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Abstract: Background: As the number of elderly persons increases, neurodegenerative diseases are 
becoming ubiquitous. There is currently a great need for knowledge concerning management of old-
age neurodegenerative diseases; the most important of which are: Alzheimer’s disease, Parkinson’s 
disease, Amyotrophic Lateral Sclerosis, and Huntington’s disease.  

Objective: To summarize the potential of computationally predicted molecules and targets against 
neurodegenerative diseases.  

Method: Review of literature published since 1997 against neurodegenerative diseases, utilizing as 
keywords: in silico, Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis ALS, 
and Huntington’s disease was conducted.  

Results and Conclusion: Due to the costs associated with experimentation and current ethical law, 
performing experiments directly on living organisms has become much more difficult. In this sce-
nario, in silico techniques have been successful and have become powerful tools in the search to 
cure disease. Researchers use the Computer Aided Drug Design pipeline which: 1) generates 3-
dimensional structures of target proteins through homology modeling 2) achieves stabilization 
through molecular dynamics simulation, and 3) exploits molecular docking through large com-
pound libraries. Next generation sequencing is continually producing enormous amounts of raw 
sequence data while neuroimaging is producing a multitude of raw image data. To solve such press-
ing problems, these new tools and algorithms are required. This review elaborates precise in silico 
tools and techniques for drug targets, active molecules, and molecular docking studies, together 
with future prospects and challenges concerning possible breakthroughs in Alzheimer’s, Parkin-
son’s, Amyotrophic Lateral Sclerosis, and Huntington’s disease. 

Keywords: In silico analysis, computer aided drug design, alzheimer’s disease, parkinson’s disease, amyotrophic lateral sclero-
sis, and huntington ’s disease. 

1. INTRODUCTION 

 A better quality of life, and up-to-date individualized 
health care plans are major concerns of the current health 
care industry. Such measures have increased the individual’s 
lifespan, however old age diseases are now becoming more 
common. According to a 2010 survey by the US National  
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Institute of Health (NIH); 8% (524 million people) of the 
world’s total population is at or above 65 years old, this 
group is anticipated to grow rapidly; up to 2 billion (16%) by 
2050 [1]. Given this scenario, effective measures should be 
taken to cope with old age diseases. Degenerative nerve dis-
eases are the most common diseases of old age. Many orga-
nizations and individual laboratories are working to cure 
neurodegenerative diseases, but there are still no available 
medicines that can cure neurological diseases effectively. 
The major hurdles to finding a potent cure are the complex-
ity of the brain system, the availability of resources, and 
ethical restraints. However, advances in computational tech-
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nology have enabled us to perform in silico experiments 
which are influencing our understanding of the brain tre-
mendously [2-4]. 

 Bioinformatics, utilizing computational, mathematical 
and statistical approaches is a very recent emerging interdis-
ciplinary science that solves biological problems [5]. Mo-
lecular docking is a computational technique that predicts the 
preferred binding orientations of one molecule (receptor) to 
another molecule (ligand) to form a firm or stable complex. 
Computational drug discovery or computer-aided drug de-
sign (CADD) is one of the principal approaches applied in 
drug discovery to reduce time and costs [5, 6]. CADD tech-
niques involve sequence based drug design, ligand based 
drug design, and structure based drug design. The most used 
methodologies in CADD are target (protein) identification, 
molecular docking analyses, molecule design, quantitative 
and qualitative structure activity relationship, lead optimiza-
tion, and ADMET among others, as depicted in Fig. (1). In 
silico approaches and bioinformatic analyses have been suc-
cessful in both solving biological problems [5] and in de-
signing numerous novel computer-aided molecules to fight 
neurological disorders, [7-11] and cancer [12-15]. Revealing 
protein structural information, using X-ray crystallography, 
Nuclear Magnetic Resonance (NMR), and Electron Micros-
copy is difficult and requires large resources and time [16-
18]. Due to their abilities to build 3D protein structures 
based on already available homologous protein family in-
formation, computational methods are becoming more 

prominent [19-21]. Numerous servers and tools are available 
to model proteins through homology modeling techniques 
including I-Tasser, M4T, Phyre2, and Intfold2 [22-25]. 

 Using only protein sequence information, servers em-
ploying homology modeling build 3D models based on i) 
information in the Protein Data Bank (PDB) database, ii) the 
nature of the protein sequence, and iii) fine tuning of the 
model through either energy minimization or low level mo-
lecular dynamics simulation. The idea of homology model-
ing is based on templates of either X-ray, NMR, or Electron 
Microscopy structures. Often multiple templates are used for 
protein modeling based on sequence alignments of a particu-
lar query. Utilizing Newtonian equations, simulated Molecu-
lar Dynamics (MD) studies help to resolve protein structures 
[26-28]. During MD simulations, being based on force-
fields, virtual systems are generated which allow independ-
ent structural repositioning of atoms within proteins in an 
attempt to get the native protein structure. MD simulation 
followed with molecular modeling has helped to solve many 
large bio-molecule structures [29, 30]. Virtual Screening 
(VS) is a technique to screen potent compounds from mil-
lions of compounds against disease targets [31-33]. VS can 
be implemented through ligand based or structure based 
methods. For VS, different databases can be used including 
ZINC [34, 35], ChemDB [36], ChEMBL [37, 38], Mcule 
[39], and recently, the Cresset BMD compound database 
[40]. The resulting compounds are docked with the target 
protein to check which molecule is most likely to bind and 

 

Fig. (1). CADD methodology comprises target selection, molecular docking studies, pharmacokinetics analysis, and MD simulations. 
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build suitable interactions with the target protein. For dock-
ing purposes, Autodock [41, 42], Autodock Vina [43], 
GOLD [44, 45], and other tools are available [20, 46-50]. 

 Currently, there is a large gap between designing and 
implementing effective neuro-drugs. The old-age population 
time bomb is soon to explode, underscoring the immediate 
need for measures to cope with neurodegenerative diseases 
[51-53]. Progressive degeneration and death of nerve cells 
produces debilitating conditions; principally dementia and 
loss of movement control. This study attempts to summarize 
the published literature since 1997, on computational drug 
design against neurodegenerative diseases using the key-
words: in silico, neurodegenerative diseases, Alzheimer’s 
Diseases (AD), Parkinson’s Disease (PD), Amyotrophic Lat-
eral Sclerosis (ALS), Huntington’s Disease (HD), and 
CADD. This review attempts to recapitulate both current and 
novel drug targets in the principal neurodegenerative dis-
eases (AD, PD, ALS, and HD) using in silico approaches 
(Table 1). 

