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Abstract

Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the 

malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of 

pediatric and over 50% of adult ALL patients fail to achieve a complete remission or relapse after 

intensified chemotherapy, making disease relapse and resistance to therapy the most significant 
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challenge in the treatment of this disease1,2. Using whole exome sequencing, here we identify 

mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase 

enzyme responsible for inactivation of nucleoside analog chemotherapy drugs, in 20/103 (19%) 

relapse T-ALLs and in 1/35 (3%) relapse B-precursor ALLs analyzed. NT5C2 mutant proteins 

show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-

mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a 

prominent role for activating mutations in NT5C2 and increased nucleoside analog metabolism in 

disease progression and chemotherapy resistance in ALL.

Therapy of ALL includes initial treatment with high dose combination chemotherapy, which 

obtains clinical and hematologic remission in over 90% of cases. This is typically followed 

by additional rounds of highly intensive therapy aimed to further reduce disease burden; and 

then by a 2 year long lower intensity maintenance therapy in which treatment with oral 6-

mercaptopurine plays a particularly important role3,4. Patients with relapsed ALL generally 

receive a more intense treatment. However, despite these efforts, their outcome remains 

unsatisfactory with cure rates of less than 40%5. This is particularly the case in patients with 

relapsed T-ALL and in cases with primary resistance or early relapse, which is associated 

with higher risk of failure to achieve a second complete remission, shorter duration of 

chemotherapy response and poor survival6,7. Much effort has been spent on the study of the 

molecular basis of relapse and chemotherapy resistance in ALL. However the specific 

mechanisms mediating escape from therapy, disease progression and leukemia relapse 

remain largely unknown. To address this question we performed whole exome sequencing 

of matched diagnosis, remission and relapse DNA samples from 5 pediatric T-ALL patients 

(Supplementary Table 1). This analysis identified a mean mutation load of 13 somatic 

mutations per sample (range 5 – 17) (Supplementary Table 2). Out of 60 somatic mutations 

identified in total, 17 mutations were present at diagnosis and at relapse, 24 genes were 

selectively mutated in relapsed T-ALL samples and 19 mutations were present only at 

diagnosis. Moreover, 4 of the 5 relapsed cases analyzed showed the presence of at least one 

somatic mutation present also at diagnosis, together with secondary mutations specifically 

acquired at the time of relapse. In addition, 4 out of the 5 cases showed absence of at least 

one mutation marker present at diagnosis during disease progression leading to relapse. 

Single nucleotide polymorphism analysis of exome sequencing results ruled out that loss of 

these markers was due to loss of heterozygosity at relapse (Supplementary Table 3). This 

result is consistent with previous studies based on copy number alteration analyses8–10 and 

supports that relapsed ALLs can originate as derivates of ancestral subclones related to, but 

distinct from the main leukemic population present at diagnosis.

Somatically mutated genes at diagnosis included known T-ALL tumor suppressor genes 

such as FBXW711, WT18 and DNM212 in addition to numerous new genes not implicated 

before in the pathogenesis of this disease. Analysis of mutant alleles found at the time of 

relapse identified mutations in three genes encoding proteins involved in positive regulation 

of TP53 signaling, including TP53 itself (TP53 R213Q), BANP (BANP H391Y)13 and 

RPL11 (RPL11 R18P)14. Notably, mutations in TP53 have been reported in about 10% of 

relapsed ALL cases and are associated with a particularly poor prognosis15. Given the 

prominent role of TP53 pathway in DNA damage induced apoptosis16, we performed 
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extended mutation analysis of the TP53, BANP and RPL11 genes in 18 additional diagnostic 

and relapsed T-ALL samples (Supplementary Table 1). This analysis failed to identify 

additional TP53 or BANP mutations, but showed the presence two additional somatic RPL11 

mutant alleles; one present both at diagnosis and relapse (RPL11 X178Q); and the other one 

(RPL11 G30fs) specifically mutated at relapse. Relapse-associated mutations also included a 

prototypical activating mutation in the NRAS oncogene (NRAS G13V). Notably, NRAS 

mutations in ALL have been associated with poor outcome17 and are particularly prevalent 

in early T-cell precursor ALLs12,18, a group of high risk leukemias with poor prognosis19. 

Extended mutation analysis of NRAS in relapsed T-ALL cases demonstrated the presence of 

2 diagnostic and relapse sample pairs harboring a prototypical NRAS G12S activating allele 

and a third patient with a heterozygous activating NRAS G12R mutation, which was present 

at diagnosis and showed loss of heterozygosity at the time of relapse.

