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Abstract

In the past year, the global epidemic situation is still not optimistic, showing a trend of contin-

uous expansion. With the research and application of vaccines, there is an urgent need

to develop some optimal vaccination strategies. How to make a reasonable vaccination

strategy to determine the priority of vaccination under the limited vaccine resources to

control the epidemic and reduce human casualties? We build a dynamic model with vacci-

nation which is extended the classical SEIR model. By fitting the epidemic data of three

countries—China, Brazil, Indonesia, we have evaluated age-specific vaccination strategy

for the number of infections and deaths. Furthermore, we have evaluated the impact of age-

specific vaccination strategies on the number of the basic reproduction number. At last, we

also have evaluated the different age structure of the vaccination priority. It shows that giv-

ing priority to vaccination of young people can control the number of infections, while giving

priority to vaccination of the elderly can greatly reduce the number of deaths in most cases.

Furthermore, we have found that young people should be mainly vaccinated to reduce the

number of infections. When the emphasis is on reducing the number of deaths, it is impor-

tant to focus vaccination on the elderly. Simulations suggest that appropriate age-specific

vaccination strategies can effectively control the epidemic, both in terms of the number of

infections and deaths.

1 Introduction

At the beginning of 2020, there has been a global outbreak of COVID-19, which had a signifi-

cant impact on people’s daily lives [1, 2]. In the past year, every country is actively responding

to the severe challenge brought by COVID-19 and all pay great efforts for it. At present social

distancing along with previously known traditional medicines can act as quick and short-term

alternatives for treating this viral flu [3]. In the absence of any specific antiviral vaccine, various

non-pharmacological measures coupled with lockdown have been employed to combat this
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infection [4]. Unfortunately, there are still many countries where the epidemic is spreading, so

research and use of the vaccine is an important way to beat with COVID-19.

There are about 100 COVID-19 vaccines in research in the past year, many of which have

made significant progress. Some vaccines have already been approved for use, and a large

number are undergoing phase 3 clinical trials [5]. However, the production efficiency of the

vaccine and the storage requirements of the vaccine mean that the amount of vaccine at this

stage cannot reach the number of individuals who need vaccination. Therefore, how to develop

vaccination strategies based on priority guidelines is currently a major concern in many coun-

tries. In the early stages of the COVID-19 outbreak, research focused on assessing the impact

of the size of the epidemic, the number of deaths, and the base number of relapses on the

development of COVID-19 [6–8]. With the global outbreak of the epidemic, research focus

has rapidly shifted to the formulation and evaluation of the effectiveness of measures [9–12].

With the advent of vaccination, it is becoming increasingly popular to develop vaccination

strategies to maximize the impact of vaccines in controlling the epidemic [13–17].

Application of mathematical models to disease surveillance data can be used to address

both scientific hypotheses and disease-control policy questions [18]. There have been several

modelling studies [19–23] in which researchers have tried to identify the best control strategies

for vaccination in the prevention and control of epidemics. Considering the large limitation of

COVID-19 vaccine supply, the article used an age-specific SEIR model to study five different

priority vaccination strategies in the United States. Many studies have proved that age is an

important factor affecting the susceptibility to infectious diseases and mortality [24–28]. So,

it’s important to take age structure into account when considering vaccination strategies. Dif-

ferent countries have different age structures and different age-structure groups have different

networks of connections [29]. Bassey B E and Atsu J U analyzed the global stability of COVID-

19 in multi-therapeutic and non-pharmacological treatment protocols [30]. On this basis, we

extend an age structure SEIR model to determine the optimal age specific vaccination distribu-

tion with different age structures in different countries.

The main purpose of this study is to use a mathematical model to quantitatively analyze

how to design the optimal vaccination strategy under the number of vaccines are limited. The

other sections of this paper are arranged as follows: In section 2, we mainly introduce the

COVID-19 propagation dynamics model with vaccination. In section 3, the validity of the

model was verified, and the unknown parameters are estimated by fitting COVID-19 epidemic

data. In section 4, we mainly propose the vaccination strategy with age structure. In section 5,

the suitability of vaccination strategies is simulated by using different values of the parameters

such as R0, IC and DC to assess age-structure characteristics. We make the conclusions and give

suggestions in section 6.

