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Abstract

Reversal of diabetic nephropathy (DN) has been achieved in humans and mice, but only rarely and 

under special circumstances. Since progression of DN is related to podocyte loss, reversal of DN 

requires restoration of podocytes. Here we identified and quantified potential glomerular 

progenitor cells that could be a source for restored podocytes. DN was identified in 31 human 

renal biopsy cases and separated into morphologically early or advanced lesions. Markers of 

podocytes (WT-1, p57), parietal epithelial cells (claudin-1) and cell proliferation (Ki-67) were 

identified by immunohistochemistry. Podocyte density was progressively reduced with DN. Cells 

marking as podocytes (p57) were present infrequently on Bowman's capsule in controls, but 

significantly increased in histologically early DN. Ki-67 expressing cells were identified on the 

glomerular tuft and Bowman's capsule in DN, but rarely in controls. Cells marking as PECs were 

present on the glomerular tuft, particularly in morphologically advanced DN. These findings show 

evidence of phenotypic plasticity in podocyte and PEC populations and are consistent with studies 

in the BTBR ob/ob murine model in which reversibility of DN occurs with podocytes potentially 

regenerating from PEC precursors. Thus, our findings support, but do not prove, that podocytes 

may regenerate from PEC progenitors in human DN. If so, progression of DN may represent a 

modifiable net balance between podocyte loss and regeneration.
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INTRODUCTION

Reversal of morphologically advanced diabetic nephropathy (DN), although rarely reported, 

has been achieved in humans following long term pancreas transplantation (1) and in the 
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BTBR ob/ob diabetic mouse model (2). Initiation and progression of DN is associated with 

podocyte injury and loss (3-5); reversal of the structural and functional abnormalities of DN 

must require restoration of podocytes. However, it is well accepted that podocytes are 

terminally differentiated cells and generally do not replicate (5, 6), presenting a major 

obstacle to their restoration. Recent studies (2, 7-12) have demonstrated the possibility of a 

progenitor cell in the parietal epithelial location that could serve as a source for podocytes 

lost in the course of diabetic nephropathy, located in an anatomic niche along Bowman's 

capsule traditionally thought to be populated exclusively by PECs. Supporting the 

possibility of a podocyte progenitor cell are lineage tracing studies in adolescent mice 

showing recruitment of podocytes from parietal epithelial cells (PECs) located on Bowman's 

capsule, and the presence of a transitional cell population at the vascular stalk with 

characteristics of both podocytes and PECs (6, 7, 13-15). PECs located near the tubular pole 

in humans have been shown to co-express stem cell markers and have the potential to 

differentiate into renal and non-renal cells under various conditions (10); upon injection of 

these human progenitor cells into mice, some were incorporated into glomerular structures 

and resulted in reduced proteinuria and chronic glomerular damage in a mouse model of 

Adriamycin-induced nephropathy (8). Recent studies of human PECs suggest that 

expression of microRNA-193a may mediate a transition from a PEC to podocyte phenotype 

(16). Intriguing studies in mice have shown that cells of renin lineage can also take on 

immunophenotypic and morphologic characteristics of either PECs or podocytes, and may 

serve as a source of glomerular epithelial progenitor cells (17-19). Alternately, recent studies 

by the groups of Moeller et al, Nagata et al, Peti-Peterdi et al, Weins et al, and others 

(20-26) suggest that podocytes may become PECs, but that PECs cannot necessarily take on 

the functional role of podocytes and only migrate to the glomerular tuft at sites of injury in 

order to mitigate the effects of podocyte loss. In one lineage tracing study (27), adolescent 

mice had PEC-derived cells with features of fully differentiated podocytes, whereas adult 

mice displayed podocyte regenerative capacity after acute podocyte loss, but not during 

aging. Finally, in a murine model in which changes of diabetic nephropathy were reversed, 

there was de novo expression of a podocyte immunophenotype (presence of p57 and WT-1 

proteins in cell nuclei) identified in numerous cells whose anatomic location on Bowman's 

capsule would normally identify them as PECs (2), suggesting that PECs might be a source 

of restored podocytes in this model.