However, the most remarkable finding in our exome sequence analysis was the presence of a 

relapse-associated heterozygous mutation in the NT5C2 gene (NT5C2 K359Q). NT5C2 is a 

ubiquitous enzyme responsible for the final dephosphorylation of 6-hydroxypurine 

nucleotide monophosphates such as IMP, dIMP, GMP, dGMP and XMP before they can be 

exported out of the cell20,21. In addition, and most notably, NT5C2 can also dephosphorylate 

and inactivate 6-thioinositol monophosphate and 6-thioguanosine monophosphate which 

mediate the cytotoxic effects of 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG)22, two 

nucleoside analogs commonly used in the treatment of ALL. Mutation analysis of an 

extended panel of 98 relapse T-ALL (Supplementary Table 1) and 35 relapse B-precursor 

ALL samples (Supplementary Table 1) identified 22 additional mutations T-ALL and one 

additional NT5C2 mutation in a B-precursor ALL patient in first relapse (Fig. 1 and 

Supplementary Table 4). Strikingly, 13 of these samples harbored the same NT5C2 R367Q 

mutation, 4 cases showed a recurrent NT5C2 R238W mutation and 2 samples harbored a 

L375F single amino acid substitution (Fig. 1 and Supplementary Table 4). In each of the 9 

cases for which original diagnostic DNA was available for analysis, NT5C2 mutations 

showed to be specifically acquired at the time of relapse. No NT5C2 mutations were 

identified in 23 T-ALL and 27 B-precursor ALL additional diagnostic samples, further 

supporting the specific association of NT5C2 mutations with relapsed disease. Analysis of 

clinical and molecular features associated with NT5C2 mutant relapsed T-ALLs treated in 

Berlin Frankfurt Münster (BFM) group based clinical trials (ALL-BFM 95, ALL-BFM 

2000, COALL 06-97, NHL-BFM 95 and Euro-LB 02) (Supplementary Table 1) showed an 

association of NT5C2 mutations with early disease recurrence (very early or early relapse vs. 

late relapse, P <0.05) and relapse under treatment (P = 0.002) independently of treatment 

protocol (Supplementary Tables 5–10).

Given the described role of NT5C2 in the metabolism and inactivation of nucleoside analog 

drugs22–24; the recurrent finding of the NT5C2 R367Q, NT5C2 R238W and NT5C2 L375F 

alleles; and the reported association of increased levels of nucleotidase activity with 

thiopurine resistance and worse clinical outcome25, we hypothesized that relapse-associated 

NT5C2 mutations may represent gain of function alleles with increased enzymatic activity. 

Detailed structure-function analysis of the NT5C2 K359Q mutation further supported this 

hypothesis. Thus, comparison of the wild type NT5C2 structure and models of the mutant 

Tzoneva et al. Page 3

Nat Med. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NT5C2 K359Q protein show that this mutation could result in increased NT5C2 activity by 

mimicking the effect of positive allosteric regulators (Fig. 2a). Allosteric activation of 

NT5C2 is mediated by binding of ATP, dATP, Ap4A and 2,3-BPG to an allosteric pocket 

proximal to the NT5C2 active site (Fig. 2a). Occupancy of this regulatory site results in 

increased ordering of an alpha helix formed by residues G355-E364 (Helix A), which in turn 

displaces F354 from the catalytic center and moves D356 into the active site of the protein 

(Fig. 2b,c). Similarly, our model predicts that the NT5C2 K359Q mutation could increase 

the Helix A stability and reduce its solvent accessibility, resulting in an active configuration 

with displacement of F354 out of the NT5C2 active site and positioning D356 into the 

catalytic center of the enzyme (Fig. 2b–e). Consistent with this prediction, 5'-nucleotidase 

assays using NT5C2 K359Q recombinant protein demonstrated a 48-fold increase in 

enzymatic activity compared wild type NT5C2 (Fig. 3). An additional structurally 

interesting allele is the NT5C2 Q523* nonsense mutation, which removes an inhibitory 

region located in the C-terminal segment of the NT5C2 protein26. In addition, and despite 

the absence of clear structural cues suggesting a role of other mutations in NT5C2 

activation, nucleotidase activity analysis of NT5C2 R367Q and NT5C2 D407A mutant 

proteins revealed an 18 fold and a 16 fold increase in their 5'-IMP nucleotidase activity 

compared with wild type NT5C2, respectively (Fig. 3).

