

the environment in general. These issues include some concerns regarding ethics, related to the risk of 

transferring transgene (especially antibiotic-resistance markers) from genetically modified plants to the 

environment, gut microflora and pathogenic microbes. As mentioned earlier, the risk of uncontrolled 

spreading of the transgene can be substantially reduced by the strategy of biocontainment or physical 

containment. In addition, using marker-free technology eliminates the risk of transfer of the marker 

genes [64,65]. There are also some religious issues related to the consumption of transgenic plants with 

animal genes introduced into them, especially, for some strict vegetarian people and some ethnical 

groups with certain food preferences and restrictions, but this concern is outside the scope of the 

present review. 

It is necessary to mention that the avoidance of plant cultivation in open areas, applying various 

approaches of containment use and the usage of only isolated (purified) recombinant products lead,  

of course, to more expensive products and limit the direct use of GM plants as edible sources of 

recombinant therapeutics.  

5. Conclusions 

Recent development of knowledge about the immune system opens new perspectives for  

the application of cytokines and opens a potentially large market, however finding the niche for  

plant-produced recombinant cytokines in the pharmaceutical market might be tough. Many technical 

and regulatory challenges limit the availability of this sector for the prospective investors. All 

molecular farming projects, including those involved in the production of therapeutics for the 

treatment of immune system disorders, must consider the costs and feasibility of standardization, 

validation and licensing of the potential medical products. The biopharming industry is in a dynamic 

state and many companies involved in plant-based biomanufacturing of recombinant proteins cease to 

exist before the commercialization of any products [57]. Nevertheless, there are now about 20 PMPs, 

including at least one cytokine (interferon α) in development as potential products for the 

pharmaceutical market [66]. 
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