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a b s t r a c t 

A new method for determining the interfacial tension of a magnetic fluid (MF) is proposed on the basis of 

deformation of a MF drop lying on a liquid substrate and subjected to a vertical uniform magnetic field. The 

results show that the drop elongates in the direction of the field with an increase of its intensity. As soon as 

the field strength reaches a certain value, the interface and the free surface of the drop become unstable, which 

causes the peaks of different height to form. It has been found that the ratio of the corresponding critical values 

of magnetic field intensity is determined by the ratio of surface tension at the interface to that on the free 

boundary of the drop. Surface and interfacial tension of liquids used in the experiment were measured with the 

help of tensiometer by the ring detachment method to verify the experimental data. The presented results on the 

ferrofluid interface tension measurements can be of interest for the specialists in the field of ferrohydrodynamics. 

• The magnetic field causes the drop to elongate till the peak instability. 
• The critical values of the field strength respond to the ferrofluid initial magnetic susceptibility. 
• The ratio of the critical magnetic field values is determined by the ratio of the interfacial tension. 
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Specification table 

Subject area: Physics and Astronomy 

More specific subject area: Thin Films and Interfaces 

Method name: Ferrofluid interface tension measurement technique 

Name and reference of original method C. Flament, S. Lacis, J. -C. Bacri, A. Cebers, S. Neveu, and R. Perzynski, 

Measurements of ferrofluid surface tension in confined geometry, Phys. Rev. E, 53 

(1996) 4801 [6] 

Resource availability NA 

Background 

Direct measurements of surface tension of magnetic fluid being in contact with another 

nonmagnetic immiscible medium are still under the strong interest of scientists [1 , 2] . There are two

main trends that can be distinguished: the determination of the wavelength of the incipient peak

instability of free and interfacial surfaces in an orthogonal magnetic field [3] and the comparison of

the MF drop stretched in the longitudinal field with the shape of the modeled drop [4 , 5] . The first

method is limited by the use of a demagnetizing factor of a thin ferrofluid layer, while the second

one is determined by the shape of an ellipse or a sphere. The pros and cons of both methods in 2D

problem formulation were obtained in [6] where the capillary effects play an essential role due to a

thickness of MF located in a Hele-Shaw cell. 

In this paper, the object of consideration (floating MF drop) changes its form from an almost

flat free surface on the border with the air on one side, and the semi-ellipse at the interface on

the other side to the peak instability at both sides. The proposed method is based on the ratio of

critical field intensities, so the surface tension could be determined regardless the demagnetizing 

factor. Another distinguishing feature of this research is the use of direct measurements of the MF

surface and interfacial tension with the help of certified tensiometer (Sigma 701), in order to verify

the proposed method. 

Materials and equipment 

In the experiment, three samples of kerosene-base ferromagnetic fluids, hereinafter called FF 1, FF 

2 and FF 3, of equal density ( ρ = 1.38 ±0.02 g/cm ³) were used. These samples are also characterized

by: different initial magnetic susceptibility χ0 and saturation magnetization M S, due to the particle 

sizes d of the solid magnetic phase, the phase’s volume concentration ϕ and the average magnetic

moment < m > of the particles [7] (see Table 1 ). 

A glass cuvette with a square cross section 59 mm on a side and 45 mm in depth ( Fig. 1 ) was

used as a working cavity. The cuvette ( 2 ) was placed on a horizontal thin platform between two

Helmholtz coils of diameter 180 mm ( 1 ). The cuvette axis coincides with the axis of the coils. The

cuvette was filled with perfluorooctane C 8 F 18 ( 3 ) which served as a liquid substrate ( ρ0 = 1.76 g/cm ³)
for a ferrofluid drop. The VESTA BM2202 electronic weighing scales were used to determine (with

an accuracy of 0.01 g) the substrate mass and, accordingly, its thickness. To this end, a syringe with

perfluorooctane was weighed before and after injection of its content into the cuvette. The depth of

perfluorooctane substrate was fixed at 40 mm to prevent the FF drop interacting with the boarders.

In the absence of a magnetic field the drop used to tend to the side wall of the vessel due to the

gradient in the surface tension. 
Table 1 

Ferrofluid magnetic properties. 

Ferrofluid χ0 M S, kA/m d , nm φ < m > , 10 −19 A m 

2 

FF 1 16.5 63 9.6 0.353 3.70 

FF 2 2.0 40 7.5 0.362 1.44 

FF 3 7.2 50 9.8 0.358 3.05 
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Fig. 1. ( a ) Experimental setup: 1 – Helmholtz coils, 2 – square cuvette, 3 – liquid substrate (perfluorooctane), 4 – ferrofluid 

drop, 5, 6 – cameras. ( b ) The relative (dimensionless) distribution of the field intensity of Helmholtz coils along their diameter 

in the plane of the cuvette obtained with the Hall Effect sensor. 

