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Abstract: Background: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is
associated with poor prognosis in cardiovascular diseases. However, the predictive value of TRAIL for
the short-term outcome and risk stratification of acute pulmonary embolism (PE) remains unknown.
Methods: This study prospectively included 151 normotensive patients with acute PE. The study
outcome was a composite of 30-day adverse events, defined as PE-related death, shock, mechanical
ventilation, cardiopulmonary resuscitation, and major bleeding. Results: Overall, nine of 151 (6.0%)
patients experienced 30-day adverse composite events. Multivariable logistic regression showed
that TRAIL was an independent predictor of study outcome (OR 0.19 per SD; 95% CI 0.04–0.90).
An ROC curve revealed that TRAIL’s area under the curve (AUC) was 0.83 (95% CI 0.76–0.88). The
optimal cut-off value for TRAIL was 18 pg/mL, with a sensitivity, specificity, negative predictive
value, positive predictive value, positive likelihood ratio, and negative likelihood ratio of 89%, 69%,
99%, 15%, 2.87, and 0.16, respectively. Compared with the risk stratification algorithm outlined in the
2019 ESC guidelines, our biomarker-based risk stratification strategy (combining TRAIL and hs-cTnI)
has a similar risk classification effect. Conclusion: Reduced plasma TRAIL levels predict short-term
adverse events in normotensive patients with acute PE. The combination of the 2019 ESC algorithm
and TRAIL aids risk stratification in normotensive patients with acute PE.

Keywords: pulmonary embolism; TNF-related apoptosis-inducing ligand; prognosis; risk stratification

1. Introduction

Venous thromboembolism (VTE), including deep vein thrombosis and pulmonary
embolism, contributes a significant burden on health and survival and ranks third among
life-threatening cardiovascular diseases [1]. Acute pulmonary embolism (PE) is the most
severe clinical manifestation of VTE. Most patients with acute PE are normotensive, and
early mortality ranges from 3–7% [2–4]. Early prognostic assessment and risk stratification
for normotensive patients with acute PE is essential for determining appropriate treatment
management approaches. The 2019 European Society of Cardiology (ESC) guidelines sug-
gested that the extensively validated and broadly used simplified pulmonary embolism
severity index (sPESI), combined with right ventricular (RV) dysfunction and laboratory
biomarkers, can be used to classify acute PE patients without hemodynamic instability
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into intermediate- or low-risk groups. In addition to clinical parameters and scores, pa-
tients in the intermediate-risk group who display RV dysfunction and elevated cardiac
troponin levels are classified into the intermediate-high-risk category [5]. Previous evidence
demonstrated that a subgroup of normotensive patients with acute PE (i.e., intermediate-
risk group) might benefit from aggressive treatment strategies [6]. Thus, optimizing risk
stratification in normotensive PE is essential to enhance clinical practice.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is also
known as Apo-2 ligand (Apo-2L) or TNF superfamily 10 (TNFSN10), is a member of the
TNF superfamily of cytokines, which is broadly expressed in various tissues of the human
body [7]. TRAIL is selectively expressed in vascular smooth muscle cells of the pulmonary
artery and aorta [8]. Soluble TRAIL mainly appears to be released by activated leukocytes
such as monocytes and neutrophils [9]. TRAIL is a pro-apoptotic protein which has broad
biological functions. TRAIL may play a crucial role in the pathway linking coagulation
and inflammation elicited by thrombin and mediates the amplification of pro-coagulant
endothelial microparticles released by thrombin and the inflammatory process [10]. Several
clinical studies have shown that reduced TRAIL levels are associated with poor prognosis
in patients with acute myocardial infarction or heart failure, suggesting that TRAIL has
predictive effects in cardiovascular diseases [11–13].

In this study, we hypothesized that TRAIL may be involved in the pathophysiological
mechanism of PE through the interplay between coagulation and inflammation and might
assist in the prognostic assessment of patients with acute PE. Thus, our study aimed to iden-
tify the short-term prognostic assessment and risk stratification of TRAIL in normotensive
patients with acute PE.