Finally, and to formally test the role of NT5C2 mutations in chemotherapy resistance we 

analyzed the effects of wild type and relapse-associated mutant NT5C2 expression in the 

response of CCRF-CEM T-ALL cells to 6-mercaptopurine (6-MP) and 6-thyogunanine (6-

TG) (Fig. 4). Cell viability analysis in the presence of increased drug concentrations 

demonstrated increased resistance to 6-MP and 6-TG therapy in cells expressing NT5C2 

K359Q, NT5C2 R367Q and NT5C2 D407A compared with empty vector and wild type 

NT5C2 controls (Fig. 4, Supplementary Fig. 2 and Supplementary Table 11). Similar results 

were obtained in the CUTLL1 T-ALL cell line (Fig. 4, Supplementary Fig. 2 and 

Supplementary Table 11). Finally, we tested the effects of relapsed-associated NT5C2 

mutations in the response to nelarabine – an AraG precursor highly active in relapsed T-

ALL– and AraG 27–30. Strikingly, both nelarabine and AraG showed to be equally active in 

cells expressing relapse-associated NT5C2 mutations compared to controls (Supplementary 

Fig. 3).

Prolonged maintenance treatment with 6-mercaptopurine is essential to obtain durable 

remissions in the treatment of ALL3,4. Indeed, low-adherence to 6-mercaptopurine 

treatment, defined as less than 95% compliance, results in increased relapsed rates and may 

account for as much as 59% of all ALL relapses31. In this context, our results highlight the 

prominent role of relapse-specific mutations in NT5C2 as a mechanism of resistance to 6-

MP and a genetic driver of relapse in ALL. In addition, and most notably, the lack of 

nelarabine cross resistance in cells expressing activating NT5C2 alleles analyzed here 

suggests that these mutations may not impair the effectiveness of nelarabine-based salvage 

therapies in relapsed T-ALL.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NT5C2 mutations in relapsed pediatric T-ALL
(a) Schematic representation of the structure of the NT5C2 protein. The haloacid 

dehalogenase (HAD) and the substrate binding domains (SB) are indicated. NT5C2 

mutations identified in relapsed pediatric samples are shown. Filled circles represent 

heterozygous mutations. Multiple circles in the same amino acid position account for 

multiple patients with the same variant. (b) DNA sequencing chromatograms of paired 

diagnosis and relapse genomic T-ALL DNA samples showing representative examples of 

relapse specific heterozygous NT5C2 mutations, with the mutant allele sequence highlighted 

in red.
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Figure 2. Structure-function analysis of the NT5C2 K359Q mutant protein
(a) Molecular surface representation of NT5C2 protein structure. The position of the NT5C2 

K359Q mutation found is highlighted in red. The substrate inosine monophosphate (IMP) is 

depicted in purple; the ATP allosteric activator is shown in yellow. (b) Structure 

representation of the NT5C2 catalytic center and allosteric regulatory site devoid of 

substrate or ligands (PDB 2XCX). (c) Structure representation of the NT5C2 catalytic center 

and allosteric regulatory site bound to IMP and ATP, respectively (PDB 2XCW). (d) 

Structure representation of the NT5C2 K359Q mutant model corresponding to the catalytic 

center and allosteric regulatory sites. (e) Overlay of the structures shown in b–d. The white 

arrow indicates the repositioning of Phe354 from the inactive NT5C2 configuration to the 

active –ATP-bound NT5C2 and NT5C2 K359Q– structures. Mg2+ ions are depicted as 

green spheres.
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Figure 3. Increased 5'-IMP nucleotidase activity in NT5C2 mutant proteins
5'-Nucleotidase activity levels of recombinant mutant proteins relative to wild type NT5C2 

control are shown. Data are means ± s.d.
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Figure 4. Expression of NT5C2 mutations in ALL cells induces resistance to chemotherapy with 
6-MP and 6-TG
(a) Viability assays in CCRF-CEM and CUTLL1 T-ALL cells expressing wild type NT5C2, 

relapse-associated mutant NT5C2 alleles or a red fluorescent protein control (RFP), treated 

with increased concentrations of 6-mercaptopurine (6-MP). (b) 6-Thioguanine (6-TG) dose 

response cell viability curves. Data is shown as means ± s.d.
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