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Abstract

Clinical and experimental preparations of IgG/soluble antigen
complexes, as well as those formed following antibody therapy
in vivo, are multifaceted immune regulators. These immune
complexes (ICs) have been tested in humans and animal models,
mostly in forms of experimental or clinical vaccination, for at least
a century. With intensified research on Fcc receptor-mediated
immune modulation, as well as with immune complex-directed
antigen processing, presentation, and inflammatory responses,
there are renewed interests of using ICs in vaccines and
immunotherapies. Currently, IC-based immune therapy has been
broadly experimented in HBV and HIV viral infection control and
antitumor treatments. However, mechanistic insights of IC-based
treatments are relatively recent subjects of study; strong efforts
are needed to establish links to connect laboratory findings with
clinical practices. This review covers the history, mechanisms, and
in vivo outcomes of this safe and effective therapeutic tool, with a
clear aim to bridge laboratory findings with evolving clinical
applications.
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Introduction

Immune complex, as a form of autoimmune disorder and a tool in

clinical therapy, has been an important topic of modern immunol-

ogy. Binding of antigen by antibody, an immunologically simple

event, changes properties of the original ligand, resulting in modu-

lated antigen processing, presentation, receptor signaling, and

inflammatory responses. On a larger scheme, antibody immune

therapy has become one of the successfully implemented biomedical

technologies in modern health care. Immunoglobulin-based new

drugs such as rituximab, ipilimumab, and alemtuzumab are among

the highly effective in cancer treatments (Sondak et al, 2011; Scott

et al, 2012). Intravenous immunoglobulin, IVIG, is also a choice

treatment of autoimmunity, pediatric infections, and antibody

deficiencies (Schwab & Nimmerjahn, 2013). In contrast, use of clas-

sically defined IC represents an old subcategory among the list of

options. ICs in vaccine development and clinical interventions are

becoming increasingly sophisticated, largely attributable to the

newly gained understanding of Fcc receptors (FccR; Nimmerjahn &

Ravetch, 2008; Ravetch, 2010). However, IC-mediated functions are

not solely controlled via those receptor engagements. For instance,

its ability to transport antigen is also a consideration of anatomic

location; its roles at different stages of immune induction and

memory formation are modulated by additional spatiotemporal

factors.

Over 100 years ago, IC vaccines were started as a practice of

using antisera complexed to toxoids of Corynebacteria diphtheria or

Streptococcus pyogenes to decrease the side effects in human vacci-

nation (Copeman et al, 1922; Olitzki, 1935). One concern of this

approach was that antigens coated with antibodies might have

reduced exposure of surface sites, leading to limited antibody

production. This concern was proven unnecessary by subsequent

experiments (Olitzki, 1935). In 1950s, Terres et al reported that

mice immunized with human or bovine serum albumin were sensi-

tized faster if a specific rabbit antibody was also introduced to the

recipients, an effect not seen with antigen alone or in combination

with a control antiserum (Terres & Wolins, 1959a, 1961). The

enhancement was optimal in a slight antigen excess (Terres &

Wolins, 1959b, 1961; Terres et al, 1960). After another three

decades, using peptides from HIV gp120 to rejuvenate CD4 T cells

in HIV carriers, Berzofsky et al reported that addition of antibodies

recognizing these peptides substantially increased the proliferative

index of CD4+ T cells in the patients (Berzofsky et al, 1988).

In the meantime, immune complexes were casted in a negative

shadow, mainly because of their frequent presence in sites of

autoimmunity and inflammation, such as lupus and membranous

nephropathy. Collectively called type III hypersensitivity, IC deposi-

tion at rates faster than their clearance leads to robust activation of

the complement system and Fc receptor signaling. As consequences,

mononuclear cell degranulation, antibody-dependent cellular cyto-

toxicity (ADCC), and release of proinflammatory cytokines may
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result (Nydegger, 2007). Some efforts were made to characterize the

pathogenic ICs. It was found that the IC-mediated attacks were

mainly driven by inflammatory cytokines such as TNF-a (Warren

et al, 1989). It was also found that ICs formed with low affinity anti-

bodies tended to be present in high levels in the circulation and

deposited more readily into subendothelia of renal capillary loops

(Koyama et al, 1978). This was confirmed by mice genetically bred

to produce only low and high-affinity antibodies, as ICs chronically

formed in the former were deposited in glomeruli (Devey & Steward,

1980).

The early work was not illuminated from mechanistic insights. A

landmark turning point for IC’s immune regulatory function was the

discovery of FccRs. In an attempt to understand the molecular

nature of antibodies adsorbed to splenocytes reported by Boyden &

Sorkin (1960), Belkin and Benacerraf suggested in 1966 that this

affinity was mainly afforded by the heavy chain of antibodies, impli-

cating a structural presence on the surface of macrophages interact-

ing with the Fc portion of IgG (Berken & Benacerraf, 1966). In the

1980s, all common forms of FccR were identified (Ravetch & Kinet,

1991), which subsequently developed into the current paradigm of

Fc receptor biology (Nimmerjahn & Ravetch, 2007). Mouse activat-

ing FccR family consists of FccRI, RIII, and RIV, while human coun-

terparts include FccRI, IIa, IIc, IIIa, and IIIb. Except for human

FccRIIIb, these receptors transmit activating signals via an ITAM

motif on the associated common c-chain or intrinsically present in

their cytoplasmic domains. Both species have an additional inhibi-

tory receptor, FccRIIb, that signals via a cytoplasmic ITIM domain.

Meticulous work by Ravetch et al gradually delineated the subtype

specificities and binding strengths to IgG subtypes. In addition, the

presence of lectin-based type II FccRs (DC-SIGN and CD23) that are

sensitive to the glycosylation state of Fc has been demonstrated in

recent years (Ravetch, 2010; Bohm et al, 2014). Relevant to ICs,

FccR signaling has implications in at least three aspects: (i) the acti-

vating and inhibiting receptors, their affinities, and the emerging

lectin-based type II FccRs; (ii) the subclasses of antibodies binding

to these receptors; and (iii) the highly diverse expression of these

receptors on host cells and their levels of expression at different

stages of immune activation. These considerations are becoming

indispensable to modern applications of ICs (Nimmerjahn &

Ravetch, 2005, 2008; Guilliams et al, 2014). Under this backdrop,

this review aims to provide a utilitarian look on ICs from a perspec-

tive of clinical application, to complement the current picture of

antibody immune therapy.