In this study, we reasoned that if podocytes may be derived from PECs and if 

morphologically advanced DN in humans has the potential for reversibility – as 

demonstrated by Fioretto et al (1, 28) – then perhaps the potential for restoration of 

podocytes lost in DN from PECs is always present and this may be an ongoing process, 

albeit at a low level that is unable to keep up with concurrent podocyte loss. Such a scenario 

implies that some degree of podocyte loss and restoration is a constant feature of DN, but 

one where progression of disease is characterized by a predominant process of podocyte 

loss. The potential for reversal of DN is then determined, at least in part, by changes in the 

balance of podocyte loss and restoration, and that therapeutic interventions that alter this 

balance in favor of podocyte restoration are a highly desired goal. As a first test of the 

relevance of this hypothesized scenario, we examined whether advancement of DN is 
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associated with podocyte loss and with PEC changes consistent with acquisition of a 

podocyte immunophenotype.

RESULTS

We retrospectively identified 31 cases of diabetic nephropathy in human renal biopsies 

which could be separated into morphologically early (class I, II) or advanced (class III, IV) 

lesions, corresponding to a recent classification of DN (29). The median number of patent 

glomerular profiles per case was 13 (range 6-26) in controls, 12 (range 5-27) in early DN 

(range 5-27), and 6 (range 3-23) in advanced DN.

The number and density of both WT-1 and p57 expressing podocytes per glomerulus was 
progressively reduced in histologically early and advanced diabetic nephropathy

The number of podocytes per glomerular profile as defined by WT-1 nuclear stain and 

position on the glomerular tuft was significantly reduced in diabetic nephropathy. This 

reduction was progressive with severity of diabetic nephropathy as follows: from controls to 

histologically early DN: 35% reduction (p<0.001); from early DN to advanced DN: 45% 

reduction (p<0.001); and from controls to advanced DN: 67% overall reduction in podocytes 

per glomerular profile (p<0.001; Figure 1). The average number of podocytes identified per 

glomerular tuft profile differed slightly with the two markers, with WT-1 generally 

highlighting more podocytes; however each antibody demonstrated a concordant percentage 

of podocyte decrease (within 5% of each other) with advancement of DN (Figure 1). Since 

this reduction in podocyte number per glomerular profile could be related to increased 

glomerular volume in DN, average podocyte number per glomerulus was calculated from 

glomerular volume and numerical density of podocytes per glomerular volume for each 

biopsy. The number of podocytes per glomerulus and numerical density of podocytes per 

glomerulus were both progressively decreased, while the mean glomerular volume was 

increased with advancement of diabetic nephropathy (Figure 1). Thus, the average podocyte 

number per glomerulus was greater in control subjects (397 ± 98) vs. early DN (268 ± 73; 

p=0.0012) and vs. advanced DN (144 ± 52; p<0.0001), and in early vs. advanced DN 

(p<0.001).

The mean glomerular volume was greatest in advanced DN (4,276,700 ± 1,445,600 μm3) vs. 

early DN (3,208,600 ± 1,462,900 μm3; p<0.0001) and vs. control subjects (2,319,000 ± 

862,000 μm3; p<0.0001), and in early DN vs. control subjects (p<0.0001). The mean 

podocyte density progressively decreased from control subjects (181.5 ± 714 podocytes/106 

μm3) vs. early DN (96.1 ± 55.8 podocytes/106 μm3; p=0.002) and vs. advanced DN (38.5 ± 

21.4 podocytes/106 μm3; p<0.0001), and in early vs. advanced DN (p=0.0002). The mean 

podocyte nuclear diameter was increased in advanced DN (8.446 ± 0.455 μm) vs. early DN 

(7.863 ± 0.708 μm; p=0.048) and vs. control subjects (7.182 ± 0.599 μm; p<0.0001), and in 

early DN vs. control subjects (p<0.001).
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Ki-67 expressing cells were identified on Bowman's capsule and the glomerular tuft in 
diabetic nephropathy, but only rarely in controls