2. ALZHEIMER’S DISEASE 

 AD is classified into two types; sporadic AD (SAD), and 
familial/early onset AD (FAD), and is considered the most 
common cause of dementia [54]. The gradual death and mal-
functioning of neurons in the disease lead to loss of cognitive 
function and memory. AD is characterized by hyperphos-
phorylated microtubules linked with tau proteins forming 
neurofibrillary tangles within the cell, this with accumulation 
of amyloid (Ab) plaque around the neurons [55, 56]. The 
amyloidogenic pathway is exacerbated by mutations, and 
disturbs the normal pathway in which a-secretase acts on the 
membrane protein APP (amyloid precursor protein), followed 
by a harmful peptide synthesized by g-secretase. While in 
the amyloidogenic pathway, APP breakdown by b-secretase 
is followed by g-secretase and leads to Ab plaque formation 
whose key constituent is the (42 residue) Ab 42 [57, 58]. 

 AD is a progressive neurodegenerative disorder charac-
terized by diminished motor and cognitive functions, and 

Table 1. Summarized new and current drug targets in neurodegenerative diseases (AD, PD, ALS and HD) using in-silico ap-
proaches. 

Diseases AD PD ALS HD 

Characterization  Death and malfunctioning of  
neurons 

Death of substantia nigra 
cells 

Loss of upper and lower mo-
tor neurons 

Degeneration of Nerve Cells 

Risk Factors Hyperphosphorylation of tau  
proteins 
FAD Mutations 
Presenilin-1 or -2, APP 
SAD 
Apo-ε, APOE4,Aging 

  

Poor lifestyle & Poor diet 
Abnormal expression 
SNCA, PARK2, 
PINK1, DJ1, LRRK2, 
ATP13A2 
Blockage of Adenosine 
A2A receptors 

Mutations 
SODI, FIG4, FUS/TLS,  
TARDBP, ANG, VAPB 
PON1, Hetereochromatosis 
gene, Neurofilament heavy 
chain gene 
Repeat (GGGGCC) in 
C9ORF72 
 

Mutations 
HTT, Higher repeats of CAG 
in HTT allele 
Interacting Proteins  
HTT-interacting protein 1 
GRB2-like protein 3 
Protein kinase C 
Postsynaptic density-95 
FIP-2 

Targets for po-
tential therapeu-
tics 

Acetylcholinesterase,  
N-methyl-D-aspartate receptor,  
Muscarinic and nicotinic ACh re-
ceptors, Tau proteins 
Beta-secretase enzymes 

  

Mutant LRRK2 
SNCA Motif 
Mutated expression & 
mitochondria localization 
PINK1, PARK2, DJ1 
Dopamine receptors 

  

Mutant SODI 
SODI oligomerization 
CASP-3, CASP-8 
TDP-43, p38 MAPK 
Nav1.6 sodium channel 

Mutant HTT, Infant Testing  
HTT Interacting proteins 
Specificity protein 1 
Nuclear receptor co-
repressor, HTT-interacting 
protein 1, Postsynaptic den-
sity-95, FIP-2 

Computationally 
derived com-
pounds for Neu-
rodegenerative 
diseases  

AChE Compounds 
Flavonoid derivatives,  
macluraxanthone, kaempferol, rutin, 
quercetin, pyridopyrimidine, 6-
chloro-pyridonepezil and pyridone-
pezil & piperazine derivatives, 
memantine antagonist of NMDA  
Triazolyl-amidine derivatives 
3-substituted-1H-indoles, 1-benzyl-
1,2,3,4-tetrahydro- b-carboline, and 
ifrenprodil, AF267B compound  
OM00-3 and OM99-2 of BACE1 
Flavones & flavonol derivatives 
morin, kaempferol, quercetin, api-
genin and myricentin 

LRRK2 kinase inhibitors 
pyrroloquinoline quinone 
Dopamine related com-
pounds 

Antiglutamatergic compound 
Riluzole  
TCM 
Hesperidin and THSG  
Non-peptidyl natural  
Curcumin and Rosmarinic 
CK-1δ inhibitors 
Compound 20 and 24 
ZINCPharmer  
 1, 2, 3, 16, 17, 18, 
22,24,25,27,28 

  

T1-11 from Chinese medici-
nal herb inhibiting transcrip-
tion of adenosinergic path-
way 
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progressive memory loss due to the demise of brain cells, 
which finally leads the patient to death [59]. AD progression 
can be classified in three stages; i) dementia, ii) mild cogni-
tive impairment and iii) preclinical (no symptoms or signs) 
[59]. It was recently reported that more than 4.7 million peo-
ple over 65 years old have AD in the USA [60]. It has also 
been predicted globally that one in 85 people will have AD 
in 2050 [61, 62].  

 Ab plaque and oligomers are potential synaptotoxins, 
alter intracellular Ca 3þ levels, inhibit mitochondrial activity, 
block proteasome functions [63, 64] and stimulate inflamma-
tory processes [65, 66]. The above mentioned processes also 
contribute to neuron dysfunction. 

 Hyperphosphorylation of tau proteins result in neurofi-
brillary tangle accumulations in neurons [3]. Consequently, 
synaptic and biochemical communication between neurons is 
interrupted which gradually leads to cell death [67]. FAD is 
usually caused by autosomal dominant mutations in the pre-
senilin-1 or -2 gene, or in APP [68, 69]. The majority AD 
cases are sporadic (SAD) [70].  

 The Apo-ε gene is considered a key high risk factor in 
SAD [71]. SAD has numerous risk factors including the 
APOE4 (apolipoprotein E4) allele and aging, which leads to 
gradual motor function loss, and cardiac and stroke disease 
[72, 73]. 

