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Abstract: Infections by Chlamydiae are associated with ocular disease in humans and animals. In
this study, the presence and diversity of Chlamydia spp. was assessed in diseased and healthy eyes of
domestic sheep and wild ruminants that share mountain habitats in northern Spain. The presence
of Chlamydia spp. was tested by real-time PCR in 1786 conjunctival swabs collected from both eyes
of 893 animals from mountain habitats in northern Spain, and chlamydial species were identified
in the positive samples by ArrayTube microarray methods. Chlamydial DNA was detected in 0.6%
(CI95% 0.2–1.3) of the Pyrenean chamois (Rupicapra pyrenaica) and 1.4% (CI95% <0.01–8.1) of the sheep
(Ovis aries) sampled, with Chlamydia pecorum the only chlamydial species identified. No association
of C. pecorum with ocular disease or co-infection with Mycoplasma conjunctivae was found. Further
studies on the pathogenesis of infectious keratoconjunctivitis are needed to better understand the
ecology of C. pecorum and its possible role as a ruminant pathogen at the wildlife–livestock interface.

Keywords: Chlamydia pecorum; domestic sheep; infectious keratoconjunctivitis; ocular disease;
Pyrenean chamois; Rupicapra pyrenaica; wildlife–livestock interface

1. Introduction

Chlamydiae are obligate intracellular gram-negative bacteria affecting both humans
and animals. According to the current taxonomy, the Chlamydiaceae family consists
of the single genus Chlamydia, which comprises 13 species: Chlamydia (C.) trachomatis,
C. pneumoniae, C. psittaci, C. abortus, C. felis, C. pecorum, C. suis, C. gallinacea, C. caviae,
C. avium, C. serpentis, C. poikilothermis and C. muridarum [1]. Chlamydiaceae can establish
prolonged persistent infections, which are typically asymptomatic, but can also cause
disease affecting the eyes, the genital tract, the joints or the respiratory tract, and occa-
sionally cause systemic disease [2]. Chlamydial species can also cause clinical syndromes
of variable severity, suggesting that strain and/or host factors may play a major role in
disease outcome [3]. In wild and domestic ruminants, C. abortus, C. psittaci, C. pecorum and
C. pneumoniae are the species most commonly detected in association with disease [4].
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Chlamydia pecorum is one of the most common species detected in domestic ruminants,
associated with reduced weight gain, milk production and conception rates, and there-
fore having an economic impact on livestock production [5,6]. Clinical signs related to
C. pecorum infection in ruminants include conjunctivitis, infectious arthritis and sponta-
neous abortion, as well as encephalomyelitis in cattle [7,8]. Chlamydia pecorum has also
been detected in wildlife, such as deer [9,10], ungulates from the Caprinae and Bovinae
subfamilies [11,12], koala (Phascolarctos cinereus) [13] and bird species [14]. Although
Chlamydia pecorum is a major pathogen in koalas [15], the pathogenic effect of C. pecorum in
wild hosts is mostly unknown.

Chlamydia spp. have occasionally been reported as the main cause of infectious kera-
toconjunctivitis (IKC) outbreak in bighorn sheep (Ovis canadensis) [16], and C. pecorum has
been involved in an outbreak of ocular disease in reindeer [10]. The clinical signs observed
in both outbreaks were ocular discharge, blepharospasm and keratoconjunctivitis. In wild
Caprinae, the main etiological cause of IKC is Mycoplasma conjunctivae [17], yet it is not clear
whether Chlamydia spp. has pathogenic synergism in co-infection with M. conjunctivae or
can cause sporadic ocular disease in wild ruminants. Ocular co-occurrence of Chlamydia spp.
and M. conjunctivae has been reported in chamois, sheep and goats [12,18], and has been
associated with a severe IKC outbreak in Pyrenean chamois [19].

The aim of this study is to assess the frequency and diversity of Chlamydiaceae in the
eyes of wild and domestic ungulates from shared mountain habitats in northern Spain, and
to explore the association of Chlamydia spp. occurrence with ocular clinical signs, either
alone or in co-infection with M. conjunctivae.