Ki-67 is a marker of late G2 phase of the cell cycle, but may be expressed by any cell 

outside the G0, and is used as a marker of proliferation (30, 31). The number of Ki-67 

expressing PECs per glomerular profile was significantly increased in both early (median 

0.4; range 0 – 2.4; p<0.05) and advanced DN (median 0.5; range 0 – 2.2; p<0.01) compared 

to control subjects (median 0.0; range 0 – 0.4). The number of Ki-67 expressing cells on the 

glomerular tuft profiles was significantly increased in histologically early DN (median 0.3; 

range 0 – 1.4) compared to controls (median 0.0; range 0 – 0.1; p<0.001). In cases of 

advanced DN, there was a lesser increase in Ki-67 immunoreactivity in the glomerular tufts 

(median 0.1; range 0 – 0.4) compared to controls which did not achieve statistical 

significance (Figures 2, 3). In tissue sections stained with PAS and further immunostained 

for Ki-67, the Ki-67 expressing cells on the glomerular tuft were predominantly endothelial 

and mesangial cells. No definitive Ki-67 expressing podocytes were present, although rare 

candidates were identified.

p57 expressing cells (marker of podocytes) on Bowman's capsule were significantly 
increased in early diabetic nephropathy

Cells marking as podocytes were present in PEC locations and significantly increased in 

histologically early DN compared to controls (p<0.01). In cases of advanced DN, there was 

no significant increase of these cells compared with controls (Figures 2, 3). p57 expressing 

cells were identified singly and occasionally consecutively along portions of Bowman's 

capsule. Relative to controls, p57 expressing cells were more concentrated in the region of 

the glomerular hilus in DN. Specifically, on average, p57 expressing cells near the vascular 

stalk (within 1/4th the diameter of Bowman's capsule) comprised 21% of all p57 expressing 

cells on Bowman's capsule in controls vs. 35% in early DN (p=0.05) and 29% in advanced 

DN respectively (did not reach statistical significance), with the remainder of cells 

distributed throughout Bowman's capsule. In addition, rare dual labeled p57/claudin-1 

expressing cells on Bowman's capsule were identified in 3 cases of morphologically early 

DN (Figure 4).

Cells expressing claudin-1 (marker of PECs) were identified on the glomerular tuft and 
significantly increased in advanced diabetic nephropathy

Cells expressing claudin-1 were present on the glomerular tuft and were significantly 

increased in histologically advanced stages of DN compared with controls (p<0.01; Figures 
2, 3). Claudin-1 expressing cells were sometimes present as caps of cells overlying 

segmentally sclerotic regions of the glomerular tufts (with and without capsular adhesions in 

the plane of section), which were found in cases of advanced DN. Claudin-1 expressing cells 

were sometimes present in other glomerular segments characterized histologically by 

primarily increased mesangial matrix (Figure 3). There was no co-expression of p57 and 

claudin-1 in cells on the glomerular tuft (Figure 4). The average number of claudin-1 

expressing cells per glomerular tuft profile was not different between early DN and either 

controls or advanced DN. 85-92% of PECs were positive for claudin-1 in all biopsies.
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Synaptopodin expression on Bowman's capsule was significantly increased with 
histologic progression of diabetic nephropathy

The extent of synaptopodin expression along the circumference of Bowman's capsule 

significantly increased from controls (mean 1.2% ± 4%) vs. early DN (mean 6.5% ± 14.1%; 

p=0.002) vs. advanced DN (mean 13.6% ± 22.8%; p=0.0001; early vs. advanced p=0.09). 

Similar to prior investigations (15), synaptopodin labeling was predominantly seen in the 

region of the vascular pole in continuity with visceral podocytes, but was also identified 

throughout Bowman's capsule and in areas of segmental adhesions (Figure 2).