Mechanisms of immune regulatory functions of IC

Cross-presentation and cellular immunity

For extracellular antigens, the default antigen presentation pathway

takes in soluble cargos via endocytosis, processed in progressively

acidic endolysosomal vesicles by pH-dependent chain activation of

cathepsins (Amigorena & Savina, 2010), for loading onto the class II

molecules. Solid particles engulfed via phagocytosis or soluble

cargos endocytosed via receptor-mediated uptake can be routed into

MHC class I cross-presentation via several mechanisms (Lizee et al,

2003; Burgdorf et al, 2007; Joffre et al, 2012). The latter activates

CD8+ T cells, known as the cross-presentation, that becomes the

mechanistic basis of cellular immunity against antigens originated

outside antigen-presenting cells (APCs).

The involvement of ICs in cross-presentation was initially noted

in an assay to study the in vivo tumor killing by antibodies. EG7

tumor was inhibited or eradicated with an antibody against CD4

Glossary

Self-tolerance breaking
While immune tolerance refers to the lack of immune response to
an antigen as a result of central (thymic selections) or peripheral
(lack of co-stimulation) tolerance education, an extrinsic trigger,
such as the same antigen presented to the host in an immune
complex, can initiate specific immune recognition against the
tolerized antigen. The end results can be detrimental in cases of
autoimmunity, or beneficial, as in the immune attack on tumor
antigens.
Cross-presentation
The ability of antigen contained in endo/phagocytic vesicles to be
presented by MHC class I molecules on the APC surface. This is in
contrast with the conventional understanding that class I antigens
originate from endogenous protein synthesis. This is an intensely
studied and contested topic, as several leading hypotheses,
including models of “ER–phagosome fusion”, “endocytic/plasma
membrane recycling”, and “cytosolic translocation”, are still being
verified.
Toxoids
Richard Friedrich Johannes Pfeiffer classified bacterial toxins into
endotoxins that were believed to be sequestered by the cell wall and
exotoxins that were thought to be released into the surroundings.
Those toxins, particularly the latter, can be thermally or chemically
deactivated, that is, with formalin, to produce toxoids to be used as a
form of deactivated vaccine. This is an old term with decreasing
popularity in modern literature.

Fc and Fcc receptor (FccR)
Fc, fragment crystallizable region, simply refers to the constant region
of antibodies of any type. FccRs are the cell surface receptors
expressed mostly by cells of the immune system that have binding
specificities to the Fc region of c-immunoglobulins.
Biological retention
Refers to any substance retained in a biological system. Used in the
context of antibody induction or antibody-based treatments, the term
usually refers to the deposition of IC in tissues that can either serve
as a source for persistent antigenic stimulation, usually with desirable
outcomes, or induce uncontrolled immune attacks, as often seen in
autoimmunity.
Plasmablast
Less mature plasma cell precursors, which could still undergo cell division.
Chemotaxis
Generically refers to the movement of a biological entity in response to
chemical stimulus in their environment. Immunologically, this term refers
to the immune cell movement driven by their surface expression of
chemotactic receptors to or away from a gradient of cognate chemokines.
Erythroleukemia
A form of acute myeloid leukemia that involves the cells that give rise
to the erythrocytes.
Antigenemia
Persistence of antigen in circulating blood. Antigenemia is used as an
indication for severity of infection or as a measurement for efficacy of
immune intervention.
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expressed by these cells. The antibody did not kill the tumor

directly; the effect was entirely dependent on CD8+ T cells and FccR
c-chain (Vasovic et al, 1997). A logical explanation today is that

binding of CD4 by the antibody facilitated tumor antigen processing

by DCs and drove antigen-specific CD8+ T-cell activation. As a vivid

confirmation, in the RIP-mOVA mice whereby OVA is transcription-

ally controlled by rat insulin promoter, infusion of OVA-specific

CD8+ T cells (OT-I) was not efficient to trigger destruction of

b-cells. Addition of an OVA-specific IgG antibody, however, led to

severe autoimmune diabetes, suggesting that the presence of ICs

can overcome the tolerance to “self” antigens. As expected, the

breakdown of self-tolerance required the presence of FccR common

c-chain (Harbers et al, 2007).

Cross-presentation of external antigens is enhanced by antigen

association with surface receptors on DCs (Shakushiro et al, 2004;

Burgdorf et al, 2007; Chatterjee et al, 2012). Independent studies

arrived at a similar conclusion that the presence of ICs facilitated

the antigen uptake by two to three logs (Amigorena & Bonnerot,

1999; Schuurhuis et al, 2002). However, the real enhancement in

antigen presentation measured by the degree of T-cell activation

was in the order of 4–5 logs (Regnault et al, 1999). c-chain ITAM

domain-mutant NOTAM mice have normal surface expression of

FccRs. This to some extent rescued the IC uptake; however, cross-

presentation of OVA IC was lost (Boross et al, 2014). That report

seems to indicate that the ITAM is not required for uptake and yet

behaves in part to direct intracellular antigen trafficking. Interest-

ingly, in DCs, Syk deficiency downstream of ITAM phosphorylation

disrupted not only cross-presentation of IC antigen but antigen

uptake as well (Sedlik et al, 2003). The difference is likely due to

the fact that Syk is associated with a broader spectrum of inhibition

on phagocyte signaling (Mocsai et al, 2010). Deep mechanistic

understanding of how ICs facilitate cross-presentation is currently

limited. In one report, IC-mediated enhanced cross-presentation

required TAP proteins and was sensitive to proteasome inhibition,

suggesting the involvement of cytosolic targeting of internalized

antigens (Regnault et al, 1999). In some systems, IC-mediated anti-

gen uptake retained the complex at early endosome, rather than

permitting further maturation to more degradative lysosome

(Chatterjee et al, 2012; Cohn et al, 2013). Although the molecular

nature of this “shallow” targeting is unknown, the findings are in

agreement with the contemporary understanding that reduced cargo

digestion is the main advantage of DCs in antigen presentation over

other APCs (Joffre et al, 2012; Kotsias et al, 2013; Hari et al, 2015).