2. Materials and Methods
2.1. Study Design and Setting

We conducted a prospective study of normotensive patients with acute pulmonary
embolism from 2015 to 2017 at Beijing Anzhen Hospital in China (NCT 04118634). Based
on the amended Declaration of Helsinki, the study protocol was approved by the Ethics
Committee of Beijing Anzhen Hospital (No. 2018048X), and all patients provided written
informed consent.

2.2. Selection of Participants

As shown in Figure 1, normotensive patients (defined as SBP ≥ 90 mmHg) were
consecutively enrolled if they had acute PE, were aged ≥ 18 years, and the onset of
the illness was ≤14 days ago. Patients with acute PE were objectively confirmed by
computed tomography pulmonary angiography (CTPA) and a ventilation-perfusion lung
scan. The exclusion criteria were the following: [14–16] (1) hemodynamic instability:
(A) cardiac arrest: cardiopulmonary resuscitation required; (B) obstructive shock: systolic
blood pressure (BP) < 90 mmHg or vasopressors required to achieve a BP ≥ 90 mmHg
despite adequate filling status and end-organ hypoperfusion (altered mental status; cold,
clammy skin; oliguria/anuria); (C) persistent hypotension: systolic BP < 90 mmHg or
systolic BP drop ≥ 40 mmHg lasting longer than 15 min and not caused by new-onset
arrhythmia, hypovolaemia, or sepsis; (2) recurrence of PE; (3) chronic thromboembolic
pulmonary hypertension; (4) life expectancy <3 months (i.e., the end stage of diseases);
(5) ongoing pregnancy; (6) renal insufficiency (estimated glomerular filtration rate <30 mL/
min*1.73 m2) or hepatic dysfunction (Child–Pugh class B or C); (7) withdrawal of written
consent for participation in this study; and (8) missing blood samples and troponin data.

2.3. Methods of Measurement

The diagnosis of acute PE was assessed using the Wells clinical probability rule, D-
dimer, and imaging tests by the diagnostic algorithm outlined in the 2019 ESC guidelines [5].
All patients underwent transthoracic echocardiography within 24 h after diagnosis of PE.
The diagnosis of RV dysfunction was based on the following diagnostic criteria [5]: (1) RV
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dilatation at the apical four-chamber view (RV end-diastolic diameter/left ventricular
end-diastolic diameter >1.0), (2) depressed contractility of the RV free wall, (3) tricuspid
regurgitation velocity acceleration, and (4) decreased tricuspid annular systolic excursion
(<17 mm). The electronic medical record system obtained other clinical data, laboratory
findings, and treatment details. According to the risk stratification strategy proposed
in the 2019 ESC guidelines, all normotensive patients with acute PE were classified into
the intermediate-high-, intermediate-low-, and low-risk groups according to their sPESI
score, RV dysfunction, and troponin level. The physicians made treatment decisions while
being unaware of TRAIL levels after carefully considering each patient’s clinical symptoms,
laboratory findings, and imaging tests.
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Venous plasma samples were collected from patients within 24 h after admission in
vacuum tubes and immediately frozen at −80 ◦C after centrifugation at 3000× g for 10 min.
Plasma TRAIL concentrations were determined using an ELISA kit (Ray Biotech, Inc.
Norcross, GA, USA). Other laboratory tests were completed by the laboratory department
of Beijing Anzhen Hospital.

2.4. Outcome Measures

The study outcome was 30-day adverse composite events, defined as PE-related death
or at least one of the following complications: (1) the need for mechanical ventilation
assistance, (2) the need for catecholamine administration for treatment or prevention,
(3) cardiopulmonary resuscitation, or (4) major bleeding. PE-related death was determined
by (1) autopsy, (2) clinically severe acute PE, and (3) in cases where other causes were
excluded. Major bleeding was defined as clinically overt bleeding accompanied by at
least one of the following: (1) fatal bleeding or bleeding that occurred at critical sites or
organs (intracranial, intraspinal, retroperitoneal, intraocular, and pericardial bleeding);
(2) hemodynamic instability due to bleeding and/or a fall in the hemoglobin level ≥20 g/L,
or bleeding that led to the transfusion of at least two units of blood [17].
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All patients were followed up by pre-trained research staff. We determined the
occurrence of the study outcome by using data collected through a review of the electronic
medical records, clinical visits, and telephone follow-up interviews for up to 30 days.