2 An SEIR model with vaccine chamber

With the continuous development of the epidemic, the modelling of COVID-19 has been

extensively studied. Vaccination is a key link in the prevention and transmission of infectious

diseases. Based on previous mathematical modelling, we developed a new model of COVID-19

transmission with a focus on vaccination. The population was divided into nine compart-

ments: the susceptible (S), the quarantined susceptible (Sq), the isolated exposed (Eq), the vac-

cine (V), the exposed (E), infectious with symptoms (I), asymptomatic infectious(A), the

hospitalized (H)and recovered (R). Because of the government’s quarantine measures, the

ratio of q individuals who contact with the infected will be quarantined. The quarantined pop-

ulation is divided into two compartments, Eq or Sq, depending on whether they are effectively

infected or not. The other individuals exposed to the virus in the 1 − q portion are not tracked
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and therefore transferred to the E once they are effectively infected, or remain in the suscepti-

ble compartment S. The parameters with their definitions are presented in Table 1. The trans-

mission diagram for model (2.1) is shown in Fig 1. The dynamics model is given by:

dS
dt
¼ � cðtÞbSðI þ yAÞ=N � ð1 � bÞcðtÞqðtÞSðI þ yAÞ=N � U þ hV þ lSq;

dSq
dt
¼ ð1 � bÞcðtÞqðtÞSðI þ yAÞ=N � lSq;

dEq

dt
¼ bcðtÞqðtÞSðI þ yAÞ=N � dqEq;

dV
dt
¼ U � hV � bcðtÞð1 � pÞVðI þ yAÞ;

dE
dt
¼ ð1 � qðtÞÞbcðtÞSðI þ yAÞ=N þ ð1 � pÞbcðtÞVðI þ yAÞ=N � sE;

dI
dt
¼ srEþ εAA � ðεIðtÞ þ dI þ gIÞI;

dA
dt
¼ sð1 � rÞE � gAA � εAA;

dH
dt
¼ εIðtÞI þ dqEq � ðdH þ gHÞH;

dR
dt
¼ g1I þ gAAþ gHH:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Where N = S + Sq + Eq + V + E + I + A + H + R is the total population.

Considering that with the continuous development of the epidemic, the control measures

of local governments have been continuously improved, and the isolation rate of people

exposed to the virus has been continuously increased. After the effective understanding of

COVID-19, the diagnostic rate for patients has also increased with time. The isolation rate and

diagnosis rate increased with time in the following relationship [7, 31].

qðtÞ ¼ ðq0 � qmÞexpð� rqtÞ þ qm:

εIðtÞ ¼ ðεI0 � εIbÞexpð� rεtÞ þ εIb:

Table 1. Compartment definitions.

Compartment Definition

S Susceptible population

Sq Quarantined susceptible population

Eq Quarantined exposed population

V Vaccinated population

E Exposed population

I Infected symptomatic population

A Infected symptomatic population

H Confirmed and hospitalized population

R Recovered population

D Death population

https://doi.org/10.1371/journal.pone.0261236.t001
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For endemic region, we hypothesize that exposure rates will decrease over time as people

pay more and more attention to masks and socialize more and more reasonably.

cðtÞ ¼ ðc0 � cmÞexpð� rctÞ þ cm:

The basic reproduction number for model (2.1) can be calculated according to [32]:

R0 ¼
ðrgA þ εAÞ

ðεI þ dI þ gIÞðgA þ εAÞN
ðð1 � qÞbcS0 þ ð1 � pÞbV0Þ þ

yð1 � rÞ

ðgA þ εAÞN
ðð1 � qÞbcS0 þ ð1 � pÞbV0Þ:

Where S0 is the initial value of the susceptible individuals, V0 is the initial value of the vaccine.