CD8+ DC subsets in the mouse periphery are usually considered

to be superior in cross-presentation, and a developmentally overlap-

ping population of CD103+ DCs is known for similar functions.

These cells are phenotypically mirrored by human CD141+ DCs

(Platzer et al, 2014). However, how these cells are involved in IC-

mediated cross-presentation is not well understood (Joffre et al,

2012). Not in strict sense an standard IC, OVA linked to an antibody

specific for a C-type lectin receptor DNGR-1 found on CD8+ conven-

tional DCs elicited strong CD8+ T-cell activation and eliminated

OVA-positive B16 tumor in vivo (Sancho et al, 2008). Yet, when

delivered into the host, OVA conjugated to anti-DCIR-1 and

anti-DEC205, expressed by CD8� and CD8+ DCs respectively,

suppressed OVA-expressing B16 tumor to a similar extent (Neubert

et al, 2014). As IgG1 antibodies used in this study carried Fc muta-

tion (N297A) that disrupts FccR binding, both preparations might

function merely as a delivery vehicle. This paper therefore did not

address the effect of FccR signaling in cross-presentation. In another

report, Bevan’s group suggested that FccR-mediated IC cross-presen-

tation was only essential in CD8� DCs, while IC uptake and process-

ing by CD8+ DCs were not affected by the absence of FccRs (den

Haan & Bevan, 2002).

DCs can rapidly engulf ICs and sustain the stimulation capacity

for a long period after a short pulse (Bonifaz et al, 2004). In influ-

enza virus-challenged mice, the absence of extracellular availability

of ICs did not strongly affect the primary CTL response to flu NP

antigen. However, the recall response was limited. Transfer of

immune serum from control-infected mice restored the long-term

CD8+ T activation to NP antigen (Leon et al, 2014). Crossing lMT

(B-cell-deficient) mice to c-chain knockout mice, NP-specific CD8

response upon viral challenge was reduced. Transfer of immune

serum restored both primary and secondary responses in lMT mice,

yet failed to do so in the double-deficient recipients, suggesting the

essential role of FccR signaling in cross-presentation. This observa-

tion was confirmed by a recent study that the ICs associated anti-

gens were present in the endocytic vesicles from early endosome to

lysosome one day after the uptake, with dissociation of antigen

taking place along the route (Liu et al, 2016).

Helper T cells and antibody responses

FccR-mediated IC signaling likely supports a simultaneous activa-

tion of both CD8+ and CD4+ T cells. For instance, prostate-specific

antigen-containing ICs, when targeted via FccR, led to a combined

activation of both CD4+ and CD8+ T cells, while mannose receptor

targeting was more associated with CD4+ T-cell response alone

(Berlyn et al, 2001). Regarding intracellular antigen trafficking, Syk

signaling is an essential event for efficient MHC class II epitope

peptide loading, as in the case of cross-presentation. A mutation in

FccR that disrupts Syk association failed to deliver internalized anti-

gen in ICs to lysosome (Bonnerot et al, 1998). Syk deficiency

resulted in reduced MHC class II/DM molecule association with

internalized antigens (Le Roux et al, 2007). As evidence of IC-facili-

tated class II antigen presentation, a viral glycoprotein rabies G as a

free antigen entered Rab5+ early endosome with a kinetics similar

to that of antibody (ARG1)-bound protein. Thereafter, the IC

became localized to Rab9+ late endo/lysosome but at no time was

co-localized with Rab11 (slow recycling endosome) and Rab4 (rapid

recycling endosome) markers, while the free antigen was more asso-

ciated with Rab11+ vesicles (St Pierre et al, 2011). Therefore, ICs

may facilitate antigen delivery to vesicles in late endocytic matura-

tion steps for MHC class II presentation. This notion inevitably

disagrees with the “shallow” targeting reported in cross-presenta-

tion as discussed previously. This discrepancy possibly resulted

from different antibodies used in experiments, which could have

preferences in FccR subtype association, leading to distinct routes of

trafficking. However, considering ICs in general enhance both class

I and class II antigen presentation, one can postulate that binding of

antibodies in a uncharacterized manner intercepts the robust prote-

olytic “grinding” in the endolysosomal system, saving antigens at

multiple stages for eventual surface presentation.

One main mechanism for enhanced antigen presentation of ICs

to B cells is longer biological retention. This is most evident in the

trapping of ICs by follicular dendritic cells (FDCs) (Szakal et al,

1988a,b; Kosco et al, 1989). It was reported that great quantities of
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ICs attached to the long membrane processes of FDCs (Szakal et al,

1988b). FDCs have high FccRIIb expression at protein level (Qin

et al, 2000) and reports suggested that ICs were internalized by

FccRIIb (Bergtold et al, 2005), consistent with the observation that

FDCs and B cells only express this Fc receptor. The ICs internalized

by FccRIIb were retained in the cytoplasm and antigens within the

complex were kept in their native form and were made available to

B cells via surface recycling (Bergtold et al, 2005). The exact order

of baton exchange has been reported. ICs were initially trapped by

lymph node subcapsular macrophages; B cells then acted as an

intermediator fetching and sending the complexes to FDCs (Phan

et al, 2007). FDCs received complement-coated ICs from non-

specific B cells, and following endocytosis sorted, the complexes to

a non-degradative compartment for extended resurfacing (Heesters

et al, 2013). Furthermore, FDC-associated ICs played a role for BCR

hypermutagenesis to generate high-affinity antibodies (Wu et al,

2008).

Type II FccRs are also implicated in B-cell activation. IgG is

glycosylated at asparagine 297 with a biantennary core glycan that

serves as the base for further addition of sugar moieties, including

fucose, galactose, bisecting N-acetylglucosamine, or sialic acid, etc.

This complex glycosylation event controls IgG conformational state

and determines the preferential binding to either type I or type II

FccRs. For instance, sialylation reduces the binding of Fc to all type

I while increasing the binding to type II receptors (Pincetic et al,

2014). Treatment to remove this moiety suppressed ankle swelling

in a model of serum transfer arthritis and prolonged survival of a

mouse strain from an autoantibody-induced lupus-like disease

(Albert et al, 2008). Targeting OVA to DCs via DEC-205 without

concomitant activation via CD40 induced IgG1 antibody response

and but a suppressed DTH (delayed type hypersensitivity) response.