2.5. Biomarker-Based Risk Algorithm

In the 2019 ESC prognostic strategy, risk assessment for early mortality consists of
seven clinical parameters (sPESI rule), two relevant imaging modalities (TTE or CTPA),
and four cardiac biomarkers (troponin, NT-proBNP, H-FABP, and copeptin). Objective
assessments are relatively time-consuming, labor-intensive, and cost-intensive. Thus, in
this study, a biomarker-based risk algorithm was developed to evaluate the risk assess-
ment of normotensive patients with acute PE. This biomarker-based stratification strategy
was established using TRAIL combined with hs-cTnI levels. According to previous stud-
ies [18–20], hs-cTnI possessed superior negative predictive values (NPV) for short-term
adverse events and could be used as the first step in risk stratification to classify patients
with low-risk acute PE.

2.6. Statistical Analyses

The Kolmogorov–Smirnov test for normal distribution was used for continuous vari-
ables. Skewed continuous variables were expressed as medians (interquartile range [IQR]).
Categorical variables were expressed as absolute numbers or percentages. Comparisons of
continuous variables were analyzed using unpaired Student’s t-tests or Mann–Whitney
U tests, and comparisons of categorical variables were analyzed using Chi-squared or
Fisher’s exact tests. Correlations between continuous variables were analyzed using Spear-
man’s rank correlation coefficient. The prognostic relevance of clinical variables, cardiac
biomarkers, TRAIL levels, and sPESI scores for 30-day adverse events was calculated using
univariate (unadjusted) and multivariate (adjusted) logistic regression analysis, producing
odds ratios (OR) and 95% confidence intervals (CIs). Factors for inclusion in the multivari-
ate analysis were determined after considering the findings from previous publications and
the latest ESC guidelines and significant predictors (p < 0.05) from the univariate analysis.
Receiver operating characteristic (ROC) curve analysis was performed to determine the
area under the curve (AUC) of TRAIL cut-off values for the study outcomes. Youden’s
index was used to identify optimal cut-off values. Sensitivity, specificity, negative predictive
values (NPV), positive predictive values (PPV), negative likelihood ratios (−LR), positive
likelihood ratios (+LR), and the corresponding 95% CIs were calculated. The McNemar–
Bowker test was used to compare the distribution of patients in different risk stratification
strategies (2019 ESC algorithm and biomarker-based approach). Two-tailed p values < 0.05
were considered statistically significant. All statistical analyses were conducted using SPSS
(version 25.0; IBM, Chicago, IL, USA).

3. Results
3.1. Characteristics of Study Subjects

Between January 2015 and December 2017, 221 patients were screened, of whom
70 met the exclusion criteria (flow chart shown as Figure 1). Among the 151 patients who
participated in this study, nine (6%) experienced 30-day adverse composite events. One
patient died directly due to PE; seven patients required catecholamine administration
for treatment or prevention. Two patients required mechanical ventilation, two required
cardiopulmonary resuscitation, and one suffered major bleeding. The clinical and demo-
graphic characteristics of study participants with and without study events are presented
in Table 1. The event group more frequently experienced syncope, RV dysfunction, higher
BNP and hs-cTnI concentrations, and sPESI scores ≥ 1 compared to the non-event group.
Additionally, nine (6.0%) patients received thrombolytic therapy and five (55.6%) experi-
enced adverse outcomes.
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Table 1. Baseline characteristics of normotensive patients with acute pulmonary embolism.