2. Results

Chlamydiaceae was detected in seven swab samples from five of the 893 animals
tested (0.6%, CI95%: 0.2–1.3). Chlamydiaceae DNA was detected bilaterally in the eyes
of two chamois. By species, the overall sample prevalence was 0.6% (CI95%: 0.2–1.5) in
chamois and 1.4% (CI95%: <0.01–8.1) in sheep. No statistical association was observed
between the detection of Chlamydia spp. and the animal species. Chlamydiaceae were only
detected in the eyes of ruminants from the Eastern Pyrenees, but not from the Cantabrian
Mountains (Table 1). The sample prevalence of chamois in areas where Chlamydiaceae was
detected were 0.1% (CI95%: <0.01–0.9) in Alt Pallars National Game Reserve (PAP), 0.1%
(CI95%: <0.01–0.9) in Cadí National Game Reserve (PCD) and 0.3% (CI95%: <0.01–1.1) in
Freser-Setcases National Game Reserve (PFS). In sheep, Chlamydiaceae was only detected
in conjunctival swabs from one flock from PAP, with a sample prevalence of 1.4% (CI95%:
<0.01–8.1). For both chamois and sheep, the frequency of Chlamydiaceae detection was not
statistically different between study areas.

Table 1. Wild and Domestic Ruminants Sampled from 2009 to 2015 in the Cantabrian Mountains (Study Areas CMM and
CMR) and the Eastern Pyrenees (study areas of PAP, PBM, PCD, PCU, PFS and PVA). The Sample Prevalence and the 95%
Confidence Interval (CI95%) are Only Calculated for Bigger Sample Sizes (>10 Animals).

C. Mountains Eastern Pyrenees Chlamydiaceae Prevalence %
(Positives/Total) CI 95%

CMM CMR PAP PBM PCD PCU PFS PVA

Chamois 0/20 0/34 1/77 1/192 0/13 2/262 0/90 0.6 (4/688) 0.2–1.5
Fallow deer 0/5 0.0 (0/5) NA
Iberian Ibex 0/1 0.0 (0/1) NA
Mouflon 0/1 0/37 0.0 (0/38) 0.0–10.9
Red deer 0/2 0/4 0/18 0/10 0/1 0/5 0.0 (0/40) 0.0–10.4
Roe deer 0/4 0/9 0/5 0/2 0/19 0/10 0.0 (0/49) 0.0–8.7
Sheep 1/39 0/13 0/20 1.4 (1/72) <0.01–8.1

All species 20 41 135 18 207 16 331 125 0.6 (5/893) 0.2–1.3
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C. pecorum was identified by the ArrayMate microarray assay in six of the qPCR-
positive samples, including bilateral ocular detections in two chamois and unilateral
detections in one chamois and one sheep. The identification of chlamydial species was un-
successful in the remaining qPCR-positive sample from a chamois. No other Chlamydiaceae
were detected in this study.

Among the sampled ruminants, 63 animals had ocular clinical signs that ranged from
mild ocular discharge to corneal perforation [20]. However, none of the Chlamydiaceae-
positive ruminants were also positive for M. conjunctivae or had signs of ocular disease.
The detection of M. conjunctivae was correlated with the presence of ocular signs, which
has been previously published [20].

3. Discussion

Chlamydiaceae has been associated with ocular disease in wild and domestic animals,
yet there is scarce knowledge about the frequency and diversity of chlamydial infections in
the eyes of ruminants, and its association with ocular clinical signs. In this cross-sectional
study, we found a low frequency of C. pecorum in asymptomatic domestic sheep and
Pyrenean chamois among the ruminant communities from northern Spain. However,
Chlamydiaceae may be present in anatomical sites other than the eyes, including the uro-
genital tract, rectum, joints, brain, lungs or spleen [7,8,21], which may have led to an
underestimation of Chlamydiaceae infections.