DISCUSSION

In this study, we observed a progressive decrease in both podocyte number and number 

density in morphologically early to advanced diabetic nephropathy. Decreased WT-1 and 

p57 immunolabeling of podocytes confirms previous studies in DN, suggestive of podocyte 

detachment and loss occurring in patients with either type 1 or type II diabetes (3, 32). There 

was concurrent increase in podocyte nuclear size with advancement of DN, which correlates 

with prior investigations in DN (33). The novel findings of this study are that concurrent 

with podocyte loss in DN, there is cell cycle activation by cells situated on Bowman's 

capsule, that immunophenotypic changes occur in both podocytes and cells located in 

parietal epithelial cell locations, and that there are rare cells on Bowman's capsule 

expressing immunophenotypic markers of both parietal epithelial cells (i.e. claudin-1) and 

podocytes (i.e. p57). Our observation of increased podocyte nuclear volume is consistent 

with what was reported by Pagtalunan et al (33). The pathophysiologic significance of this 

finding is uncertain, but from a methodological point of view, this phenomenon could 

potentially lead to overestimation of numerical density in biopsies with larger nuclei. 

However, this caveat could only work against the hypothesis that podocytes are reduced in 

DN.

There are at least two mechanistic options to explain these observations. Combining the 

current observations with prior studies, one might propose that expression of claudin-1 on 

the glomerular tuft represents a sclerosing or capping response to glomerular injury/

podocyte loss which contributes to the injury process and/or represents a suboptimal 

reparative response. This pathologic pattern was present in some glomeruli in biopsies of 

advanced DN, and accounts for some of the increased claudin-1 expressing cells identified 

in this category. In this scenario, Ki-67 expressing cells lining Bowman's capsule are 

indicative of activated PECs which will migrate to the glomerular tuft via a segmental 

adhesion, and that p57 expression on Bowman's capsule is unrelated to podocyte 

regeneration. In support of this scenario, claudin-1 expression on the glomerular tuft was 

most prominent in cases of histologically advanced DN, and some of these claudin-1 

expressing cells showed segmental attachment to Bowman's capsule in the histologic plane 

of section. In early DN, despite an increase in p57 expressing PECs, there was no significant 

increase in claudin-1 expression on the glomerular tuft, and no dual p57/claudin-1 labeled 

cells were identified on the glomerular tuft in controls or in any stage of DN. Thus our 

findings cannot necessarily support a hypothesis that claudin-1 positive cells on the 

glomerular tuft are derived from p57 expressing PEC progenitors. In isolation, the claudin-1 
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studies are consistent with recent investigations which demonstrate migration of PECs onto 

the glomerular tuft in association with advanced podocyte injury (20-25, 34), presumably in 

order to limit the physiological consequences of podocyte loss that leaves the glomerular 

filter uncovered.

However, this scenario alone does not adequately account for the significantly increased 

p57, Ki-67, and synaptopodin expressing cells on Bowman's capsule in diabetic 

nephropathy, nor the rare p57/claudin-1 double labeled cells in PEC regions. Cyclin 

dependent kinase inhibitor p57 is initially expressed during nephrogenesis in human fetal 

podocytes, and its expression is associated with loss of PAX2 expression, a transcription 

factor retained in PECs, distal tubules, and collecting ducts (15). p57 has been previously 

shown to be a sensitive and specific marker of podocytes in mice (2, 35-38) and in humans, 

where in one study of normal glomeruli (15), all visceral podocyte nuclei were positive for 

p57, while 75% of glomeruli had zero p57 labeling of cells in PEC regions. Thus, p57 is a 

sensitive and specific marker for podocytes, yet it may be expressed by rare cells in PEC 

locations in normal glomeruli as seen in this study. As a cyclin dependent kinase inhibitor, 

the possibility that some PECs acquire p57 expression due to their entering a phase of 

cellular senescence cannot be excluded (38-40). Arguing against this however, is the parallel 

increase in synaptopodin and Ki-67 expression PECs seen in DN. Thus the increased 

expression of p57, synaptopodin, and Ki-67 by PECs in DN and the presence of dual p57/

claudin-1 expressing cells suggest an alternate response to injury consistent with 

mobilization of a PEC to podocyte regenerative process.