All Patients
(n = 151)

Non-Events
(n = 142) Events (n = 9) p Value

Age, years 66 (60–73) 66 (60–73) 62 (48–72) 0.453

Male 63 (41.7) 60 (42.3) 3 (33.3) 0.735

Risk factors for VTE

History of VTE 19 (12.6) 19 (13.4) 0 0.603

Immobility 13 (8.6) 12 (8.5) 1 (11.1) 0.566

Recent surgery 8 (5.3) 7 (4.9) 1 (11.1) 0.396

Recent long travel 2 (1.3) 2 (1.4) 0 1.000

Recent fracture 9 (6.0) 8 (5.6) 1 (11.1) 0.434

Comorbidities

Cancer 9 (6.0) 9 (6.3) 0 1.000

COPD 8 (5.3) 7 (4.9) 1 (11.1) 0.396

Coronary heart disease 25 (16.6) 1 (11.1) 24 (16.9) 1.000

Symptoms and signs

Chest pain 39 (25.8) 38 (26.8) 1 (11.1) 0.448

Dyspnea 139 (92.1) 130 (91.5) 9 (100.0) 1.000

Syncope 30 (19.9) 24 (16.9) 6 (66.7) 0.002

SBP, mmHg 124 (114.5–124) 124 (115–138) 120 (113–134) 0.691

SBP < 100 mmHg 4 (2.6) 3 (2.1) 1 (11.1) 0.220

Heart rate, bpm 82 (73–98) 82 (72–96) 97 (84–102) 0.010

Heart rate ≥ 110 bpm 9 (6.0) 7 (4.9) 2 (22.2) 0.092

SaO2 < 90% 15 (9.9) 13 (9.2) 2 (22.2) 0.220

Elevated PASP 49 (32.5) 45 (31.7) 4 (44.4) 0.473

RV dysfunction (on TTE) 15 (9.9) 10 (7.0) 5 (55.6) 0.001

LVEF, % 63 (60–67) 64 (60–68) 60 (56–64) 0.083

Laboratory biomarkers

D-Dimer, ng/mL 2166 (1076–3134) 2114
(1056–3110)

2823
(2389–3134) 0.088

Creatinine, µmol/L 73.5 (61.1–83.7) 73.2 (60.5–83.8) 75.0 (62.6–83.1) 0.75

BNP, pg/mL 141 (46–364) 118
(44.0–310.0)

1000
(653–2054) 0.001

hs-cTnI, ng/mL 0.03 (0.01–0.15) 0.02 (0.01–0.11) 0.27 (0.09–0.91) 0.001

TRAIL, pg/mL 23.1 (15.0–32.3) 23.5 (16.1–32.6) 10.1 (3.6–16.4) 0.001

sPESI ≥ 1 55 (36.4) 47 (33.1) 8(88.9) 0.001

Treatment

Thrombolytic therapy 9 (6.0) 4 (2.8) 5 (55.6) 0.000

Data are presented as median (interquartile range) or number (%). VTE, venous thromboembolism; COPD,
chronic obstructive pulmonary disease; SBP, systolic blood pressure; bpm, beats per minute; SaO2, arterial
oxyhemoglobin saturation; PASP, pulmonary artery systolic pressure; RV, right ventricular; TTE, transthoracic
echocardiography; LVEF, left ventricular ejection fraction; BNP, brain natriuretic peptide; hs-cTnI, high-sensitivity
cardiac troponin I; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; sPESI, simplified Pulmonary
Embolism Severity Index.
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3.2. Association between TRAIL Levels and Short-Term Prognosis