3. TARGETS IN AD 

3.1. Acetylcholinesterase 

 Brain cortex plasticity and certain forms of learning de-
pend on the presence of ACh [74, 75]. The nerve fibers, dur-
ing transmission of cholinergic release the neurotransmitter 
ACh which binds other cholinergic nerve fibers in desig-
nated receptors and conveys a message for response. The 
enzyme cholinesterase decreases ACh concentration by hy-
drolyzing the molecule [76]. Enzymes that bind to and in-
hibit cholinesterase result in increasing ACh synapse con-
centrations [77]. ACh accumulation causes continuous 
stimulations of glands and muscles; and potentiates para-
sympathetic activities including constrictions of bronchioles, 
respiratory tract mucus secretion, slowed heart rate, pupil 
constriction, vasodilatation, and increased tear, saliva, and 
sweat production [78]. 

 Acetylcholinesterase (AChE) inhibitors disrupt the cho-
linergic pathway in the basal forebrain and cerebral cortex 
which contribute to cognitive impairment in AD patients [79, 
80]. Tacrine, rivastigmine, galantamine and donepezil are 
drugs that act as AChE inhibitors and are approved for 
symptomatic relief [81]. CADD has promoted progressive 
advancements in development and design of more potent 
drug target ligands against diseases. Besides the approved 
marketed AChE inhibitors, numerous new natural and modi-
fied synthetic compounds have been shown to present potent 
cholinesterase activity. Recently, a mini-review also summa-
rized various approaches used to design and identify multi-
targeted sites against AD [82]. 

 Besides the catalytic site on AChE, the presence of a pe-
ripheral anionic site (PAS) has been implicated in promoting 

formation and localization of amyloid fibrils. Various novel 
flavonoid derivatives have been reported that can bind AChE 
at both sites, and provide promising results as compared to 
donepezil and rivastigmine for AChE activity inhibition [83]. 
Another four flavonoid derivatives; macluraxanthone, 
kaempferol, rutin, and quercetin were computationally and 
chemically tested for AChE inhibition, and the quercetin and 
macluraxanthone derivatives also showed potential inhibi-
tory activity against cholinesterase [84]. 

 Various novel modified carbamates have been synthe-
sized and analyzed using in silico and in vitro approaches 
and have shown good inhibitory activity against AChE [85]. 
Pyridopyrimidine, a novel compound developed using in 
silico molecular docking studies, and confirmed with in vitro 
synthesis, inhibits AChE activity with more potency than the 
drug galantamine [86]. A hybrid of aminopyridine and done-
pezil (6-chloro-pyridonepezil and pyridonepezil) has been 
reported as a potential inhibitor of cholinesterase using in 
vitro and in silico analyses. These compounds inhibit both 
the PAS and catalytic sites [87, 88]. Several derivatives of 
piperazine were also reported as AChE inhibitors and a few 
acted as dual-site inhibitors [89]. Das et al., (2017) eluci-
dated flavonoids with potential AChE inhibition which 
might be helpful in Alzheimer's disease management [90]. 

3.2. N-methyl-D-aspartate Receptor 

 In patients with AD, hyper-activation of N-methyl-D-
aspartate (NMDA) glutamate type receptors causes continu-
ous and excessive Ca2+ influx via receptor associated ion 
channels [91]. The transmission of glutamate-mediated syn-
aptic signaling is significant for normal functioning of the 
nervous system where glutamate behaves as a vital excita-
tory neurotransmitter in the brain [92]. Hyperactivation of 
NMDA receptors with glutamate results in production of 
both free radicals and various enzymes that can contribute to 
neuronal cell death. During chronic and acute neurodegen-
erative disorders glutamate can be released inappropriately 
and is usually not eliminated properly due to metabolic en-
ergy disruption. Genetically compromised neurons cannot 
maintain ionic homeostasis in the absence of energy and 
become depolarized. Normal Mg2+ blockage of NMDA re-
ceptor coupled channels is relieved by this depolarization 
[93]. Therefore, it is supposed that excessive stimulation of 
glutamate receptors occurs during neurodegenerative symp-
toms and ischemia. An antagonist of NMDA receptors could 
be therapeutically beneficial in a number neurological disor-
ders including neuropathic pain syndromes, dementia and 
strokes [94]. NMDA receptors are composed of various 
subunits such as the NR1, NR2A-D, NR3A or NR3B 
subunits. These subunits form in tetramers to compose the 
receptor and the composition of these subunits determines 
the parameters and pharmacology of the receptor-ion channel 
complex. Alternative splicing (NR1 and the other subunits) 
further contributes to the pharmacological properties of the 
receptor [95]. 

 The only marketed NMDA receptor antagonist (meman-
tine) presents rapid receptor blocking and unblocking activ-
ity [96]. Memantine is the only NMDA antagonist drug 
available on the market and there are numerous molecular 
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docking studies in progress to a design active and novel 
ligands to target this receptor in AD.  

 Several novel ligands have been identified with success-
ful molecular docking results including triazolyl-amidine 
derivatives [97], 3-substituted-1H-indoles [98], 1-benzyl-
1,2,3,4-tetrahydro- b-carboline [99], 3-hydroxy-1H-
quinazoline-2,4-dione derivatives [100] and others. Ifren-
prodil and similar molecules act as potential inhibitors of the 
NR2B subunit of NMDA and were discovered in molecular 
docking studies [101, 102]. 

3.3. Muscarinic and Nicotinic ACh Receptors 

 Muscarinic receptors (mAChR) are ACh receptors pre-
sent in the peripheral and central nervous system (CNS) that 
form G protein receptor complexes in cell membranes of 
neurons, and other cells. Muscarinic receptors are involved 
in learning, motor control, and memory management in the 
CNS. These receptors are divided into five different subtypes 
named M1 to M5 [103], and play different roles in the para-
sympathetic nervous system (PNS) acting as the principal 
end receptors for ACh released from postganglionic fibers. 
The M1 type of mAChR plays a key role in learning, mem-
ory management, and cognitive processing in the cerebral 
cortex and in the hippocampus as impaired by AD [104].  