Our results are similar to those reported for the ocular detection of Chlamydiaceae
in Alpine ibex 1.2% (Capra ibex) and Alpine chamois 2.5% (Rupicapra rupicapra) from the
Swiss European Alps [12]. However, these frequencies are much lower than those re-
ported in both symptomatic and asymptomatic lambs from Australia, ranging from 4%
to 73.3% [21,22]. Methodological differences with previous studies prevent a direct com-
parison of prevalences, since in Australian lambs both serological and different molecular
analyses were performed. These methodological differences, such as using flocked vs. non
flocked swabs or using different molecular methods, can affect analytical sensitivity for
Chlamydiaceae detection [23], further complicating prevalence comparison. Apart from
the methodological aspects, possible differences in sample prevalence may respond to
different epidemiological situations. However, no local differences were detected among
our study areas.

Chlamydia pecorum, identified in both asymptomatic sheep and chamois in this study,
has been previously detected in domestic ruminants presenting syndromes that include
ocular disease and polyarthritis [22]. Similarly to our results, previous studies detected
C. pecorum in the eyes of wildlife inhabiting alpine ecosystems without association with
clinical signs, including Alpine ibex [11] and Alpine chamois [12]. Although none of the
positive animals of this study had ocular clinical signs, molecular studies of C. pecorum
suggest that certain strains may be more pathogenic than others [24]. According to ex-
perimental infections, animal susceptibility is dose-dependent and may vary in relation
to the host’s physiological status and infection route [25]. However, growing evidence
indicates that, at least in European Caprinae, Chlamydia spp. does not seem to play a major
role in outbreaks of ocular-exclusive syndromes [19,20], but has been associated with IKC
outbreaks in Cervidae worldwide [10,16].

The potential of Chlamydia spp. to cause ocular disease may also be affected by co-
infections with other pathogens. Microbiological cultures from diseased eyes often yield
different bacterial isolates, including M. conjunctivae, Moraxella spp., Pseudomonas spp. or
Staphylococcus spp. [26]. Although no mixed infections of Chlamydiaceae and M. conjunctivae
were detected in this study, other studies reported C. pecorum, C. abortus and C. psittaci
co-infection with Mycoplasma species in IKC cases from domestic sheep [18,27], and Alpine
chamois [12], suggesting the possibility of interspecies synergism between these pathogens.
Arnal et al. also reported a relatively high Chlamydia spp. and M. conjunctivae ocular
co-occurrence in a severe IKC outbreak of Pyrenean chamois [19]. However, M. conjunctivae
alone is a sufficient cause for IKC in Caprinae [20], and the pathogenic role of Chlamydia spp.
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in these cases of co-occurrence remains unclear. Experimental or longitudinal studies
may provide more meaningful insights into the synergism between Chlamydia spp. and
Mycoplasma spp. for the onset and progression of IKC.

The detection of C. pecorum in different domestic and wild hosts from alpine ecosys-
tems suggests that transmission between different animal species may occur. However,
previous studies reported a great variability between C. pecorum strains in co-grazing
wildlife and livestock [28], suggesting that these strains may not commonly be transmitted
between host species. Further subtyping of the C. pecorum strains circulating in chamois
and sheep would help to better understand the possible epidemiological links between
sympatric hosts from the Pyrenees.

In conclusion, we detected low-frequency C. pecorum in the eyes of domestic sheep
and Pyrenean chamois from the Eastern Pyrenees, with no relation to ocular disease or
evidence of co-infection with M. conjunctivae. Chlamydiaceae probably did not participate
significantly in the pathogenesis of sporadic ocular disease or in the epidemiology of
infectious keratoconjunctivitis in the studied mountain habitats from northern Spain.
However, further studies are needed to better understand the ecology and pathogenic
potential of chlamydial species in wild ruminant hosts and their interface with livestock.