When the antiserum from those mice was transferred to new hosts

that were challenged with the antigen in the full complement of

anti-CD40, an extensive reduction of antigen-specific IgG1, IgG2b,

and IgG2c was detected, accompanied by a reduced DTH response

as well. These results suggested that antibodies produced in the

original hosts without DC activation signal were immunosuppres-

sive. Indeed, the antibody produced without anti-CD40 had a N297

sialylation rate higher than those with the treatment, due to higher

levels of sialyltransferase in the plasma cells (Oefner et al, 2012). As

this reduction in antibody production and DTH response was inde-

pendent of FccRIIb, the involvement of type II receptors was impli-

cated (Oefner et al, 2012). Type II FccR engagement is an important

consideration in vaccination. In a trivalent inactivated influenza

vaccine (TIV)-immunized individuals, mass-spec analysis did not

show a significant glycosylation pattern change in the recipients.

Interestingly, the subtle differences in glycosylation in the existing

antibody pool were found to be a predictor of responders and non-

responders to the vaccine (Wang et al, 2015a). In addition, it was

recently reported that in human volunteers, TIV led to a peak

production of HA-specific sialylated IgG from plasmablast one week

after the immunization, followed by a drop in abundance by week

three. This elevation was resulted from glycosyltransferase expres-

sion in these early responding B cells. Importantly, this sialylated

IgG, via CD23, triggered FccRIIb expression, which is a known

threshold setter for BCR signaling (Wang et al, 2015b) resulting in

altered antibody-binding affinity. The pattern of Fc glycosylation is

associated with protection efficacy of a given antibody.

Palivizumab, a humanized mAb against respiratory syncytial

virus (RSV) derived from animal cell culture, has a heteroge-

neous glycosylation pattern. The same antibody derived from

plant cells (Nicotiana benthamiana) that had their xylosyl- and

fucosyltransferase activities deleted produced G0-dominated

glycans, palivizumab-N. This form of glycosylation showed

enhanced FccRIII binding and better protection against RSV chal-

lenge (Hiatt et al, 2014).

Regulation of antigen-presenting cells

ICs can directly activate APCs via activating FccRs. Upon IC bind-

ing to these receptors, the ITAM/Syk interaction is the primary

signaling axis in phagocyte activation, leading to the full spectrum

of signaling events involving PI3Ks, PLCs, MAPKs, and NF-jB
(Mocsai et al, 2010). Accordingly, ICs can trigger DC expression of

CD40, CD86, IL-6, IL-13, and unexpectedly IL-2 (Matsubara et al,

2006; Perreau et al, 2008; Boross et al, 2014). In addition, ICs

themselves were sufficient to trigger CD11c+ DC aggregation and

entrance into lymphatic vessels for migration to LNs in a CCR7/

MMP-9-dependent manner (Clatworthy et al, 2014). While in

general the activation of APCs is linked to the FccR signaling, it

has been recently suggested that once the ICs are inside the cell,

cytosolic antibody receptor TRIM21 can bind to the Fc portion and

activate a K63-specific Ubc13-mediated ubiquitination event. This

event can independently activate NFkb, AP-1, and IRF pathways,

adding another level of complexity to IC signaling (McEwan et al,

2013).

Immune-suppressive effects of ICs are equally noted. The

small immune complexes formed in IVIG can inhibit macrophage

responses to IFN-c, an effect mainly mediated by IgG Fc binding

to FccRIII, and surprisingly independent of FccRIIb (Park-Min

et al, 2007). In complement C5a-induced inflammatory recruit-

ment, IgG1 ICs suppressed the neutrophil and macrophage

chemotaxis. This inhibition was a result of an unexpected collab-

oration between ITIM tyrosine phosphorylation in FccRIIb itself

and a ITAM phosphorylation of Syk downstream of dectin-1

(Karsten et al, 2012). In contrast to the conventional understand-

ing that ICs formed in chronic infections cause inflammatory

response by FccR cross-linking, it was recently found that in

mice with clone 13 LCMV (long term) infection, the presence of

ICs resisted CD4+ T- and B-cell depletion by anti-CD4 and anti-

CD20 (rituximab) antibodies and blocked the activation of DCs

by agonistic anti-CD40. The effect can be explained by competi-

tive inhibition in the long-term presence of excessive ICs

(Wieland et al, 2015). A similar report in the same issue of

immunity confirmed the finding and demonstrated additional

defects in cross-presentation. It was shown in the latter that the

suppression was dependent on CD4+ T-supported antibody

production (Yamada et al, 2015). This conclusion somewhat

echoes the observation that in influenza infection, peak of anti-

body production formed ICs that blocked antibody-dependent

phagocytosis (Astry & Jakab, 1984), both pointing to IC’s nega-

tive impact on immune activation.

To summarize the discussion on the immune regulatory func-

tions of IC engagement of FccRs, Fig 1 categorizes the immunologic

effector functions of IC uptake by DCs and macrophages, and Fig 2

illustrates the known APC functional regulations and antigen

processing pathways.

ª 2016 The Authors EMBO Molecular Medicine Vol 8 | No 10 | 2016

Yu-mei Wen et al Immune complex-based intervention EMBO Molecular Medicine

1123



Experimental and clinical applications of ICs

IC vaccines in persistent viral infections

In HIV infection, experimental work on ICs started by using anti-

bodies targeting the viral epitopes, as an approach to form ICs

in vivo. ICs formed by antibodies recognizing HIV CD4 binding

sites (CD4bs) and V3 region of gp120 have been promising, elicit-

ing strong neutralizing antibodies against the virus in mice

(Visciano et al, 2008; Hioe et al, 2009). One of V3 region-specific

antibodies mAb 654-D showed high affinity to large variants of

gp120 subtypes. The binding of this antibody significantly

increased the accessibility of V3 region by other mAbs, suggesting

that the attachment of 645-D opened up the V3 region that is

masked by other structures, a common detection-averting strategy

of HIV (Kwong et al, 2002; Pan et al, 2015). This IC elicited anti-

V3 neutralizing antibody in BALB/c mice (Hioe et al, 2009). IC

formed with mAb A32, binding to gp120 outside the CD4 binding

site, induced neutralizing antibodies against a panel of HIV strains,

although the enhancement over gp120 alone was not pronounced.