3 Data and parameter calibration

In order to accurately estimate the parameters of the model, some parameters are determined

from existing studies or data. The data for the population age distribution are obtained from

https://www.populationpyramid.net/japan/2019/ [33]. The data of daily reported COVID-19

cases were obtained from https://github.com/CSSEGIS and Data [34]. We fit the new con-

firmed cases per day in each country to retrieve the parameters of the model with historical

data. Using the parameters obtained from the inversion, we plot the fitting results for three

countries. The transmission probability from A or I to S per contact (β) is different in different

area. The infection ability of symptomatic infected individuals is weaker than that of symp-

tomatic infected individuals and θ is a correction factor which is assumed to be 0.0232 [6]. The

asymptomatic infected individuals could become symptomatic infected individuals and εA is

assumed to be 0.4. Vaccination does not represent permanent immunity. Over time, a certain

percentage of people lose vaccine protection, a ratio of h which is assumed to 0.006. Vaccina-

tion protection rate cannot reach 100%, so the proportion of vaccine protection rate p is

assumed to be 0.65. Transition rate of exposed individuals to the infected σ is assumed to be 1/

5.2 [35]. With the expiration of isolation and other reasons, individuals who are released from

isolation will return to the susceptible group, that is λ = 1/14 [6]. Compartment values used in

the simulations show in Table 2. Estimates of case fatality rates may vary slightly from country

Fig 1. The transmission diagram for model (2.1).

https://doi.org/10.1371/journal.pone.0261236.g001
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to country due to differences in prevention, control and mitigation policies implemented, as

well as the availability and availability of health care [36]. Early studies [37, 38] have shown

that delaying the detection of infected cases not only increases the probability of spreading the

virus to others (most likely family members, colleagues, and friends) but also makes the infec-

tion worse in some cases, thereby increasing the case fatality ratio [39]. During the epidemic in

Wuhan, more than 42,000 medical personnel from all over the country were sent to Hubei,

Table 2. Compartment values used in the simulations.

Compartment China Brazil Indonesia Source

S0 2.17 × 107 209598000 270625600 [41]

Sq0 7347 1522 1905 [41]

Eq0 60 639 612 Estimated

V0 0 0 0 Estimated

E0 29794 1478 1012 [41]

I0 3413 1147 174 Estimated

A0 4820 800 159 Estimated

H0 771 367 197 [34]

R0 34 2 11 [34]

https://doi.org/10.1371/journal.pone.0261236.t002

Table 3. Definition of parameters.

Parameter Definition

β Transmission probability from A or I to S per contact

c0 Contact rate at the initial time

cm Minimum contact rate with control

rc Exponential decreasing rate of contact rate

θ Correction factor for transmission probability of asymptomatic infectious

q0 Quarantined rate at the initial time

qm Maximum quarantined rate with control

rq Exponential increasing rate of quarantined rate

λ Releasing rate of quarantined susceptible

U Number of individuals vaccinated

h The rate of vaccine failure

σ Transition rate of exposed individuals to the infectious (A or I) class

δq Diagnose rate of quarantined individuals

p Probability of vaccine protection

ρ Ratio of symptomatic infection

εA The probability from A to I
εI0 Diagnose rate of infected individuals at the initial time

εIb Maximum diagnose rate of infected individuals

rε Exponential increasing rate of diagnose rate

dI Disease-induced death rate of infected individuals

dH Disease-induced death rate of hospitalized individuals

γI Recovery rate of infected individuals

γA Recovery rate of asymptotic infectious individuals

γH Recovery rate of hospitalized individuals

https://doi.org/10.1371/journal.pone.0261236.t003

PLOS ONE Different ages and age-specific vaccination strategies of COVID-19 using an SEIR modelling approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0261236 December 22, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0261236.t002
https://doi.org/10.1371/journal.pone.0261236.t003
https://doi.org/10.1371/journal.pone.0261236


more than 35,000 of them were in Wuhan, which doubled the medical personnel manpower in

Wuhan. In addition, the hospital of Thunder Mountain and Fire Shenshan is vital to the treat-

ment of patients, but it is impossible to quantify [40]. The values of parameters related to

COVID-19 and its transmission are obtained from the relevant literature, and other parame-

ters are obtained by data fitting (Tables 3 and 4). According to the estimated value, the daily

new cases in the three regions can be fitted and compared with the actual data, as shown in

Fig 2.

4 Methods

4.1 Model

In daily life, the prevalence of infectious diseases is affected by different levels of population

heterogeneity. Age differences among individuals in a group can lead to differences in activity

levels, infectivity, healing ability and susceptibility. Therefore, it is necessary to take age struc-

ture into account when considering vaccination models. Global stability of equilibrium and

Table 4. Parameters used in the simulations.