Our observations support a second scenario, which provides for the possibility of a podocyte 

progenitor cell, located on Bowman's capsule, which may transdifferentiate and migrate to 

the glomerular tuft, possibly via the vascular stalk as previously suggested (2, 7-10, 41). On 

Bowman's capsule, this progenitor cell may undergo cell cycle activation in response to 

podocyte loss in DN and transiently express both podocyte and PEC immunophenotypic 

markers as it migrates from the tubular pole to the vascular pole and onto the glomerular 

tuft. It is also possible such cells may “jump” directly from Bowman's capsule across the 

urinary space to the glomerular tuft, as has been suggested by studies of the collapsing 

variant of focal and segmental glomerulosclerosis (Palma Diaz M, et al. unpublished 

observations). Claudin-1 expressing cells on the glomerular tuft may represent migrated 

progenitor cells or PECs as a component of a sclerotic process (similar to first scenario). 

Thus these two models of injury and repair are not biologically mutually exclusive, and may 

represent different stages of, or types of response to, injury. The landmark observation that 

structurally advanced diabetic nephropathy can be reversible challenges theories which do 

not offer mechanisms for restoration of podocytes (1). This second scenario has the 

appealing feature of offering a mechanism for podocyte restoration that in turn is permissive 

or enabling of reversibility of DN.

Our study also poses important pathophysiologic questions that cannot be answered by the 

data at hand. One question is whether the proliferative (and potentially regenerative) 

capacity of PECs may differ in early versus late DN. We identified p57 expressing cells in 

dual labeled p57 and claudin-1 expressing cells along Bowman's capsules, predominately in 

early DN. The relative absence of these cells in later stages may reflect a reduced capacity 
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for repair in the advanced DN. We recognize that landmark studies of Fioretto, et. al., 

demonstrated morphologically advanced DN could be reversed, and hence that podocytes 

could still be restored from some unspecified source, but we also recognize that the process 

took between 5 and 10 years to be effected and so may reflect a very limited capacity for 

podocyte regeneration in late stages of DN. This possibility is further suggested by recent 

studies of Berger, et. al, which showed the potential for podocyte regeneration by PECs was 

confined to juvenile mice; PEC to podocyte transformation could not be detected in adult 

mice in their model system (20).

Some limitations of this study provide opportunities for further investigation. First, 

expression of a small set of proteins suggestive of immunophenotypic plasticity are not 

sufficient evidence of cellular transdifferentiation nor of a functional role for cells on the 

glomerular tuft, and need to be correlated with larger studies and patient outcomes. Second, 

investigations of some stem cell markers seen in renal progenitor cells (CD133+/CD24+) are 

limited to studies of frozen tissue, and cannot currently be performed in formalin-fixed 

tissue utilized for the present study (8, 42). In considering other biologic markers and 

comparing transdifferentiation with nephrogenesis, the developing kidney is known to have 

a variety of cell signaling molecules which affect podocyte vs. PEC differentiation 

decisions, including β-catenin (43), bone morphogenic proteins (44), and platelet-derived 

growth factors (45-47); these may or may not play a role in transdifferentiation, and are 

candidates for future study. The relationship between these cells and cells of renin lineage 

are not specifically addressed in this study. Although we do not have clinical information 

available for our study population, podocyte loss plays a major role in the progression of 

both type I and type II diabetic kidney disease (3, 32). Additionally, we grouped histologic 

class I and class II DN together as morphologically early diabetic nephropathy; however, 

these groupings represent a wide spectrum of disease. In our study, the morphologically 

early DN group had approximately 32% podocyte loss per glomerulus compared to controls. 

It has been suggested that a biologic “tipping point” of 20% podocyte loss leads to a cascade 

of injuries causing progression to segmental or global glomerulosclerosis (30, 31, 48, 49), 

but our study suggests lower podocyte densities may still allow for some degree of 

glomerular capillary preservation and presumably some degree of glomerular filtration, if 

not hyperfiltration. The seminal work by Fioretto et al (1) in patients with pancreas 

transplants suggests that even some nodular lesions of diabetic glomerulosclerosis can 

potentially be reversed. Many of our cases in the cohort of advanced DN were characterized 

by diffuse mesangial expansion and multiple Kimmelstiel-Wilson nodules, and a histology-

based single time point cannot identify the “reversal point” for these lesions. The possibility 

of achieving podocyte restoration suggests that it may be valuable to look prospectively and 

longitudinally for podocyte and PEC plasticity in early and advanced stages of diabetic 

nephropathy.