Fig. 2. Deformation of FF 3 drop with the growth of magnetic field intensity H , kA/m: 0.0 ( a ), 1.0 ( b ), 1.3 ( c ), 2.1 ( d ), 2.6 ( e ) 

and 9.5 ( f ); d 0 = 2.24 mm. 
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The ferrofluid drop ( 4 ) was placed on the substrate surface with a mechanical Biohit Proline

ipette, which made it possible to determine the drop volume in the range of 5 to 50 μl; the accuracy

as 0.1 μl. The volume of large-size drops generated by the syringe was determined by weighing

hem. The initial diameter of the drop suitable for the method, which, according to calculations, was

 0 = 

3 
√ 

6 V 0 /π , varied from 2.5 to 8 mm. The diameters of the drops were obtained within the fixed

rror not more than 5%. 

The strength of the magnetic field H generated by the coils was controlled by means of a stabilized

ower source GPR–7550 D. The magnetic field intensity distribution along the diameter of coils is

hown in Fig. 2 , b . The relative field inhomogeneity obtained by dimensionalizing the measured

agnetic field H at a given point divided by the value of H max in the center of coils did not exceed

% in both parallel and orthogonal directions. During the experiment, the intensity of the coil current

as increased gradually, in small steps, so that each value of the current intensity was held constant

or some time to provide a quasistationary shape of the drop. The drop configuration was registered

ith two video cameras located above the cuvette and on its lateral wall ( 5 , 6). All the experiments

ere carried out at an ambient temperature of (26 ± 1) °C. 



4 C.A. Khokhryakova / MethodsX 7 (2020) 101152 

Fig. 3. ( a ) Critical value of magnetic field intensity H i 
∗ (filled symbols), H f 

∗ (empty symbols) and ( b ) its ratio H f 
∗/ H i 

∗ versus 

ferrofluid drop diameter d 0 . Magnetic fluids used in the experiment: FF 1 ( 1 ), FF 2 ( 2 ), FF 3 ( 3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

Fig. 2 presents six photographs of the shape evolution of a ferrofluid drop under a vertical

uniform magnetic field. In the absence of a magnetic field, the drop takes the shape of two vertical

axisymmetrical semi-ellipses of different height conjugated at the interface between the liquid 

substrate and air, so that the larger semi-ellipsoid is immersed into the liquid, while the smaller

semi-ellipsoid comes into contact with air ( Fig. 2 , a) . 

A gradual increase in the strength of the magnetic field causes the lower part of the drop to

elongate until the field intensity reaches the critical value H 

∗
i 

( Fig. 2 , b ), which is accompanied by the

appearance of a peak at the liquid-liquid interface ( Fig. 2 , c ). Note that the curvature of the surface

changes abruptly and this is indicative of a jump-like pressure redistribution. It should be mentioned,

that the peak formation on the FF 2 drops’ surfaces appeared to be a time consuming process due

to its low magnetic susceptibility. The critical values of magnetic field for FF 2 were defined for the

moment of reforming of peak lateral surface from convex to concave. 

When the magnetic field strength increases further, the height of the peak also increases and the

immersed part of the drop takes the form of a cone, which elongates along the direction of the field

( Fig. 2 , d ). At the next critical value of the field strength H 

∗
f 

the free surface of the drop also becomes

unstable, which manifests itself in the formation of the upward-directed peak of the ferrofluid ( Fig. 2 ,

e–f ). As the field strength decreases, the drop shape changes in the reverse sequence, although the

disappearance of the peaks is observed at lower values of the magnetic field intensity. 

The critical values of the field strength H i 
∗ and H f 

∗ weakly depend on the initial drop diameter

d 0 but strongly respond to the variation of the ferrofluid initial magnetic susceptibility ( Fig. 3 , a ).

Moreover, H i 
∗ and H f 

∗ remain unchanged with decrease in the initial drop diameter to d 0 ≤ 3 mm,

when the surface forces begin to dominate over the volumetric forces (capillary length λc = ( ρg/ σ ) 1/2 

for the examined ferrofluids bordering the air medium is about 1.5 mm). With an account of the latter

restriction, it may be empirically obtained that 

H 

∗
f 

H 

∗
i 

= ( 2 . 1 ± 0 . 2 ) . (1) 

for all ferrofluids with χ0 = (2.0 ÷16.5) ( Fig. 3 , b ) according to the Table 1 . 
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Table 2 

The surface tension measurement results. 

σ f , mN/m σi , mN/m 

FF 1 22.6 ± 0.2 4.9 ± 0.1 

FF 2 25.1 ± 0.2 6.5 ± 0.2 

FF 3 24.3 ± 0.2 5.1 ± 0.3 

kerosene 24.2 ± 0.2 5.0 ± 0.1 

oleic acid 32.5 ± 0.2 7.9 ± 0.1 

C 8 F 18 13.6 ± 0.2 

∗Surface tension measurements were carried out at the average temperature of 

27 °C. 
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d  
ethod verification 

Bearing in mind that the only mechanism inhibiting deformation of the drop in the magnetic field

s the surface tension and for a single drop the ratio H f 
∗/ H i 

∗ is independent of d 0 , we may suppose

hat H f 
∗/ H i 

∗ is a power function of the ratio of the surface tension at the interface σ i to that on the

ree surface σ f . 