Parameter China Brazil Indonesia Sources

β 0.06 0.13 0.06 Estimated

c0 14.76 12.0 12.19 [42]

cm 3 6.71 6 [42]

rc 1.01 0.08 0.05 Estimated

θ 0.0232 0.0232 0.0232 Estimated

q0 0.00001 0.001 0.01 [42]

qm 0.95 0.49 0.12 [42]

rq 0.08 0.01 0.28 [42]

λ 1/14 1/14 1/14 [6]

U - - - According toscenario

h - - - According to scenario

σ 1/5.2 1/5.2 1/5.2 [35]

δq 0.35 0.12 0.10 Estimated

p 0.33 0.33 0.33 [42]

ρ 0.9 0.6 0.54 [6]

εA 1/5 1/5 1/5 Estimated

εI0 0.05 0.10 0.05 Estimated

εIb 0.6 0.2 0.11 Estimated

rε 0.05 0.19 0.5 Estimated

dI 0.01 0.004 0.01 Estimated

dH 0.2 0.2 0.2 [22]

γI 0.07 0.14 0.05 Estimated

γA 0.15 0.14 0.06 [19]

γH 0.12 0.14 0.14 Estimated

https://doi.org/10.1371/journal.pone.0261236.t004

PLOS ONE Different ages and age-specific vaccination strategies of COVID-19 using an SEIR modelling approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0261236 December 22, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0261236.t004
https://doi.org/10.1371/journal.pone.0261236


Fig 2. Observed daily new cases (dots) and model fitting results (solid curve) for China (a), Brazil (b) and

Indonesia (c).

https://doi.org/10.1371/journal.pone.0261236.g002
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uniqueness of existence are the most important theories.

dSðlÞðtÞ
dt

¼ � SðlÞðtÞð
XK

m¼1

clmbl

N
ðIðmÞðtÞ þ yAðmÞðtÞÞ þ

XK

m¼1

clmqð1 � blÞ

N
ðIðmÞðtÞ þ yAðmÞðtÞÞÞþ

lSq
ðlÞðtÞ � UðlÞ þ hVðlÞðtÞ;

dSðlÞq ðtÞ
dt

¼ SðlÞðtÞð
XK

m¼1

ð1 � blÞclmq
N

ðIðlÞðtÞ þ yAðlÞðtÞÞÞ � lSðlÞq ðtÞ;

dEðlÞq ðtÞ
dt

¼ SðlÞðtÞð
XK

m¼1

blclmq
N
ðIðlÞðtÞ þ yAðlÞðtÞÞÞ � dqE

ðlÞ
qðtÞ;

dVðlÞðtÞ
dt

¼ UðlÞ � hVðlÞðtÞ �
XK

m¼1

clmblð1 � pÞ
N

VðlÞðtÞðIðlÞðtÞ þ yAðlÞðtÞÞ;

dEðlÞðtÞ
dt

¼ SðlÞðtÞ
XK

m¼1

clmbl

N
ð1 � qÞðIðmÞðtÞ þ yAðmÞðtÞÞ � sEðlÞðtÞ

þ
XK

m¼1

clmblð1 � pÞ
N

VðlÞðtÞðIðlÞðtÞ þ yAðlÞðtÞÞ=N;

dIðlÞðtÞ
dt

¼ srEðlÞðtÞ þ εAA
ðlÞðtÞ � ðεI þ dI þ g1ÞI

ðlÞðtÞ;

dAðlÞðtÞ
dt

¼ sð1 � rÞEðlÞðtÞ � gAA
ðlÞðtÞ � εAA

ðlÞðtÞ;

dHðlÞðtÞ
dt

¼ εII
ðlÞðtÞ þ dqE

ðlÞ
qðtÞ � ðdH þ gHÞH

ðlÞðtÞ;

dRðlÞðtÞ
dt

¼ g1I
ðlÞðtÞ þ gAA

ðlÞðtÞ þ gHH
ðlÞðtÞ;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Where l, K = 1, 2, 3, 4.

In order to consider the effectiveness of vaccination strategies at different ages in different

countries (such as China, Brazil and Indonesia), we divided the entire population into four age

groups (0-4), (5-19), (20-64) and (65-) based according to the contact data [31]. clm is the con-

tact rate between a susceptible individual in the l−th group and an infected individual in the m
−th group and βl is the probability of infected individuals transmission per contact in the l−th
group.