In summary, these findings demonstrate activity and provide some evidence for phenotypic 

plasticity in podocytes and parietal epithelial cell populations. Taken together, they suggest 

that some low level of podocyte regeneration from a PEC niche may be an occult but 

ongoing process that, if sufficiently stimulated, could potentially enable repair of DN via 

podocyte restoration. Cell cycle activation and expression of the podocyte marker p57 in 
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PECs in human DN are findings consistent with preclinical studies in the BTBR ob/ob 

murine model of reversible DN, and support a hypothesis that podocytes may regenerate 

from progenitor cells on Bowman's capsule in human DN. If true, progression of disease 

representing an unfavorable balance between podocyte loss and regeneration could 

potentially be modified by new therapeutics for diabetic nephropathy that either promote 

podocyte restoration or ameliorate podocyte loss.

METHODS

This study was approved by the institutional review board (IRB) at the University of 

Washington. We retrospectively identified 31 cases of diabetic nephropathy in human renal 

biopsies which could be separated into morphologically early (class I, II) or advanced (class 

III, IV) lesions corresponding to recent classification (29), and 19 controls from time zero 

renal transplant biopsies. Immunohistochemistry was performed for markers of podocytes 

(WT-1, p57, synaptopodin), PECs (claudin-1) and cell proliferation (Ki-67). Glomerular 

profiles containing at least 3 distinct mesangial segments were evaluated and scored. 

Formalin-fixed paraffin embedded tissue was sectioned at 4 micrometers and 

immunohistochemistry was performed with antibodies specific for p57 (Santa Cruz 

Biotechnology, Santa Cruz CA), WT-1 (Santa Cruz Biotechnology), synaptopodin 

(Fitzgerald Industries International, Concord, MA) claudin-1 (Abcam, Cambridge MA), and 

Ki67 (clone SP6, LabVision Fremont CA) as previously described (2). Following 

deparaffinization and rehydration, the slides were subjected to heat mediated antigen 

retrieval in citrate buffer pH 6 and blocked with 2% normal horse serum. Primary antibodies 

were incubated overnight at 4C and detected with ImmPress HRP polymer reagent (Vector 

Laboratories, Burlingame CA) and 3,3’ diaminobenzidine. The slides were then 

counterstained with hematoxylin or with a standard periodic acid Schiff's stain, dehydrated 

and coverslipped. For double immunohistochemistry, slides were first incubated with anti-

p57 antibody, detected with ImmPress anti-rabbit HRP polymer and developed with 3,3’ 

diaminobenzidine (brown reaction product), blocked with 3% hydrogen peroxide and then 

incubated with anti-claudin-1 followed by ImmPress anti-rabbit HRP polymer and 

developed with Vina Green substrate (Biocare Medical, Concord CA). Negative controls for 

all immunohistochemistry included using non immune IgG in place of primary antibodies.

Average glomerular volume estimation

Glomerular volume was estimated using the maximum profile area method (50). For all 

cases of DN and controls, each glomerulus was assessed in approximately 10 level sections 

to determine the greatest cross-sectional glomerular area. An intact glomerulus was chosen 

for measurement if both bordering level sections showed an apparent decrease in size, 

indicating that the chosen glomerular profile most likely represented the largest diameter 

cross-section. Glomeruli for which level sections did not contain these characteristics were 

excluded. An Olympus BX41 microscope and Leica DFC420 camera were used to take 

digital photomicrographs at 400x. Images were uploaded into Adobe Photoshop. The 

magnetic lasso tool was employed to connect the outer-most points on the periphery of 

glomerular profiles to define a polygon. The area of the polygon was subsequently measured 

using the Adobe Photoshop measuring tool. A standard calibration slide was used to 
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calibrate the software measuring tool. The glomerular diameter and volume was calculated 

from the maximal profile area measurements. The median number of glomeruli which could 

be measured in each case was 6 (range 2-12).