The median TRAIL concentration was 23.1 pg/mL (IQR 15.0–32.3) in all patients.
Patients in the events group had significantly lower TRAIL levels (median, 10.1 pg/mL
[IQR 3.6–16.4]) than patients in the non-event group (median 23.5 pg/mL [IQR 16.1–32.6],
p = 0.001). The TRAIL concentrations were weakly correlated with BNP (r = −0.28, p = 0.001)
and hs-cTnI (r = −0.24, p = 0.003). The predictors of 30-day adverse composite events were
investigated using a univariate logistic regression analysis (Table 2). Significant predictors
of 30-day adverse composite events in the univariate analysis included syncope (OR = 9.83;
95% CI 2.30–42.08, p = 0.002), RV dysfunction (OR = 16.5; 95% CI 3.82–71.30, p = 0.000), BNP
(OR = 3.60 per SD; 95% CI 1.91–6.78, p = 0.000), TRAIL (OR = 0.18 per SD; 95% CI 0.06–0.56,
p = 0.003), and a sPESI score ≥ 1 (OR = 16.17; 95% CI 1.95–133.11, p = 0.010). Considering
the findings from previous publications and the latest ESC guidelines, significant predictors
from the univariate analysis and cardiac troponin (hs-cTnI) were included in the multivari-
ate logistic regression analysis (Table 2). After adjustment, TRAIL was independently and
significantly associated with 30-day adverse composite events in normotensive patients
with acute PE (OR = 0.19 per SD; 95% CI 0.04–0.90, p = 0.036). As shown in Figure 2, ROC
analysis revealed that the AUC of TRAIL was 0.83 (95% CI 0.76–0.88, p < 0.001) for the
prediction of short-term adverse outcomes, and the optimal cut-off value for TRAIL based
on Youden’s index was 18 pg/mL, at which point the sensitivity, specificity, NPV, PPV, +LR,
and −LR were 89%, 69%, 99%, 15%, 2.87, and 0.16, respectively.

Table 2. Predictors of an adverse 30-day outcome.

OR 95%CI p Value

Univariable analysis a

Age > 80 years 3.43 0.36–32.90 0.286

Cancer - - -

COPD 2.41 0.26–22.05 0.436

Syncope 9.83 2.30–42.08 0.002

SBP < 100 mmHg 5.79 0.54–62.12 0.147

Heart rate ≥ 110 bpm 5.51 0.96–31.57 0.055

SaO2 < 90% 2.84 0.53–15.09 0.222

RV dysfunction (on TTE) 16.5 3.82–71.30 0.000

BNP, pg/mL, per SD 3.60 1.91–6.78 0.000

hs-cTnI, ng/mL, per SD 1.25 0.85–1.85 0.254

TRAIL, pg/mL, per SD 0.18 0.06–0.56 0.003

sPESI ≥ 1 16.17 1.96–133.11 0.010

Multivariable analysis

Syncope 2.48 0.20–31.12 0.481

RV dysfunction (on TTE) 16.47 1.06–256.27 0.045

BNP, pg/mL, per SD 3.68 1.24–10.89 0.019

hs-cTnI, ng/mL, per SD 1.45 0.64–3.32 0.375

TRAIL, pg/mL, per SD 0.19 0.04–0.90 0.036

sPESI ≥ 1 1.09 0.06–21.54 0.956

OR, odds ratio; SD, standard deviation; COPD, chronic obstructive pulmonary disease; SBP, systolic blood pres-
sure; bpm, beats per minute; SaO2, arterial oxyhemoglobin saturation; RV, right ventricular; TTE, transthoracic
echocardiography; BNP, brain natriuretic peptide; hs-cTnI, high-sensitivity cardiac troponin I; TRAIL, tumor necro-
sis factor-related apoptosis-inducing ligand; sPESI, simplified Pulmonary Embolism Severity Index. a Variables
found to significantly predict an adverse 30-day outcome in the univariate analysis are displayed. Additionally,
hs-cTnI levels and all variables included in the sPESI are shown. The logistic regression analysis calculates odds
ratios (ORs) and their respective 95% confidence intervals (CIs) for an adverse 30-day outcome.
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3.3. TRAIL’s Role in Risk Stratification