 Cholinergic activation can restore cholinergic deficits 
that are a principle feature of AD. Several studies have been 
performed with muscarinic agonists that improved cognitive 
functions in patients, but were unable to complete trials due 
to co-activation of other non-specific subtypes [105]. Both 
α4β2 and α7 nicotinic receptor subtype expressing neurons 
have been observed as damaged in AD patients [106]. In this 
last decade, certain selective M1 subtype agonists such as 
AF292, AF267B, AF150 and AF102B of the AF series of 
drugs have been tested on AD patients. AF267B showed 
effective pharmacokinetics and with oral administration also 
penetrates the blood-brain barrier, and AF267B, AF102B 
and AF150(S) were reported to have decreased Aβ, and ele-
vated non-amyloidogenic APP and neurotrophic effects 
[107]. 

 Formation of AD amyloid decreases the receptor’s ability 
to transmit signals, resulting in decreased cholinergic activ-
ity. Activation of mAChR M1 can attenuate the pathological 
features of Alzheimer’s and restore cognitive functions. Cer-
tain mechanisms decrease hyper-phosphorylated tau and 
upregulate α-APP; and hypocholinergic effects result in Aβ 
formation [108]. An allosteric candidate of M1 (77-LH-28-1) 
from GlaxoSmithKline (Harlow, UK) presented both effec-
tive CNS penetration and pharmacological profile. 
VU0364572 and VU0357017, two M1 selective agonists 
from Vanderbilt Centre for Neuroscience Drug Discovery, 
(Nashville, TN, USA) were analyzed and tested on cell lines 
of animal models and showed potentially active behavior on 
several parameters. Certain agonists of M1 could not com-
plete clinical trials [109]. Elan Pharmaceuticals developed an 
α7 nicotinic receptor agonist EVP-6124, terminating its 
phase II trial [110]. Awasthi et al., (2016) summarized the 
results of natural compound analyses utilizing computational 
approaches of therapeutic molecules effective in preventing 
Aβ plaque formation [111]. 

3.4. Tau Proteins 

 The microtubule linked Tau proteins have a key role in 
microtubule stability and assembly and are also involved in 
maintaining cell integrity. Primarily in axons, they are pre-
sent in phosphorylated soluble form. In AD, hyperphos-
phorylation of tau proteins causes insoluble intracellular neu-
rofibrillary tangles in neurons. Normal synaptic plasticity is 
disturbed causing neurodegenerative changes. Cdk-5 and 
glycogen synthase kinase (Tau kinase 1/GSK-3b) also have 
involvement in hyperphosphorylation of tau proteins [112, 
113]. Thus, reducing hyperphosphorylation of tau proteins 
by inhibiting GSK-3b has been suggested as a potential 
therapeutic alternative against AD.  

 Several reputed pharmaceutical companies including 
GlaxoSmithKline (Harlow, UK), Eli Lilly (IN, USA), and 
Roche (Basel, Switzerland) have analyzed and tested numer-
ous GSK-3b inhibitors. Maleimide derivatives including 
quinolones, oxadiazole, benzimidazoles, imidazopyridines 
and derivatives of pyrimidine thiazolidinedione are a few 
common compounds which presented potential activities 
during in silico analyses and were further analyzed by in 
vitro assay [114]. 

3.5. Beta-secretase Enzymes 

 To treat AD, β-secretase initiates amyloid beta generation 
and is considered a potential drug target to reduce cerebral 
levels of APP. APP is subject to degradation via non-
amyloidogenic pathways or amyloidogenic pathways. Either 
β-secretase or α-secretase cleave APP, and γ-secretase proc-
esses the remaining membrane attached fragments [57]. Α- 
cleavage followed by γ-cleavage products are non-
amyloidogenic and highly soluble [58]; β-secretase mediated 
cleavage produces Aβ. APP amyloidogenic cleavage results 
in APP intracellular domain synthesis that has the ability to 
change diverse cellular functions [115]. APP synthesis in 
neuronal cell bodies undergoes axonal transport being con-
tained in transport vesicles. Presynaptic terminals secrete Aβ 
into the extracellular matrix, and fibrillary Aβ forms outside 
of the neurons. 

 The APP gene also has FAD mutations which either 
modulate γ-secretase activity to increase amyloidogenic 
Aβ42-Aβ40 or β-cleavage to α-cleavage [57]. The amyloid 
processing pathway makes BACE1 (β-sectetase/memapsin 
2) a potential drug target. BACE1 is present in the intracellu-
lar acidic compartments, and is a type 1 transmembrane as-
partyl protease. Its highest expression is found in neurons. 
Knockouts and over expression of BACE1 respectively de-
crease and increase production of Aβ [116]. There are two 
aspartic acid residues (Asp-32 and Asp-228) in the active 
site of BACE1 located in the hydrophobic cleft. A significant 
role is played by water molecules which help maintain en-
zymatic function and stability [116]. In silico studies have 
reported two first generation BACE1 inhibitors (OM00-3 
and OM99-2) that behave like natural substrates [117].  

 Derivatives of aminoquinazoline, acyl-guanidine, hy-
droxyethylene (HE), aminoimidazole, carbinamine, and hy-
drox-yethyleneamine (HEA) are reported inhibitors [118]. 
Derivatives of synthetic coumarin were validated computa-
tionally as dual inhibitors of BACE1 and AChE [105, 106]. 
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By employing molecular docking analyses, dual inhibitors of 
BACE1 and AChE have been reported for hydroxymethyl-
carbonyl, HEA and HE scaffolds. Interestingly, these two 
inhibitors revealed potential activity in cell based assays 
[121]. In other in silico analyses, flavones and flavonols, 
namely morin, kaempferol, quercetin, apigenin and myricetin 
have been reported as potential inhibitors of BACE1 [122]. 
Peptidomimetic inhibitors of BACE1 have a statin based 
structure with effective IC50 values and binding efficacy 
[123]. 

3.6. In vitro and in vivo Validation of Identified in silico 
Molecules 

 Derivatives of flavonoid have been validated in in vitro 
AChE rat studies, with better inhibitory activity than was 
observed for rivastigmine and certain inhibitory activities 
similar to donepezil [83]. Nordihydroguaiaretic acid is an 
effective phenolic lignin extracted from Larrea tridentates. 
This acid was observed as a cholinesterase inhibitor, having 
potential activity similar to marketed drugs and has an anti-
aggregation effect on Aβ [124]. 