In the presence of cholera toxin and LPS as adjuvants, the breadth

of the resulting antisera in neutralizing diverse HIV isolates was

widened (Liao et al, 2004).

Recently, broadly neutralizing antibodies (bNAb) against HIV-1

have seen great success. bNAb-producing B cells identified in HIV

Immune complex

MacrophagesNK cells

ADCC

Activation

DCs

Antigen
processing

MHC
class II

Cross-
presentation

Immune
activation

Follicular DCs

Antigen
trapping

Immunological
memory

Antigen
retention

ANTI-TUMOR

Vaccine

FcRs FcγRs Fcγ RIIb

Affinity
maturation

B cells

Type II FcRs

Anti-
inflammation

IMMUNO-
SUPRESSION

Glycosylation
on IgG

HIGH AFFINITY
ANTIBODY

VACCINE EFFECT

Antibody therapy

ura

mmm en

B

NK

Figure 1. Immunologic regulation of ICs in vaccine and tumor therapy.
ICs preformed as vaccine preparations or as a consequence of antibody binding to endogenous antigens can signal via activating receptors to induce ADCC in
macrophages and NK cells, leading to lysis of tumor or infected cells. The same signal via FccRs on dendritic cells results in enhanced antigen uptake and upregulated
antigen presentation, both to MHC class II-restricted CD4+ T cells and to CD8+ T cells via cross-presentation. ICs retained in lymphoid tissues via deposition or FccRIIb-
mediated endocytosis extend the antigen availability for B-cell activation, resulting in increased antibody response and immune memory induction. Different
glycosylation patterns on Fc regulate the preferential binding to type I or type II FccRs, controlling the state of inflammation. Sialylation of Fc with preferential binding
to type II FccR in particular helps to set the threshold for the production of high-affinity antibodies.
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carriers by high-throughput screening are capable of neutralizing a

large number of HIV isolates (Walker et al, 2009; Wu et al, 2010).

To eradicate the latent pool of HIV in the carriers, one strategy was

to reactivate the latent virus in the presence of antiretroviral treat-

ment followed by immune therapies. bNAbs were shown to

suppress HIV viremia in humanized mice and reduced the HIV DNA

in the infected lymphocytes (Horwitz et al, 2013). However, the

generic treatment was followed by viremia rebound after termina-

tion, suggesting the presence of a persistent pool of cells with intact

virus. In humanized mice, delivery of bNAb cocktail (TriMix anti-

bodies with 3BNC117, anti-CD4bs; PG16, anti-V1/V2 loop region;

and 10-1074, anti-V3) 4 days after HIV inoculation significantly

delayed the viremia rebound, with a statistically significant increase

in aviremic period. Furthermore, TriMix bNAbs with a combination

of three viral inducers (shock and kill) significantly suppressed

viremia rebound over a long period of up to 105 days in comparison

with antibody alone or with in combination with a single inducer

(Halper-Stromberg et al, 2014). Implicating the role of ICs, TriMix

antibodies carrying Fc mutation that disrupts human and mouse

FccR binding showed shortened delay in viremia rebound (Halper-

Stromberg et al, 2014). The definitive proof of FccR engagement by

bNAbs was elegantly demonstrated in a recent study. Human anti-

bodies with Fc domains swapped with mouse Fc subtypes were

used in a model of HIV entry inhibition assay. While the Fc swap-

ping minimally affected the Fab binding, mouse IgG2a Fc was found

to be most potent in blocking HIV entry in an in vivo analysis.

Accordingly, in mice lacking all FcR a-chain or common c-chain/
FccRIIb, the advantage of IgG2a over a non-FcR-binding mutant Fc

was lost (Bournazos et al, 2014). To mimic the human infection, a

mouse model with all FccRs replaced with human FccRs was used.

Human HIV-specific IgG1 antibodies with Fc domain engineered to

carry high-affinity mutations to activating FccRs (FccRIIIa and

FccRIIa) were highly protective against HIV entry in comparison

with Fc mutants that diminish the FccR binding (Bournazos et al,

2014). Beyond direct eradication of HIV, in a mouse model to

approximate human mother to child transmission, FrCasE virus-

infected neonatal mice develop erythroleukemia once reaching

adulthood. Neonatal delivery of a specific mAb 667 boosted anti-

body protection and T-cell response that resulted in survival of

treated mice in comparison with the total mortality in untreated

controls. This protection was mediated by ADCC and formation of

virus/antibody ICs (Michaud et al, 2010).

Viral hepatitis B is another persistent infection treated with ICs

as therapeutic vaccine. In a HBV vaccination model, ducklings were

infected with duck hepatitis B virus (DHBV). They were treated with

IC (DHBsAg complexed to rabbit anti-DHBs) linked to Staphylococ-

cus aureas bacteria as a solid matrix complex. About 70% and 50%

of treated ducks were cleared of viremia and antigenemia after three

injections (Wen et al, 1994). The efficacy of IC-based vaccines in

HBV infections was studied in mice in 1980s. ICs formed with non-

specific IgG or IgM antibodies showed minimal enhancement, as did

the Fab fraction of those specific antibodies (Celis & Chang, 1984).
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Figure 2. FccR ligation and the fate of antigens.
Antigens in ICs entering APCs via different FccRs show distinct trafficking patterns. In general, FccRIIb-mediated uptake traps the cargo in non-degrading vesicles for
prolonged extracellular release of antigens in their native forms. This feature is important for B-cell activation. Activating FccR-mediated entry may direct the cargo into
two routes. One is through the shallow early endosomes whereby the antigens are recycled to the cell surface in complex with MHC class I molecule for cross-
presentation. The other route leads the antigens to the MHC class II compartment (a branch of late endo/lysosomal compartment) and epitope peptides generated in
this harsher environment are loaded onto MHC class II molecules for conventional CD4 T-cell activation. The ITAM motif present in FccRs (intrinsic or in the common
c-chain) recruits Syk and activates signal transducers of PLC, PKC, and PI3K leading to APC activation. Syk signaling may assist the class II peptide exchange regulated by
class II-like DM/DO molecules in the MHC class II compartment.
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HBsAg ICs stimulated T cell’s avidity, which in turn induced anti-

body production in vivo (Celis et al, 1987). IC-mediated effects were

followed by a seroconversion to HBsAb positivity in HBsAg-

transgenic mice, indicating self-antigen tolerance breaking (Zheng

et al, 2001). Subsequently, DCs induced from chronic hepatitis B

patient PBMCs with GM-CSF/IL4 were stimulated by either HBsAg,

antibody, or IC in vitro. Expression of functional markers including

MHC class II, CD80/CD86, and CD40 was found increased only with

the IC stimulation. Furthermore, when T cells from the patients

were incubated with the stimulated DCs, higher levels of IFN-c and

IL-2 were observed in the IC-stimulated group (Yao et al, 2007).