According to the 2019 ESC risk algorithm (Figure 3), 10 (6.6%) patients were classified
into the intermediate-high risk group, 78 (51.7%) into the intermediate-low risk group,
and 63 (41.7%) into the low-risk group. During the follow-up, the 30-day adverse com-
posite events occurred in 5 (50%), 4 (5.1%), and 0 (0%) patients, respectively. The risk
assessment using the biomarker-based strategy based on hs-cTnI and TRAIL is shown
in Figure 3. As with the 2019 ESC risk algorithm, the stepwise biomarker-based strategy
demonstrated strong predictive performance in identifying intermediate-high- and low-risk
group patients (Table 3). Both the biomarker-based strategy and the 2019 ESC algorithm
showed high sensitivity (100%) and NPV (100%) in identifying low-risk patients, while
the biomarker-based strategy had higher specificity than the 2019 ESC algorithm (65% vs.
44%, p < 0.001). When identifying intermediate-high-risk group patients, both strategies
had high specificity (88% vs. 96%, p < 0.001) and the biomarker-based strategy had a
superior trend of sensitivity (89% vs. 56%, p = 0.375). To combine the performance of
the biomarker-based strategy and the 2019 ESC algorithm, we tested whether TRAIL may
improve patients re-classified as belonging to the intermediate-high risk group, as shown in
Figure 4. Using TRAIL < 18 pg/mL to further stratify patients in the intermediate-low risk
group, 28 patients were identified as being at higher risk, with four adverse events. The
prognostic performance of risk assessment using the 2019 ESC algorithm and TRAIL for
the prediction of an adverse 30-day outcome is shown in Table 3, for which the sensitivity,
specificity, NPV, PPV, +LR, and −LR were 100%, 80%, 100%, 24%, 5, and 0, respectively.
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Figure 3. Risk assessment using the biomarker-based strategy based on hs-cTnI and TRAIL. The
number (%) of patients with an adverse 30-day outcome is shown for each strategy. Hs-cTnI levels
>0.04 ng/mL are defined as positive. PE: pulmonary embolism; hs-cTnI, high-sensitivity cardiac
troponin I; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

Table 3. Prognostic performance of risk assessment strategies for the prediction of an adverse
30-day outcome.

Biomarker-Based
Algorithm
(95% CI)

2019 ESC
Algorithm
(95% CI)

Combination of
TRAIL and the 2019

ESC Algorithm
(95% CI)

Low-risk vs. intermediate-low- and intermediate-high-risk

Sensitivity, % 100 (66–100) 100 (66–100) 100 (66–100)

Specificity, % 65 (56–73) 44 (36–53) 80 (72–86)

PPV, % 15 (13–18) 10 (9–12) 24 (18–30)

NPV, % 100 100 100

+LR 2.84 (2.3–3.5) 1.80 (1.6–2.1) 5 (3.5–6.8)

−LR 0 0 0

Low-risk and intermediate-low- vs. intermediate-high-risk

Sensitivity, % 89 (52–100) 56 (21–86) -

Specificity, % 88 (82–93) 96 (92–99) -

PPV, % 32 (22–44) 50 (26–74) -

NPV, % 99 (95–99) 97 (94–99) -

+LR 7.42 (4.5–12.3) 15.78 (5.6–44.7) -

−LR 0.13 (0.02–0.8) 0.46 (0.2–1.0) -
ESC, european society of cardiology; CI, confidence interval; TRAIL, tumor necrosis factor (TNF)-related apoptosis-
inducing ligand; PPV, positive predictive values; NPV, negative predictive values; +LR, positive likelihood ratios;
-LR, negative likelihood ratios.
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4. Discussion

This study investigated the relationship between plasma TRAIL concentrations and
short-term adverse outcomes and whether TRAIL can optimize the current risk stratifica-
tion. Using a cut-off value of 18 pg/mL, we found that decreased plasma TRAIL levels
had an independently prognostic performance for 30-day adverse outcomes. A stepwise
biomarker-based risk assessment strategy combining hs-cTnI and TRAIL improves pre-
dictive performance in identifying intermediate-high- and low-risk group patients. The
combination of the 2019 ESC algorithm and TRAIL aids risk stratification in normotensive
patients with acute PE.