H 

∗
f 

H 

∗
i 

= k 

(
σ f 

σi 

)n 

. (2)

To verify this supposition, it is necessary to determine the surface tension at the interface between

he drop and the surrounding medium. However, according to [8] , for fluids containing colloidal

articles with thin surfactant coating, the Antonov rule is unacceptable. Due to the high sensitivity of

 tensiometry system to any external impact the surface tension on the free surface σ i and interface

ith perfluorooctane σ f of the examined fluids were measured in the absence of any external

agnetic field. The Sigma 701 tensiometry system (previously KSV instruments Ltd, nowadays Biolin

cientific), that gives at least the σ resolution of about 0.001 mN/m, was used. The ring detachment

ethod [9] provided with the help of Sigma 701 was used in this work to get the surface and

nterfacial tension of liquid systems in order to evaluate approximately the results of method under

onsideration. Admittedly, it is noted in the Table 2 that the error of critical field method is of 0.1–

.2 mN/m magnitude. 

As mentioned above, along the experiment the ferrofluid density remained unchanged due to

ddition of extra kerosene (which was different from that kerosene used for their preparation). Since

erosene is composed of carbon chains that typically contain between 8 and 15 carbon atoms per

olecule [10] , the length of the molecules and, consequently, the surface tension of fluids varies in the

ange of 24–28 mN/m. Taking into account the results of previous studies [4 , 5] it was assumed that

he examined surface tension of magnetic fluids should be constant within the range of magnetic field

alues considered in the experiment (which corresponds to the linear part of magnetization curve).

he surface tension measurements are presented in Table 2 . 

The analysis of the tabulated data allows us to conclude that expression (2) reduces to the

ollowing empirical equation 

H 

∗
f 

H 

∗
i 

= 

√ 

σ f 

σi 

. (3)

As a result of applying the equation (3) , the following data were observed in Table 3 . The graphical

omparison of the measurements ( Fig. 3 , b ) and calculations from the Table 3 are presented in the

ig. 4 . Here the highlighted areas I, II, III (for FF1, FF2 and FF3 respectively) correspond to the values
 

σ f / σi with respect to confidence intervals. 

As follows from the comparison, the experimental value of H f 
∗/ H i 

∗ agrees well with the calculation

ata from formula (3), which opens the possibility of determining the surface tension at the interface

etween the magnetic fluid avoiding the use of tensiometry system. 

The theoretical interpretation of these results could be given according to the following

imensional analysis [6] : the magnetic energy scales as the magnetic field squared, whereas the
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Table 3 

Comparison of measurements and calculations. √ 

σ f / σi H f /H i 

FF 1 2.1 ± 0.3 2.1 ± 0.1 

FF 2 1.9 ± 0.3 2.0 ± 0.1 

FF 3 2.2 ± 0.3 2.1 ± 0.1 

Fig. 4. Ratio of critical magnetic field intensity values H f 
∗/ H i 

∗ versus ferrofluid drop diameter d 0 for the FF1 (dotes 1 and area 

I ), FF2 (dotes 2 and area II ) and FF3 (dotes 3 and area III ) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interfacial energy depends linearly on the surface tension. Along with the energy approach, the 

problem could be analyzed from the point of the MF drop instability. The classical dispersion equation

of surface waves ω(k) for ferrofluid [11] is as follows: 

ρω 

2 
c = σk c + ρg k c − μ0 χ

2 k 2 c H 

2 
c . 

Here the lower index ‘c’ means the critical value corresponding to the instability moment. The

critical magnetic field H c values corresponding to the instability of FF surface are determined by the

gravitational-capillary waves on it [12] . Thus, the square dependence between H c and σ is reasonable .

Conclusion 

The conducted experiment revealed a specific character of changes in the shape of a magnetic

fluid kerosene-based drop, due to the presence of a liquid substrate of perfluorooctane. The fact

that deformation can affect the entire surface of the drop leads to the development of instability

at the interface between the drop and the surrounding medium. The following instability causes 

redistribution of the ferrofluid inside the drop between its upper and lower parts (relative to the

interface boundary). It has been shown that the ratio of the critical values of magnetic field intensity

is determined solely by the interfacial tension ratio to the free surface tension. This finding may be

useful to elaborate non-contact techniques for the measurement of interfacial tension of kerosene- 

based magnetic fluids. 

The surface tension of a magnetic fluid under the action of a magnetic field is the relevant problem

that actually could be much wider – the surface and interfacial tension of composite materials in the

external fields. This method is surely a trial to resolve this problem. It could help one to get the

result for rather low magnetic fields while the surface tension weakly differs from the stationary

one. According to [13] the surface tension of magnetic fluid varies in magnetic field depending on

its magnitude and direction. 

One more significant point is that the form of the object (FF drop) changes during the experiment

in a magnetic field that provokes the irregular changes in the demagnetizing factor of the upper and
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ower borders of the drop. Still, due to the usage of the critical field values’ ratio the demagnetizing

actors do not affect the results of the measurements. 
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