Using a lentivirus vector coding HBsAg either alone or fused to Fc

domain of mouse IgG2a, the fusion version induced much higher

CD8+ T-cell activation in recipient mice, as well as elevated CD4+

T-cell response and antibody production (Hong et al, 2011). To

simplify the vaccination protocol, Meng et al produced HBsAg-Fc

(from IgG1) fusion protein and used it to immunize HBsAg-trans-

genic mice. This resulted in a predominant production of Th1

cytokines and reduced serum HBsAg level (Meng et al, 2012).

Encouraged by these experimental findings, human HBsAg IC was

adsorbed to alum and used to immunize 14 HBV chronic hepatitis B

patients in a pilot study. The recipients showed substantial reduc-

tion in serum HBV DNA and HBeAg was converted to negative

(Wen et al, 1995). In a phase 1 clinical trial, healthy subjects receiv-

ing various amounts of HBsAg IC preparations developed IgG1 and

IgG3 antibodies against the immunogen with a simultaneous

increase in serum IFN-c and IL-2 (Xu et al, 2005). From this

outcome, one of the doses was used to immunize chronic hepatitis

B patients. Five of ten patients responded and showed ≥ 2 logs

decrease in serum HBV DNA, with a loss or marked reduction of

HBeAg and an appearance of anti-HBeAg; and two of these patients

developed anti-HBsAg antibodies (Xu et al, 2005). In a phase 2 clini-

cal trial, HBeAg-positive chronic hepatitis B patients were immu-

nized with six injections of the IC. At the end of post-trial follow-up,

HBeAg seroconversion rate was 21.8% (17/78) and 9% (7/78) in

the IC and placebo groups, respectively (P < 0.05; Xu et al, 2008).

IC in other microbial infections

In addition to the vaccine trials against HIV and HBV, smaller scale

efforts to control other infections have been reported. CTL response

against influenza virus infection is reduced in aging populations.

While young BALB/c mounted strong cytolytic response with no

discernible differences in intensity to flu NP antigen following inoc-

ulation of live, killed H1N1 virus, or a preparation of the virus plus

a NP-specific antibody, only the IC significantly restored the same

response in the aged mice. This enhanced killing was associated

with increased IFN-c production in both CD4+ and CD8+ T cells

(Zheng et al, 2007). Due to its rapid spread and high rate of mutage-

nesis, the emphasis of influenza infection control has been to gener-

ate bNAbs against conserved regions of hemagglutinin (HA) (Okuno

et al, 1993, 1994; Ekiert et al, 2011). One version of the antibody,

CT149, targeting the stem region of HAs of both type I and type II

isolates blocked the membrane fusion. In addition, the binding by

this antibody induced FccR-dependent ADCC, suggesting the

involvement of ICs (Wu et al, 2015). For Ebola infection, several

B-cell clones of highly potent GP-specific neutralizing antibodies

from a disease survivor have been tested. These antibodies also

mediated ADCC via FccR as mutants in the Fc that interfered with

the receptor binding lost the cytotoxicity (Corti et al, 2016). Fran-

cisella tularensis (FT) is the causative pathogen of tularemia. DCs

coated with monoclonal antibody-treated FT delivered intranasally

protected hosts from subsequent challenges. This effect was not

affected by the absence of FccRIIb, suggesting a preferential engage-

ment of activating FccRs (Pham et al, 2014). In malaria infection, it

was found that the FccR binding was critical for the uptake of IC

(McClintock et al, 2005). In one study, the mortality of Plasmodium

berghei infection that is often lethal was prevented if the antiserum

from immune mice was transferred into infected mice. This protec-

tion was eliminated in the absence of FccR c-chain (Pleass, 2009).

In addition, Phoolcharoen et al transiently expressed Ebola virus

GP1 glycoprotein fused to an antibody heavy chain from a human-

ized GP1-specific antibody in Nicotiana benthamiana (tobacco

plant). The purified fusion protein induced high titers of Ebola-

specific IgG antibodies, similar to those induced by GP1 virus-like

particles, suggesting a scheme of vastly increased production capac-

ity for IC preparations (Phoolcharoen et al, 2011). Urgent produc-

tions of ICs to protect populations under threat from rapidly

emerging viral infections such as Middle East respiratory syndrome

(MERS) are also being tested (Lu et al, 2015).

Although ICs are in general considered to be conducive to antivi-

ral immunity, it should be noted that in some cases the presence of

virus-specific antibodies can increase infectivity, a phenomenon

called antibody-dependent enhancement (ADE) of viral infection

(Tirado & Yoon, 2003). In the STEP trials, HIV gag, pol, and nef gene

cassettes were inserted into the adeno vector, however individuals

with preexisting immunity against the virus showed greater risk of

HIV infection following the immunization (Buchbinder et al, 2008).

The same adverse effect was seen for additional viruses, such as

dengue (Goncalvez et al, 2007), measles (Iankov et al, 2006), and

over a dozen others (Suhrbier & La Linn, 2003). FccR-facilitated
virus entry and a skewed cytokine profile may be the main culprits.

These are important considerations in assessing ICs’ immune regu-

latory functions.