4.1. The Potential Role of TRAIL in PE

TRAIL exists as either a type II membrane protein or a soluble protein. TRAIL receptors
are expressed in the cardiovascular system in vascular smooth cells and cardiomyocytes,
including osteoprotegerin (OPG). TRAIL has been found to play a role in ischemic vascu-
lar diseases and cardiovascular disease (CVD) [20–24]. Several prospective studies have
demonstrated that lower TRAIL concentrations predicted poor prognosis in patients with
CVD [13,25,26]. In our study, lower TRAIL concentrations were associated with short-
term adverse outcomes. Low levels of TRAIL tend to represent poor prognosis. This is
similar to the findings of several previous studies, in which serum TRAIL levels were
negatively related to the severity of coronary heart disease [27], lower serum TRAIL levels
were associated with worse outcomes in patients with acute myocardial infarction [28],
and higher TRAIL levels in patients with advanced heart failure were associated with an
improved prognosis [12,29]. Despite this, it is unclear how TRAIL can clinically influence
the thrombosis and inflammation process during acute PE. However, it is plausible that
the interaction between TRAIL and its receptors modulates the progression of thromboem-
bolism. The role of inflammation-modulating maladaptive RV remodeling and dysfunction
has been demonstrated. Acute PE leads to a cascade of inflammatory response which might
be followed by leukocyte recruitment to the lesion. TRAIL recruits activated leukocytes
to a particular tissue and initiates apoptosis to terminate the immune response. TRAIL
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promotes the proliferation of vascular smooth muscle cells and neovascularization [28,29].
TRAIL also enhances endothelial nitric oxide synthase phosphorylation, NOS activity,
and NO synthesis; thus, it causes vasodilation [30,31]. Interestingly, there is a negative
correlation between TRAIL and hsCRP, which provides further support for the protective
role of TRAIL in the development of atherosclerosis and acute coronary disease [32].

4.2. The Combination of TRAIL and the 2019 ESC Algorithm for Risk Assessment in Normotensive
Patients with Acute PE

Based on the 2019 ESC guidelines, treatment decisions for normotensive patients with
acute PE need to be based on a risk stratification strategy, with low-risk patients being
considered for early discharge and home treatment, intermediate-low or intermediate-high
risk patients being closely monitored and offered reperfusion therapy if deterioration
occurs. Recent cohort studies developed combination models for the identification of
intermediate-high-risk PE patients (e.g., PREP score, FAST score, and Bova score) [33–35],
and several studies investigated the prognostic value of biomarkers on risk stratification
(e.g., Copeptin and Lipocalin-2) [16,19]. Due to the relatively limited performance of
the 2019 ESC algorithm, we developed a novel and simple stepwise biomarker-based
strategy using TRAIL and hs-cTnI. More patients were re-classified into the low-risk and
intermediate-high risk groups using a biomarker-based algorithm. To combine the perfor-
mance of the biomarker-based strategy and the 2019 ESC algorithm, we also tested whether
TRAIL may improve patients re-classified as belonging to the intermediate-high risk group.
As shown in Table 3 and Figure 4, the prognostic performance of risk assessment was
improved using the 2019 ESC algorithm and TRAIL to predict an adverse 30-day outcome.

There are some limitations in this study that merit mentioning here. First, the included
population came from a single center, and the number of people who experienced an
outcome was low. However, adverse outcomes (6%) were similar to those reported in other
studies [14,15,18,19]. Second, of the 221 patients screened, 31 (14.0%) were excluded due
to missing data. Given the small size and the low event rate of this study, we could not
evaluate if TRAIL has additional value on top of the existing risk stratification. Further large-
scale studies are required in future using independent study cohorts. This study also lacked
multiple consecutive measurements for TRAIL. The mechanism and pathophysiological
process throughout the pulmonary embolism need to be further explored and validated.

5. Conclusions

In conclusion, reduced plasma TRAIL levels predict short-term adverse events in
normotensive patients with acute PE. The combination of the 2019 ESC algorithm and
TRAIL aids risk stratification to assist physicians in the making of treatment decisions and
care of patients.
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