Quantification of podocyte nuclear size and density

To evaluate podocyte nuclear size and density of podocytes on the glomerular tuft, all slides 

stained with WT-1 were photographed. Photographs were then processed using ImagePro to 

measure the glomerular tuft area, podocyte nuclear number, and the mean podocyte nuclear 

diameter by measuring the long and short axis of each labeled podocyte and calculating a 

mean diameter for all intact glomeruli. Calculations described by Venkatareddy et al (51) 

and the Excel formulas provided in their Supplement were utilized to determine glomerular 

podocyte density normalized to glomerular volume.

Statistics

For each case, the locations and number of cells staining in the glomerulus for each 

immunohistochemical marker were recorded, and mean and median values and standard 

deviations were calculated. Statistical analyses were performed on GraphPad Prism using 

Mann-Whitney U tests for each marker; a p value less than 0.05 was considered significant. 

Glomerular volume data was calculated on Microsoft Excel, and statistically analyzed using 

two-tailed T-tests. Glomerular podocyte density, podocyte nuclear diameter, and mean 

podocyte number per glomerulus were analyzed with GraphPad Prism using Kruskal-Wallis 

nonparametric one-way analysis of variance test, followed by Mann-Whitney post-tests to 

compare groups.
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Figure 1. 
A, B) The number of p57 and/or WT-1 expressing podocytes per glomerular profile was 

progressively and significantly reduced in histologically early and advanced diabetic 

nephropathy compared to controls; this was out of proportion to the increase in glomerular 

size in DN. Morphometric analysis of the glomerular tuft showed that with advancement of 

diabetic nephropathy, there is C) significant increase in mean glomerular volume, D) an 

increase in the mean podocyte nuclear diameter, E) progressive decrease in podocyte 

density, and F) a progressive decrease in the calculated mean podocytes per glomerulus (*p 

variable, all <0.05). G, H, I) p57 highlights progressively decreased podocytes on the 

glomerular tuft from controls (G) to early (H) to advanced DN (I) (400×).

Andeen et al. Page 12

Kidney Int. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A-D) Cells marking as podocytes were present in PEC locations and significantly increased 

in histologically early DN (A,B), with a non-significant increase in advanced DN (C,D) 

compared with controls (400×).

E-G) Synaptopodin highlighted a significantly increasing percentage of staining of cells 

lining Bowman's capsules from controls (E) to early (F) to advanced (DN), including areas 

of segmental adhesions (400×)

H-J) Ki-67 expressing cells were identified on the glomerular tuft and Bowman's capsule in 

morphologically early (I) and advanced (J) diabetic nephropathy, but only rarely in controls 

(H) (400×).

K-M) Claudin-1/PAS revealed claudin-1 positive cells in areas of increased mesangial 

matrix in early DN (K), in areas of “capping” of segmentally sclerotic regions (L), and 

having a variable glomerular distribution in advanced DN (M) (400×).
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Figure 3. 
A) p57 expressing cells (marker of podocytes) on Bowman's capsule were significantly 

increased in early diabetic nephropathy.

B) Synaptopodin expression on Bowman's capsule was significantly increased in both early 

and advanced DN.

C, D) The mean number of Ki-67 expressing cells on the glomerular tuft profiles was 

significantly increased in histologically early DN compared to controls; Ki-67 expressing 

PECs were significantly increased in both early and advanced DN compared to controls.

E) Cells immunoreactive for claudin-1 (marker of PECs) were identified on the glomerular 

tuft and significantly increased in advanced stages of DN.
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Figure 4. 
A-D) Rare claudin-1/p57 dual expressing cells were identified on Bowman's capsule in 3 

different cases of early diabetic nephropathy, but not in controls nor advanced DN 

(claudin-1 green cytoplasmic stain; p57 nuclear brown stain; A, B at 600×; C,D at 1250×).
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