 Numerous novel carbamate molecules have been de-
signed and chemically synthesized against AChE and better 
inhibitory activity has been observed as compared to the 
currently available rivastigmine [85]. Certain derivatives of 
pyridopyrimidine have been reported to have about 2-2.5 
times higher inhibitory effect against AChE as compared to 
galantamine, these were validated via in vitro enzyme assay 
[86]. Derivatives of pyridonepezil have been reported as 
effective and selective inhibitors of AChE when compared 
with the reference compound donepezil [87]. 

 Derivatives of 4-hydroxycoumarin were also reported as 
significant inhibitors of AChE [125]. Novel derivatives of 
piperidine showed dual inhibitory activities against Aβ and 
AChE aggregation in in vitro assays [126]. Certain 6-chloro-
pyridonepezils were also reported as dual inhibitors against 
PAS and the catalytic site of AChE [88]. Derivatives of 
peperzine also showed dual site inhibitory effects [89]. 

 Derivatives of HE present dual inhibitory activities 
against both AChE and BACE1 [123]. Flavonoids, specifi-
cally quercetin and myricetin reveal potential BACE1 inhibi-
tory effects. Extracellular Aβ concentration and neuronal 
BACE1 secretion showed significant reductions after quer-
cetin and myricetin administrations [124]. 

 Benzodiazepine modified molecules presented potential 
inhibition against BACE1 in a cell based assay [127]. De-
rivatives of HEA were reported as a significant inhibitor of 
BACE1 in a preclinical animal model [128]. Takeda Phar-
maceuticals Japan developed a non-peptide novel BACE1 
inhibitor (TAK-070) which significantly reduced the activity 
of Aβ in a mouse model [129]. 

 Another compound against BACE1 from Merck & Co., 
Kenilworth, NJ, USA, MK-8931 is in clinical trial phase 3 
[129]. Torrey Pines Therapeutics, Inc., CA, USA) developed 
AF267B M1, a muscarinic agonist to decrease levels of Aβ, 
it was shown to prevent aggregation in mouse and preclinical 
rabbit models. AF102B, a long-term treatment for AD pa-
tients decreased Aβ levels in cerebrospinal fluid [130]. 

4. PARKINSON’S DISEASE 

 Parkinson’s disease (PD) has become the second most 
common old age (roughly 60 years old), movement disorder 
disease[1]. The substantia nigra is the part of the brain which 
secretes dopamine and other neurotransmitters for communi-
cation with movement control centers [131]. When substan-
tia nigra cells die, the amount of dopamine falls, which nega-
tively affects movement control centers. The cause of sub-
stantia nigra cell death is still not fully understood, but it is 
believed to be due to additive genetic and environmental 
factors. In some cases, PD is genetic, yet it is mostly found 
to occur due to poor lifestyle and diet [1]. Patients gradually 
develop the disease, which first affects one side, and later the 
other side of the body, leading to trembling and stiffness of 
the jaw, hands, arms, legs, and trunk, causing slowness of 
movement, with poor balance and body coordination. In se-
vere conditions, patients also face difficulties walking and 
chewing, and also develop depression and sleeping prob-
lems. 

 Studies have shown that expression abnormalities in 
SNCA, PARK2, PINK1, DJ1, LRRK2, and ATP13A2 genes 
disturb generation/reception in the dopamine pathway, yield-
ing to PD [132]. Dopamine is received specifically by 5 do-
pamine receptors DRD1 – DRD5 [5, 133, 134]. Adenosine 
A2A receptor blockages, as expressed in basal ganglia are 
also involved in PD development [135-137]. 

4.1. LRRK2 

 The ubiquitously expressed gene LRRK2 has important 
functions in the region where dopaminergic neuronal degen-
eration starts in PD patients [138, 139]. More than 40 muta-
tions are reported for the LRRK2 gene, and most of its biol-
ogy is still poorly understood. The LRRK2 gene encodes a 
large 2527 amino acid transcript encoding a protein with 
multiple protein interactions and enzymatic domains [140, 
141]. Many studies have been performed to uncover struc-
tural features of the LRRK2 protein including domain analy-
ses and inhibitor design. LRRK2 kinase inhibitors are a hot 
topic of interest for pathological LRRK2 activity [142]. 
Aside from first generation inhibitor tools for LRRK2, com-
putational design and docking has revealed the first success-
ful potent inhibitor for mouse LRKK2. A panel of 160 cell 
permeable and ATP competitive kinase inhibitors used for 
LRRK2 dephosphorylation at serine cluster including Ser910/ 
935/955/973 have shown positive results [1, 131, 141]. 

4.2. SNCA 

 The SNCA gene codes for the protein alpha-synuclein 
involved in neuropsychiatric pathology. There are a total of 5 
exons for the SNCA gene encoding 140 amino acids [143]. 
Evolutionary studies have shown that amino acids ranging 
from 32 to 58 residues and having an N-terminal domain and 
degenerative amino acid motif “KTKEGV” have critical 
structural and functional implications derived through line-
age specific substitutions under epistatic influence [144]. 
Homology models showed amphipathic helices as a charac-
teristic structural SNCA feature. Pyrroloquinoline has been 
computationally identified as inhibiting SNCA derived 
plaques [145, 146]. 
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4.3. PINK1, PARK2, and DJ1 

 The autosomal recessive “three musketeers” of neuropro-
tection for PD are the PINK1, PARK2, and DJ1 genes [147]. 
Much less work has been done on their three proteins and 
researchers are trying to figure out pathways and possible 
inhibition involved in their mutated expression. The PINK1 
protein, composed of 581 amino acids was recently local-
ized; having a conserved kinase domain facing the mito-
chondrial cytoplasm, and is thought to be composed of mul-
tiple mitochondrial targeting sequences [132]. The involve-
ment of PINK1 in PD is suggested in three pathways; 1) in-
correct phosphorylation and assembly of mitochondrial 
complexes affecting Na+ / K+ homeostasis, 2) activation of 
the apoptosis pathway, and 3) disturbance in mitochondrial 
localization of PARK2 1. PARK2 also termed as Parkin is an 
autosomal recessive PD gene encoding a 52 kDa protein. 
Much work has been performed to functionally characterize 
PARK2, but most of its pathway is still unclear. PARK2 is 
an E2 dependent E3 ubiquitin ligase with a role in sophisti-
cated mitochondrial quality control pathways.  