To compare the effectiveness of different vaccination strategies in controlling the outbreak,

we considered two vaccination strategies: the first is a uniform vaccination strategy, where the

same number of people in each age group are vaccinated at the same time. Another is the age

structure of vaccination strategies. In the case of the uniform vaccination strategy, U(1) = U(2)

= U(3) = U(4). In the age structured vaccination strategy, in order to keep the total number of

people vaccinated per day the same, we assumed
P4

i¼1

UðiÞ ¼ K, which K is a fixed numerical.

Considering that Beta distribution is defined in a finite interval and its density function is very

flexible (it can be either unimodal or U-shaped). In addition, the uniform distribution is a spe-

cial case of the beta distribution.
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The basic reproduction number can be calculated according to [32], which is the principal

eigenvalue of following matrix Λ:

L ¼
ðrgA þ εAÞð1 � qÞ

NðεI þ dI þ gIÞðgA þ εAÞ

b11c1S10 b12c1S10 b13c1S10 b14c1S10

b21c2S20 b22c2S20 b23c2S20 b24c2S20

b31c3S30 b32c3S30 b33c3S30 b34c3S30

b41c4S40 b42c4S40 b43c4S40 b44c4S40

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

þ
ð1 � rÞyð1 � qÞ
NðgA þ εAÞ

b11c1S10 b12c1S10 b13c1S10 b14c1S10

b21c2S20 b22c2S20 b23c2S20 b24c2S20

b31c3S30 b32c3S30 b33c3S30 b34c3S30

b41c4S40 b42c4S40 b43c4S40 b44c4S40

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð3Þ

R0 ¼ gðLÞ;

Where g(�) denotes the spectral radius of a matrix.

4.2 Evaluation of the optimal age-specific vaccination distribution

The basic reproduction number R0, the cumulative number of infections IC and the cumulative

number of deaths DC are the key indicators to evaluate the severity of infectious diseases and

the public health situation, so we use it in this study to evaluate the effectiveness of different

vaccination strategies. To reduce the number of parameters, the beta distribution of age-spe-

cific vaccine strategies can be uniquely determined by parameters α and β, which we have eval-

uated as a function of two parameters, which we can evaluate the three endpoints by

converting them into functions. We assume that the vaccine is administered at a fixed rate for

180 days. The optimal age-specific vaccination distribution is obtained by minimizing the

three endpoints from vaccine initiation time T to T+ 180 days to obtain optimal α and β. For

different countries, we assume that the timing of vaccination is different. Considering that the

epidemic in China has been well controlled by now and the sporadic outbreaks in different cit-

ies are mainly due to overseas imports, we assume that all people in China are susceptible and

one infected individual is imported from overseas to potentially initiate a new epidemic. We

use the interior point method to optimize the three endpoint functions. Then, according to dif-

ferent actual needs, the optimal age-specific vaccination distribution in accordance with the

actual situation of each country are determined. In practical application, we suggest using

Matlab embedded program ODE to solve the new dynamics system.

5 Results

5.1 The optimal age-specific vaccination distribution

We evaluate the impact of vaccine allocation strategies with different age structures on

COVID-19 outbreaks and determined the optimal age-specific vaccination distribution

(OAVD) for different countries by minimizing three endpoints. We added unvaccinated cases

as baseline and for comparative analysis under various vaccination strategies. Vaccine cover-

age rates vary from country to country, so we determined the vaccination rate to be 0.1% after

comprehensive consideration. Fig 3 shows a contour plot of the three endpoints of the Chinese

OAVDs and functions.
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In all three countries, both IC and DC were significantly reduced under the vaccination

strategy compared with no vaccination (See Table 5). And the difference is different between

vaccine strategies compared to no vaccination. It can be seen that to minimize R0, people

between the ages of 5 and 19 should be given priority for China. There are significant differ-

ences between the endpoints of R0 and those of IC and DC by OAVDs. The OAVD obtained by

minimized IC and DC is similar (See Fig 3). If the minimum IC and DC were considered first,

the vaccination of the 20-64 years old should be considered first, and the 5-19 years old should

be considered second.