4. Materials and Methods

This study was performed from 2009 to 2015 in two areas from the Cantabrian Moun-
tains (NW Spain) and six different areas from the Eastern Pyrenees (NE Spain). The study
areas in the Cantabrian Mountains were the National Game Reserves of Mampodre (CMM,
43◦01′31” N, 05◦11′18” O) and Riaño (CMR, 43◦02′56” N, 05◦10′40” O). In the Eastern Pyre-
nees, the study areas were PAP (42◦35′09” N, 01◦17′06” E), Boumort National Game Reserve
(PBM, 42◦14′06” N, 01◦08′04” E), PCD (42◦16′49” N, 01◦40′08” E), Cerdanya-Alt Urgell
National Game Reserve (PCU, 42◦26′45” N, 01◦40′54” E), PFS (42◦23′37” N, 02◦12′42” E)
and Vall d’Aran (PVA, 42◦48′11” N, 00◦47′15” E).

In total, 1786 conjunctival swabs were collected from 893 wild and domestic ruminants
by introducing sterile dry cotton swabs to each eye separately. The wildlife sampled
were hunted animals sampled during the regular hunting season, and included Pyrenean
chamois (Rupicapra pyrenaica), sheep (Ovis aries), roe deer (Capreolus capreolus), red deer
(Cervus elaphus), mouflon (Ovis aries musimon), fallow deer (Dama dama) and Iberian ibex
(Capra pyrenaica). Table 1 summarizes the number of wild ruminants sampled by study
area, which is mostly representative of their presence and abundance in each study area.
Domestic sheep flocks that seasonally graze the alpine meadows of the study areas were
sampled in PVA (one flock, size = 4200), PAP (two flocks, size = 800 and 600) and PFS
(one flock, size = 300) (Table 1). Clinical signs and location for each animal were recorded.
Swabs were transported at cool temperature in a portable refrigerated box and stored
frozen at −20 ◦C until analyses.

Conjunctival swabs were thawed, cut and mixed during one minute with 0.5 mL of
lysis buffer (100 mM Tris-base, pH 8.5, 0.05% Tween 20) in sterile tubes. The lysates were
obtained by incubating the tubes at 60 ◦C for 60 min after adding 0.024 mL of proteinase K.
Finally, proteinase K was inactivated at 97 ◦C for 15 min [29]. DNA was extracted directly
from 200 µL of the swab sample lysates using MagAttract 96 cador Pathogen Kit (Qiagen,
Venlo, Netherlands), following the manufacturer’s instructions.

Chlamydiaceae DNA was searched with a SYBR green-based qPCR assay using the
primers Chuni-1F (5′-GGG CTA GAC ACG TGA AAC CTA-3′) and Chuni-2R (5′-CCA
TGC TTC AAC CTG GTC ATA A-3′) and following previously reported cycling conditions.
Briefly, each reaction consisted of 2.5 µL of DNA sample, 12.5 µL of SYBRGreen PCR Master
Mix 2x (Applied Biosystems, Warrington, UK), 400 nM of each forward and reverse primer
and nuclease-free water to a total volume of 25 µL. C. psittaci DNA was used as positive
control [30].

The samples positive for the SYBR green-based PCR were sent to the University of
Zurich, Switzerland, for confirmation by a family-specific Chlamydiaceae real-time PCR
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Chlamydiaceae targeting the 23S rRNA gene using the primers Ch23S-F (5′-CTG AAA CCA
GTA GCT TAT AAG CGG T-3′), Ch23S-R (5′- ACC TCG CCG TTT AAC TTA ACT CC-3′)
and probe Ch23S-p (FAM-CTCATCATGCAAAAGGCACGCCG-TAMRA) [31]. Chlamydial
species identification was performed using a species-specific 23S rRNA gene ArrayMate
microarray assay (Abbott, Chicago, IL, USA; Alere Technologies), as established previ-
ously [32].

The molecular detection of M. conjunctivae in the eyes of the animals included in this
study was previously published [33,34], and those results were integrated in this study
(data not shown) in order to assess the occurrence of ocular co-infections and possible
effects on the onset of clinical signs.

To assess the differences over Chlamydiaceae detection according to the area and the
animal species of study, Pearson’s Chi-squared test (χ2) was implemented using the R
statistical software [35]. Statistical significance was set as p < 0.05.
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