 DJ-1 was first identified as an oncogene and later associ-
ated with familial PD; and localized in the mitochondria, has 
a role in neuroprotective activity [148]. DJ-1 forms as a sin-
gle 20 kDa domain but its abnormal behavior allows altered 
mitochondrial morphological dynamics through increased 
Reactive Oxygen Species (ROS), which may still be rescued 
by cell permeable glutathione precursors, or by PRAK2 or 
PINK1 overexpression [149]. Even though its crystal struc-
ture was available a decade ago, the dynamics and under-
standing of the DJ-1 neuroprotective pathway is still little 
known [1, 147]. 

 Dopamine receptors are PD treatment targets and dopa-
mine related compounds can be directly provided to these 
receptors to enable proper function [150-152]. Such treat-
ments are provided when no other treatment is available be-
cause it does not cure, but helps the neurons to perform their 
normal functions. In silico studies combined with in vitro 
studies have helped to discover many compounds that target 
certain dopamine receptors [5, 133, 152-156]. It is very diffi-
cult to target dopamine receptors inside the brain due to 
brain permeability barriers, thus mixed studies are focused 
currently on computational drug design, and their toxicity 
properties [157]. Due to the complexity of the brain function, 
it has become an ambitious task for researchers to design 
non-toxic or less-toxic dopamine related compounds [134, 
158, 159]. 

5. AMYOTROPHIC LATERAL SCLEROSIS 

 ALS is a lethal neurodegenerative disease, characterized 
by the loss of both upper motor neurons in the motor cortex, 
and lower motor neurons in the spinal cord and brainstem. 
This adult onset disorder leads to muscle weakness and atro-
phy, twitching and convulsiveness [160]. Denervation of 
lower motor-muscle neurons, and axon retractions lead to the 
failure of axonal connections which develops as the signs 
and symptoms of ALS. At first, axon retraction is restored 
with collateral re-innervation and axons that appear less sus-
ceptible to degenerative events. However, on account of 
these newer less susceptible neurons, the compensation 

mechanism fails as the disease progresses. It has also been 
shown in animal models that the neuronal cell body dies only 
after the preliminary stage of axonal retraction and dysfunc-
tion [161, 162]. 

 In humans, the particular timing of ALS events is less 
known, but the order was confirmed by autopsies in ALS 
patients who died early. ALS is conventionally categorized 
into sporadic ALS (SALS) and familial ALS (FALS), which 
are clinically similar. Incomplete penetration, partial family 
history and non-paternity are reasons for misclassification. 
SALS patients are not hereditarily affected, yet FALS is pre-
dominantly hereditary, being caused by mutations in a di-
verse set of genes [160]. Approximately, 90% of ALS pa-
tients present the sporadic form, the number of FALS causa-
tive genes is high, but the patho-mechanism is still unknown 
[163, 164]. 

 Currently, there is no therapy for ALS other than the anti-
glutamatergic compound riluzole, which is less effective in 
improving symptoms and only prolongs median survival by 
a few months [165]. There remains a great need to develop 
novel therapeutics for ALS and identify its underlying 
mechanisms. Although, most ALS cases are sporadic, the 
triggering mechanism is unknown which hinders target dis-
covery and drug development for this neurodegenerative 
disorder [166, 167]. Clinical trials have been performed on 
more than 30 compounds, but most of these failed to provide 
the therapeutic benefits in ALS patients [168]. 

 ALS etiology involves multiple genetic factors. How-
ever, increasing numbers of ALS linked genes are being 
identified. Superoxide dismutase type 1 (SODI) mutations 
are described as one of the key causes of ALS [167]. SODI 
mutations have been found in both FALS and SALS and 
extensively studied. Mutations in genes, including FIG4, 
FUS/TLS, TARDBP, ANG, VAPB and hexanucleotide repeat 
expansion (GGGGCC) in C9ORF72 are genetic factors re-
sponsible for the onset of ALS. In ALS, genetic association 
studies reveal other risk factors including insertions or dele-
tions in paraoxonase-1 (PON1), neurofilament heavy chain 
genes, and hetereochromatosis genes (HFE) [163, 169].  

5.1. SODI 

 SODI, is an antioxidant enzyme involved in detoxifica-
tion of superoxide radicals becoming enzymatically active 
by binding zinc and copper ions, and engenders a highly 
conserved intra-molecular disulfide bond [170]. Variants in 
Cu/Zn binding to SODI can augment aggregation and reduce 
protein stability concomitant with ALS [171, 172]. Genetic 
linkage of SODI mutations in ALS has been demonstrated: 
including alanine 4 to valine (A4V) [173], histidine 46 to 
arginine (H46R) [174] and isoleucine 113 to threonine 
(I113T) [175]. A4V mutation is a frequent causative agent of 
ALS in the United States and accounts for about 50% of 
SODI-ALS patients. About, 80% Japanese familial ALS are 
affected by mutant H46R; and I113T mutation is also com-
mon in FALS. When designing novel ALS drugs, SODI sta-
bilization and aggregation are targeted [176]. 

 From Traditional Chinese Medicine (TCM), Huang et al., 
(2014) [176] conducted research to identify inhibitors of 
mutant SODI for ALS therapy. Through CADD, a mutant 
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SODI and dopamine complex was utilized to scrutinize new 
lead compounds to inhibit aggregation. The world TCM da-
tabase was employed to screen potential compounds with 
high-affinity binding to the active site of mutant SODI and 
validate the stability of the complex for binding through MD 
simulation assay. The TCM Database@Taiwan (61,000 
compounds) and Chang’s laboratory were utilized to screen 
the database and perform the binding assay. Docking analy-
ses revealed that 2, 3, 5, 4-tetrahydroxystilbene-2-O-!-D 
glucoside (THSG) and hesperidin had higher binding affini-
ties than dopamine. Glu100 was the common residue for 
each binding analysis. Root Mean Square Deviation (RMSD) 
value ranged from 0.16-0.24 nm indicating that all the pro-
tein ligand complexes were stable during 5000 ps simula-
tions. Current research has concluded that hesperidin and 
THSG could be potential targets for ALS therapy to design 
novel drugs. Currently, there is no effective therapy available 
for SODI associated ALS and oligomerization of SODI 
might provide good targets to develop effective ALS thera-
peutics. In vitro, a SODI oligomerization model tested to 
screen 640 FDA approved drugs, recognized three effective 
chemical compound classes that inhibit oligomerization of 
SODI proteins. The oligomerization model might also be 
used to test computationally screened compounds to identify 
and develop effective cures for this devastating disease 
[166]. 