For Brazil, R0 is very different from IC and DC (See Fig 4). To minimize IC and DC, OAVD

should be the same, and 5-19 should be considered first, then 20-64. When R0 is minimized,

vaccination is preferred between 5 and 19 years of age. In general, in order to control DC, pri-

ority should be given to inoculating the elderly, because the mortality rate of the elderly is

much higher. Prioritizing young people can also keep DC below 130, 000, while also ensuring

that R0 grows slowly (Table 5). It was also noted that priority child vaccination was ineffective

Fig 3. The contour plot of the three endpoints: The basic reproduction number (R0, 1st row), the cumulative

number of infections (IC, 2nd row) and the cumulative number of deaths (DC, 3rd row) for China. The optimal

age-specific vaccination distributions for these three endpoints are shown in (b), (d) and (f) respectively.

https://doi.org/10.1371/journal.pone.0261236.g003
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in controlling the COVID-19 epidemics. Compared with unified vaccination strategy, the opti-

mal age-specific vaccination strategy can reduce IC or DC.

For Indonesia, the effects of age-structured inoculation on the three endpoints were similar

to those in Brazil, both of OAVDs are similar. Therefore, in order to control IC, it should first

vaccinate the young and middle-aged. If the most important is to control DC, it should more

vaccinate to the elderly (See Fig 5). In China, the effect of the distribution of inoculation age

structure on R0 and IC is similar to that in Brazil and Indonesia. However, the influence of age

distribution of inoculation on DC varies greatly, and the OAVD obtained by minimizing DC is

different to that of the other two endpoints.

5.2 The vaccination priorities of age structure

In order to directly find out which age group has the best prevention and control effect, we

have evaluated the effect of different vaccination sequence in each age group. Since priority

vaccination of children was not effective in controlling the COVID-19 epidemic, we compare

three indices of control strategies which are random vaccination for six different vaccination

sequences. We choose the vaccine administration policy which is assigning to one group after

another to carry out. The three indices are R0, IC and DC.

For China, the trend of IC and R0 is similar. As shown in Table 6, in order to minimize IC in

China, the third group should be vaccinated first. This suggests that for China, the priority of

vaccination should be given to young people. Early vaccination of the elderly can effectively

reduce DC.

For Brazil, giving priority to young people led to fewer infections, while giving priority to

older people led to fewer deaths(See Table 7). This suggests that in Brazil, priority should be

given to vaccinating adolescents and young people, to reduce R0 and IC. This may be because

IC is directly associated with transmission of infection in the SEIR model.

In Indonesia, the priority age for vaccination is different from Brazil. Therefore, the control

of IC and DC should be given priority to the 2nd group (See Table 8). The more 2nd group vac-

cinated, the better the control. The trend of DC is similar with China, the earlier the elderly

were vaccinated, the lower the death rate.

6 Discussions and conclusions

The COVID-19 is still an important issue that urgently needs to be resolved in the world, and

many people lose their lives every day. With the development and use of the vaccine, there is a

Table 5. The final outcomes with the optimal age-specific distributions vs. the uniform distribution and no vaccinating for the three countries: China, Brazil and

Indonesia.

China Optimal Distribution No vaccinating Uniform distribution Beta(1,1) Min (R0) Beta(20,12) Min (IC) Beta(14,20) Min (DC) Beta(13,20)

R0 3.737 3.5386 3.47 3.543 3.546

Cumulative infection 14397 103880 100360 93900 94045

Cumulative death 32197 16930 16410 15561 15541

Brazil Optimal Distribution No vaccinating Uniform distribution Beta(1,1) Min (R0) Beta(20,11) Min (IC) Beta(20,12) Min (DC) Beta(20,6)

R0 3.254 3.008 2.9424 2.9442 2.9555

Cumulative infection 1467001 1505561 768821 764826 1044222

Cumulative death 266300 231402 149687 156072 116915

Indonesia Optimal Distribution No vaccinating Uniform distribution Beta(1,1) Min (R0) Beta(20,12) Min (IC) Beta(20,12) Min (DC) Beta(20,3)