IC in tumor immunity

Cancer immunotherapy has seen tremendous strides with techno-

logical developments in the immune checkpoint blockage. The basic

concept is to reduce negative regulators of adaptive immunity,

mainly targeting CTLA-4 and PD-1/PD-L1. Another modality of anti-

body-based cancer therapy is to target surface factors critical to

tumor cell growth, such as EGFR and VEGF, of which optimized

FccR ligation is an important consideration (Nimmerjahn & Ravetch,

2012). Concurrent to these progresses, IC-based intervention has

remained an alternative due to its low side effects. Antibody binding

to tumor surface antigens triggers ADCC and FccR engagement is an

important activation signal for tumor lysis (Moalli et al, 2010). A

large number of experiments have been carried out using B16 or its

variants as the tumor model. Here, ICs have been shown to mediate

tumor suppression via prophylactic, therapeutic and memory-

inducing effects (Rafiq et al, 2002). In mice challenged with B16

tumor-expressing OVA antigen (MO4), injection of DCs pulsed with

OVA-containing IC, but not with OVA or antibody alone, inhibited

the tumor growth. Furthermore, treatment with DCs loaded with ICs

cured 40% of mice bearing established tumors. Protection mediated

by DC/IC immunization was long-standing and induced memory

responses. In recipients that had been vaccinated with OVA
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Table 1. A select list of published laboratory and clinical assessments of IC-based immune therapy and vaccination.

Complex Species
Disease
targeted/model Observations

References
(authors, year)

Antitumor

Specific mIgG2A/hCD20 Mouse (humanized) EL4 expression
hCD20

Tumor clearance; via ADCC; FccRIV is
required; engineered selective
engagement of hFccRIII is effective

DiLillo and Ravetch (2015)

Specific mIgG1/NYU-
seo-1

Mouse Colon epithelial
tumor

Tumor inhibition; CD8 required;
enhanced by chemotherapy; epitope
spreading

Noguchi et al (2012)

Fusion of OVA to
anti-DEC205
antibody, DEC205
targeting etc.

Mouse B16, HER2-neu
bearing tumor

Enhanced tumor resistance, involvement
of both CD4 and CD8 responses,
enhanced by anti-CD40

Wang et al (2012);
Charalambous et al (2006);
Bonifaz et al (2004)

OVA epitope conjugated
to anti-DNGR-1
(mouse or rat)

Mouse B16 Tumor inhibition and prevention;
metastasis inhibition; enhanced antigen
uptake by CD8a+ DCs

Sancho et al (2008)

Specific mIgG2a
mAb/HER2-neu

Mouse Her2 transgenic
mouse

IC-mediated uptake of antigen by DCs;
specific CD8 expansion; Fc required

Kim et al (2008);
Wolpoe et al (2003)

Polyclonal rIgG/cell
surface OVA

Mouse Self-antigen
tolerance
breaking

Breaking CD8 tolerance of OVA
transgene; requires FccR c-chain and
complement C3

Harbers et al (2007)

IgG2A (TA99)/Gp75 Mouse B16 Tumor clearance; FccRIV is required Nimmerjahn and
Ravetch (2005)

Specific mAb hIgG1
(B4-B)/syndecan-1

Human Myeloma CTL induction to unrelated testis
antigen epitopes; reduced with anti-
FccR antibodies

Dhodapkar et al (2002)

Specific rIgG/OVA Mouse B16 (OVA
expressing)

Mouse survival; FcR-c chain is required,
absence of FccIIB reduces tumor burden

Kalergis and
Ravetch (2002)

Specific rIgG/OVA Mouse B16 (OVA
expressing)

Reduced tumor establishment; FccR-c
required; TAP and b2m required; MHC
class II required

Rafiq et al (2002)

Vaccine

bNAb/Ebola GP Macaque Ebola Protection against Ebola challenge,
ADCC

Corti et al (2016)

bNAb/flu HA Mouse Influenza model Protection against influenza challenge,
ADCC

Wu et al (2015)

IgG/TIV Mouse/human Influenza Early production of sialylated IgG set the
threshold for subsequent high-affinity
and protective antibody production.

Wang et al (2015b)

Chicken polyclonal
serum/NDV

Chicken Newcastle
disease

Protection against viral challenge; some
preparations reduced protection

Yosipovich et al (2015);
Rautenschlein et al (2007);
Pokric et al (1993)

bNAb/HIV gp120 Mouse (humanized) HIV model Longer period of aviremia after
treatment; requires Fc portion for the
effect

Halper-Stromberg
et al (2014)

Engineered bNAb/gp120 Mouse (humanized) HIV model Better protection against HIV entry;
bNAb with Fc engineered to bind
activating FccR (humanized in mouse)
are more effective

Bournazos et al (2014)

Specific mIgG2a/FT Mouse Francisella
tularensis

Protection from subsequent challenges Pham et al (2014)

Humanized mAb/RSV Cotton rat RSV G0 glycosylation is linked to better
protection against RSV challenge

Hiatt et al (2014)

Pre-made HBsAg IC Human HBV Induction of specific IgG1 and IgG3;
reduced serum HBV DNA; reduced
serum HBeAg; presence of anti-HBeAg;
increased HBeAg seroconversion

Xu et al (2013);
Yao et al (2007);
Xu et al (2005)
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IC-pulsed DCs, MO4 inoculation failed to establish the tumor (Rafiq

et al, 2002). In addition, specific antibody targeting HER2/neu anti-

gen expressed by a whole-cell vaccine (3T3-neu/GM) was shown to

enhance antigen-specific CD8+ T-cell activation and memory devel-

opment and protected the hosts from the tumor challenge (Wolpoe

et al, 2003; Kim et al, 2008)). Loading antibody against myeloma

cell surface syndecan-1, a heparan sulfate proteoglycan expressed

on cancer cells, induced HLA A2.1-mediated antigen presentation to

MHC allele-matched donors, resulting in cytotoxic T-cell activation

(Dhodapkar et al, 2002). Here, antisyndecan-1 antibody served as a

facilitator of overall antigen presentation by DCs. The ensuing cyto-

toxicity elicited from human HLA-A2.1-restricted CTLs was directed

toward other tumor antigens, such as MAGE-3 and NY-Eso-1

(Dhodapkar et al, 2002).

FccRs play an important role in IC-mediated tumor immunity. In

the syndecan-1 experiment, it was found the antibody coating did

not alter the level of uptake of tumor cells yet blocking of FccRs
significantly reduced antigen-specific T-cell proliferation (Dhodap-

kar et al, 2002), suggesting that the regulatory role of FccRs is

mostly at steps beyond opsonization, primarily at DC maturation.