5.2. Caspase 3 

 Khan et al., (2015) [177] conducted in silico analyses to 
identify the role of caspase-3 in the regulation of multi-
neurodegenerative disorders: namely, ALS, HD, AD and PD 
using an interaction network to identify natural potent non-
peptidyl compounds against caspase-3. High caspase-3 activ-
ity has been identified in human ALS [178]. The excitatory 
amino acid transporter-2 (EAAT2) was cleaved by caspase-3 
at a specific cytosolic C-terminal site, leading to significant 
transporter inhibition, Thus, it plays a vital role in ALS 
pathogenesis [179]. Most of the known inhibitors of caspase-
3 are peptidyl in nature due to its proteolytic enzymatic ac-
tivity for caspase-3 [180]. 

 The STRING database exhibited a 0.506 interaction con-
fidence score for caspase-3 in SODI, indicating strong evi-
dence of interaction; a potential therapeutic target for neu-
rodegenerative disorders including ALS. In current in silico 
research, a molecular docking study was carried out to iden-
tify compounds from plant-derived non-peptidyl natural in-
hibitors against proteolytic enzymes [177]. Curcumin and 
rosmarinic acid are most promising leads imitating the in-
hibitory effects of peptidyl inhibitors. The discovery of natu-
ral non-peptidyl inhibitors as viable drug candidates for mul-
tiple neurodegenerative disorders is significant. An interac-
tion network including all of the causative proteins of neu-
rodegenerative diseases including ALS and protein-protein 
interaction pathways revealed the importance of CASP-3 and 
CASP-8 in neurodegenerative disorders. They could be used 
as potential targets for effective ALS therapies [181]. 

5.3. Protein Kinase CK-1 Inhibitors 

 TAR DNA 43 binding protein (TDP-43) accumulation, a 
pathological hallmark in SALS, actually presents new thera-

peutic targets for drug development. Post-translational modi-
fication of TDP-43 might be the effect of up-regulated pro-
tein kinase CK-1 in affected neurons, such that phosphoryla-
tion of TDP-43 initiates the onset and development of ALS 
[182]. 

 Salado et al., (2014) utilized a chemical-genetic ap-
proach, molecular docking, and cellular-based assays to dis-
cover and optimize potent CK-1δ inhibitors for TDP-43 pro-
teinopathies and ALS. The initial screening involved chemi-
cally diverse heterocyclic compounds from an in-house 
chemical library, and a focalized subset of structures was 
then evaluated. Compound MR-3.15 with an IC50 value of 
0.85 µM was further optimized in series of chemical reac-
tions. Molecular docking studies were carried out on N-
Benzothiazolyl-2-phenyl-acetamide derivatives with CK-1δ 
crystallographic structures, and a potent inhibitor (Com-
pound 20) (IC50 = 23 nM) and (Compound 24) showed the 
lowest energy poses and the most populated clusters in ATP 
binding sites; these were evaluated further in cellular assays. 
They present the ability to cross the blood-brain barrier, 
making them good drug candidates and possibly useful as 
tools for novel drug development [183]. 

5.4. MAPK 

 Several cellular events including apoptosis, differentia-
tion, oncogenesis, and mitogenesis are linked to the mitogen-
activated protein kinases (MAPKs) family [182]. The p38 
MAPK is associated with proinflammatory cytokine inhibi-
tion and is being studied as a therapeutic target in preclinical 
animal models of CNS diseases including ALS [184]. 

 Pharmacophore generation, together with similarity-
based virtual screening of more than 18.3 million com-
pounds was executed to identify novel potential compounds 
able to reach phase 3 clinical trials. Twenty pharmacophore 
hypotheses were generated with linear binding modes and 
screening was conducted using the ChemBridge and ZINC 
(CNS) databases. The ZINCPharmer database, having 176 
million conformers of 18.3 million compounds was also em-
ployed in another pharmacophore screening. Pharmacoki-
netic analysis scrutinized 11 compounds having (Top-5) 
drug like properties ranking in PharmMapper for p38α 
MAPK. Among the scrutinized compounds, similarity-based 
VS generated 4 compounds (compounds 24, 25, 27 and 28), 
together with 7 compounds (compounds 1, 2, 3, 16, 17, 18, 
and 22) obtained from pharmacophore based VS, which 
might be used as potential drug candidates after in vitro as-
says and quantitative structure-activity relationship studies 
[185]. 

5.5. Nav1.6 Sodium Channel 

 The Nav1.6 channel could serve as an important ALS 
target for design drug therapy. In silico analyses demon-
strated the interaction of Riluzole with the Nav1.6 channel, 
Tyr-1787, Gln-1799 and Leu-1843 as key residues for drug 
discovery and development [166, 186]. 

6. HUNTINGTON’S DISEASE 

 An inherited autosomal dominant old age disease, 
Huntington’s disease (HD), is another neurodegenerative 
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disease which wastes away neuronal structures deep within 
brain, at first causing uncontrolled movements and balance 
problems, and later leading to more severe problems like the 
inability to walk, swallow, talk, think, and perceive, and af-
fects emotions and stable memory (family members recogni-
tion) [187]. The available drugs manage some HD symp-
toms, but today’s drugs can neither cure nor slow down dis-
ease onset. HD is caused by one HTT gene present on chro-
mosome 4. Transgenic mouse model studies have suggested 
that HD can develop through mutations in exon1 of the HTT 
gene [188]. HD can be diagnosed through blood sample 
analysis together with family history, Magnetic Resonance 
Imaging (MRI), and Computed Tomography (CT). 