R0 3.121 2.9187 2.7831 2.7831 2.9647

Cumulative infection 5644001 3962601 2872691 2872691 4543218

Cumulative death 874500 745061 813181 813181 532543

https://doi.org/10.1371/journal.pone.0261236.t005
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significant opportunity to end the COVID-19 pandemic, but effective vaccination strategies

are essential if we want to quickly control the spread of the pandemic and return to pre-pan-

demic policies by the vaccine. However, due to the limited production capacity of the vaccine

at the present stage, the storage and transportation capacity of the vaccine is insufficient,

which cannot guarantee all the people who are willing to be vaccinated. According to the char-

acteristics of different populations, it is particularly important to develop a sequential vaccina-

tion strategy. With limited vaccine resources, we should try our best to minimize the number

of people affected and the damage caused by the epidemic. Therefore, people with underlying

diseases or high risk should be vaccinated first [43]. However, how to allocate vaccine

resources rationally after ensuring the vaccination of high-risk groups? In this study, we use an

SEIR modelling to investigate the optimal age-specific vaccination strategy. In contrast to the

previous literature, we use a continuous function, Beta distribution, to approximate the age-

specific vaccination distribution, so we can conveniently optimize the age distribution by min-

imizing Beta distribution parameters (α, β) at the three endpoints.

Fig 4. The contour plot of the three endpoints: The basic reproduction number (R0, 1st row), the cumulative

number of infections (IC, 2nd row) and the cumulative number of deaths (DC, 3rd row) for Brazil. The optimal

age-specific vaccination distributions for these three endpoints are shown in (b), (d) and (f) respectively.

https://doi.org/10.1371/journal.pone.0261236.g004
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Our results suggest that OAVD and vaccination priorities are different for different out-

comes. To minimize DC, vaccination should be given priority to the elderly, while vaccination

should be given priority to young people in order to minimize IC. This general principle can

vary from country to country due to the age structure of the population. For example, in

Fig 5. The contour plot of the three endpoints: The basic reproduction number (R0, 1st row), the cumulative

number of infections (IC, 2nd row) and the cumulative number of deaths (DC, 3rd row) for Indonesia. The optimal

age-specific vaccination distributions for these three endpoints are shown in (b), (d) and (f) respectively.

https://doi.org/10.1371/journal.pone.0261236.g005

Table 6. R0, IC and DC were inoculated in six sequences, China.

The sequence of vaccination R0 IC DC

2-3-4-1 3.437 1.15 × 105 2.71 × 104

2-4-3-1 3.437 1.16 × 105 2.69 × 104

3-2-4-1 3.58 1.15 × 105 2.66 × 104

3-4-2-1 3.58 1.139 × 105 2.66 × 104

4-2-3-1 3.61 1.175 × 105 2.65 × 104

4-3-2-1 3.61 1.17 × 105 2.68 × 104

https://doi.org/10.1371/journal.pone.0261236.t006
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China, preferential inoculation of middle-aged people can reduce IC and DC, which may be

due to the complex interaction between the age structure of the population and strong govern-

ment controls. Since the results for R0 and IC are similar, presumably because R0 is directly

related to the spread of infection.

With the availability of an effective vaccine, we can expect a rapid return to normal life and

regular social contact. However, in the vaccination stage, if the vaccination strategy most suitable

for the country is not formulated, it is easy to result a lot of medical resources are wasted. The

epidemic is not effectively controlled, which may lead to large-scale IC and DC, resulting in the

waste of vaccine resources. A good strategy is to focus on breakthroughs and think step by step.

In conclusion, our results suggest that the age structure of the population has a significant

impact on the effectiveness of age-specific vaccination strategies, and that the vaccination

sequence should vary with age outcomes. In the context of limited vaccine resources, different

age-priority guidelines for the general population need to be considered in order to control the

COVID-19 pandemic more effectively. In addition, different countries need to develop specific

vaccination strategies based on the age structure of their populations. The SEIR model of age

structure also analyzed the priority sequence of vaccination in different age groups, and com-

pared with simultaneous vaccination, better effects could be achieved for specific populations.

In order to get OAVD, we minimize the three endpoints. Although it may fall on the boundary

of the parameter (α, β) search space, it does not affect the priority of the inoculated population.

Vaccination strategies need to be further integrated with the effectiveness of the vaccine and

the effectiveness of other control measures. Novel coronavirus continues to mutate, with

South African and Brazilian variants lowering the protection rates of some vaccines. The

future direction of COVID-19 vaccine development is likely to be similar to the influenza vac-

cine strategy, which uses a polyvalent vaccine against the virus.
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