Preferential induction of tumor immunity can be achieved by fine-

tuning the signaling intensity ratios of activating vs inhibitory

FccRs. This concept was proposed by Ravetch et al (Nimmerjahn &

Ravetch, 2005). For instance, a tumor-specific antibody (TA99) was

found to have mIgG2a Fc that binds to the activating FccRs with

much higher intensity than the inhibitory FccRIIb. This preferential

binding, particularly to FccRIV, endowed a strong antitumor effect

(Nimmerjahn & Ravetch, 2005). The signaling of FccRs in IC-

mediated immune therapy can lead to a vaccinal effect, especially

under properly selected FccR engagement. In a recent paper, mice

challenged with CD20-positive EL4 tumor survived in the presence

of mIgG2a CD20-specific antibody. This protection was lost in the

absence of total or all activating FccRs. As expected, those primed

mice developed an immune response that rejected a subsequent

challenge of neo-antigen CD20-positive EL4 tumor (DiLillo &

Ravetch, 2015). When the lymphocytes from primed mice or from

mice with a DC-specific deletion of FccRIV were transferred into

new hosts, the former transfusion showed a better tumor resistance

than the latter in the naı̈ve mice, suggesting the role of this receptor

in mediating the vaccine effect (DiLillo & Ravetch, 2015). When the

concept was tested in a humanized mouse system with the Fc region

of mouse CD20-specific mAb replaced with the human counterpart

and a total replacement of mFccRs with hFccRs in the host, it was

found that mutations in the Fc that allowed better binding to

hFccRIIIa and IIa, as compared to IIIa alone protected the host to

the best extent (DiLillo & Ravetch, 2015). Overall, as in the case of

antipersistent viral infections, the selective pairing of IgG FccR
subtypes in vivo may represent the most promising direction in

IC-mediated cancer therapy. Lastly, intracellular tumor antigens that

are often shielded from immune recognition can become stimulatory

in the presence of ICs. NY-seo-1 is a tumor antigen considered to be

strictly intracellular. However, in combination with 5-fluorouracil,

which likely stresses tumor cells for ensuing releases of intracellular

contents, injection of mAb against NY-seo-1 resulted in significant

Table 1 (continued)

Complex Species
Disease
targeted/model Observations

References
(authors, year)

HBsAg fused to Fc
of mIgG2a

Mouse HBV model Higher specific CD8 activation; elevated
CD4 response

Hong et al (2011)

Specific mIgG2a and
mIgG1/FrCasE virus

Mouse Model of HIV
maternal
transmission

Reduced adolescent mortality from the
virus; ADCC and CTL activations are
involved

Michaud et al (2010)

Human IgG mAb/CD4
binding site of gp120

Mouse HIV model Higher anti-gp120 titer; induction of
neutralizing antibody

Hioe et al (2009);
Visciano et al (2008)

Engineered specific
hIgG1/P. falciparum

Mouse (humanized) Plasmodium
berghei

Protection from lethality; FcR-binding/
FccRI are critical

McIntosh et al (2007)

Chicken polyclonal
serum/IBDV

Chicken Chicken Bursal
Disease

Protection against viral challenge;
immunization

Ivan et al (2005);
Giambrone et al (2001);
Jeurissen et al (1998);
Haddad et al (1997)

IgG/HBsAg Mouse HBV model HBsAb seroconversion in HBV transgenic
mice

Zheng et al (2001)

Non-neutralizing IgG
fraction/SIV gp120

Rhesus monkey SIV No protection, FccRIIB signaling, anti-
inflammatory gene expression

Polyanskaya et al (2001)

Matrixed rat anti-
DHBV/DHBV

Duck DHBV protection Reduced viral DNA and DHBsAg in
serum

Wen et al (1994)

IgG/anti-gp120 v3 loop Human HIV Positive anti-HIV proliferation of CD4 T
cells

Berzofsky et al (1988)

Human polyclonal
IgG/HBV HBsAg

Human In vitro antibody
production

Enhanced CD4 T-cell activation;
enhanced antibody production;
requires Fc

Celis et al (1987);
Celis and Chang (1984);
Celis et al (1984)

Rabbit IgG/human or
bovine albumin

Mouse Vaccine efficacy Enhanced model antigen destruction
in vivo

Terres and Wolins
(1959a, 1961)
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tumor growth inhibition. This specific combination caused antigen

epitope spreading, whereby other intracellular tumor antigens also

induced T-cell activation (Noguchi et al, 2012).

Future prospective

The demand to employ IC technology in disease prevention and

treatment makes it an urgent task to study their effects in both

basic and clinical settings (Table 1). As one of the oldest technolo-

gies of immune therapy, the track records of safety and simplicity

of ICs are valuable on this day of enormous breakthroughs at

other directions. The downside of IC-based interventions is also

clear: relative low clinical efficacy and often unpredictable clinical

and experimental results. However, with growing understanding of

FccRs and their preferential bindings to IgG subtypes, and modern

biomedical engineering to steer the desired pairing, the future

outcomes will likely change. In hindsight, if these understandings

were built into vaccine designs at the time, several large-scale clin-

ical trials might have seen different and likely more favorable

effects. In the case of HIV prophylaxis, IC formation that results in

the undesired cytokine profile and the existing antibodies targeting

the adeno vector are two factors likely addressable via precision

targeting of activating FccRs. In IC-based anti-HBV vaccination and

immune therapy, first-hand monitoring of responder cells and their

FccR expression should be built into the protocols of next-stage

clinical trials. At this time of personalized medicine, IC prepara-

tions tailored to individual FccR polymorphism could be within

reach as well. Addressing FccR binding is only a mandatory start-

ing point. Additional efforts will be needed to understand the

precise antigen trafficking as a consequence of antibody binding,

as well as to map inflammatory pathways and tissue targeting. As

the desired immune protections vary from pathogen to pathogen,

and entry portals are also vastly different, specific IC preparations

can be made to induce CD4/CD8 and antibody responses for opti-

mal protection. For instance, for antitumor and antiviral immunity

that relies on cytolytic T-cell activation, an IC vaccine designed to

target the “shallow” endocytic compartment will be highly ideal.

Admittedly, IC-mediated immune regulations have not been as

intensely investigated as other classes of immune adjuvants.

However, mechanistic research will be most crucial for future

breakthroughs in IC-based human disease intervention and is the

strongest assurance to maintain the continuing development of this

old biomedical technology.
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