 Normal alleles of HTT contain trinucleotide repeats 
(CAG repeats). Studies have shown that between 28 to 35 
CAG repeats is normal and unassociated to HD. When ex-
ceeding 28 CAG repeats, it causes replication instability and 
CAG repeats may increase further. While 36–40 CAG re-
peats may cause abnormal protein behavior, 41 or more re-
peats signifies complete penetration, and symptoms begin to 
appear [187, 189, 190]. The higher replication rates in sper-
matogenesis as compared to oogenesis suggest that the HTT 
gene is mostly transferred paternally, a phenomenon called 
anticipation. It can be inferred from certain studies that the 
HTT gene presents dynamic behavior sync; even identical 
twins present differing HD onset ages, and different clinical 
symptoms [191]. There are several interacting proteins in-
volved with HTT proteins, and interestingly each different 
protein interaction causes loss of the different type of neu-
rons. Currently, known HTT protein interacting partners are 
HTT-interacting protein 1, SRC homology region 3-
containing GRB2-like protein 3, protein kinase C, and casein 
kinase substrate in neurons 1, HTT-associated protein 1, 
postsynaptic density-95, FIP-2, specificity protein 1 and nu-
clear receptor co-repressor [192]. 

 It is highly recommended to screen for HD in newborn 
babies so that management and care can be provided and 
lessen the effects of HD [193]. Since HTT mutations are 
genetic, and control is currently not possible; more efforts 
are being made to target HTT interacting proteins and mini-
mize HD symptoms. In a recent study, T1-11 purified from a 
Chinese medicinal herb, and used for about 1500 years to 
treat brain-related problems, has been shown to provide 
beneficial effects for certain HD symptoms inhibiting tran-
scription for the adenosinergic pathway [194]. 

7. FUTURE DIRECTIONS 

 Molecular docking studies are used to correctly estimate 
receptor binding to the ligand site and to accurately predict 
the binding strength. To elucidate potential molecules for 
treating neurodegenerative disorders, numerous compounds 
against both known and novel targets can be analyzed and 
designed with molecular docking. Multi-target inhibitors of 
neurodegenerative disorders can also be designed and ana-
lyzed. Currently, no effective treatments are available to cure 
or prevent neurodegenerative disorders but numerous ap-
proved drugs provide temporary and modest improvements. 
To directly target the causes of neurodegenerative disorders 
would constitute a rational approach. Numerous compounds  
 

mentioned in this study have been withdrawn in different 
stages of drug design including clinical trials because of re-
ceptor protein non-specificity or ineffectiveness in human 
trials. In terms of structural accessibility and the blood-brain 
barrier, the brain is considered a most difficult organ. Thus, 
it is often less likely that molecules predicted in silico, in 
vivo and in vitro are effective in situ. In silico analyses using 
molecular modeling and molecular docking studies have 
been shown to be effective in novel drug design. Yet to de-
sign potential ligands against neurodegenerative disorders 
more funding for critical analysis is needed. 

 Next-generation sequencing has enabled researchers to 
sequence and compare inter- and intra-specific genomes. 
Genome Wide Association Studies (GWAS) are another tool 
that studies how genes are correlated with each other within 
a genome, and CRISPR-CAS technology is now reshaping 
our understanding and ability to solve genetic problems by 
specifically editing genes. Through CRISPR-CAS, in the 
near future trinucleotide repeats of HD may well be con-
trolled to within supportable limits. Such methodologies in 
research are progressively being integrated to solve neurode-
generative disorders. Functional MRI (fMRI) technique is 
being used to identify active brain regions for specific tasks, 
whereas fMRI in-conjunction with pattern recognition analy-
sis is being used for searching linked brain areas to analyze 
patients with Alzheimer’s and Parkinson’s diseases. Due to 
the high level of brain complexity; its functions and collat-
eral effect trade-offs; it is still quite difficult to cure disease 
without effects spreading to other brain areas. Computational 
analyses offer a place to pre-test and simulate brain parts 
using various approaches, yet new techniques and algorithms 
are required which may help to design and cure neurological 
diseases with minimum trade-offs. 

 We are in the era of Big Data with scientists producing a 
gigantic amount of data by various means including bioin-
formatics. Usually, computational analyses give differing 
results for the same sample; this is due to versions of tools 
and algorithms utilized, parameters, environments, and other 
reasons. We should build a database that will have all the 
published in silico molecules against diseases. Using a single 
open access database where all published articles are submit-
ted from the scientific community, from Big Data gathered 
together in one repository, similar analyses with minor pa-
rameter variations can be analyzed and meaningful results 
deduced. 

LIST OF ABBREVIATIONS 

3D = 3-dimensional 

Ab = amyloid 

AChE = acetylcholinesterase 

AD = Alzheimer’s Diseases 

ADMET = Absorption, Distribution, Metabolism, Ex-
cretion and Toxicity 

ALS = Amyotrophic Lateral Sclerosis 

APP = amyloid precursor protein 
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BACE1 = β-sectetase/memapsin 2 

CADD = computer-aided drug design 

CNS = central nervous system 

CT = Computed Tomography 

EAAT2 = Excitatory amino acid transporter-2 

FAD = familial/early onset AD 

FALS = familial ALS 

GWAS = Genome Wide Association Studies 

HD = Huntington’s disease 

mAChR = muscarinic receptors 

MAPKs = mitogen-activated protein kinases 

MD = Molecular Dynamics 

MRI = Magnetic Resonance Imaging 

NIH = National Institute of Health 

NMDA = N-methyl-D-aspartate 

NMR = Nuclear Magnetic Resonance 

PAS = peripheral anionic site 

PD = Parkinson’s Disease 

PDB = Protein Data Bank 

PNS = parasympathetic nervous system 

PON1 = paraoxonase-1 

RMSD = Root Mean Square Deviation 

ROS = Reactive Oxygen Species 

SAD = sporadic AD 

SALS = sporadic ALS 

SODI = Superoxide dismutase type 1 

TCM = traditional Chinese medicine 

TDP-43 = TAR DNA binding protein 43 

THSG = 2, 3, 5, 4-tetrahydroxystilbene-2-O-!-D 
glucoside 

VS = Virtual Screening 
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