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Abstract
Objective: To examine biochemical differences in the anterior cingulate cortex (ACC) and insula
during the interictal phase of migraine patients. We hypothesized that there may be differences in
levels of excitatory amino acid neurotransmitters and/or their derivatives in migraine group based
on their increased sensitivity to pain.

Methods: 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS) data were acquired
at 4.0 Tesla (T) from the ACC and insula in 10 migraine patients (7 women, 3 men, age 43 ± 11
years) and 8 age gender matched controls (7 women, 3 men, age 41 ± 9 years).

Results: Standard statistical analyses including analysis of variance (ANOVA) showed no significant
metabolite differences between the two subject cohorts in the ACC nor the insula. However,
linear discriminant analysis (LDA) introduced a clear separation between subject cohorts based on
N-acetyl aspartylglutamate (NAAG) and glutamine (Gln) in the ACC and insula.

Conclusion: These results are consistent with glutamatergic abnormalities in the ACC and insula
in migraine patients during their interictal period compared to healthy controls. An alteration in
excitatory amino acid neurotransmitters and their derivatives may be a contributing factor for
migraineurs for a decrease in sensitivity for migraine or a consequence of the chronic migraine
state. Such findings, if extrapolated to other regions of the brain would offer new opportunities to
modulate central system as interictal or preemptive medications in these patients.

Introduction
Migraine is a neurobiologic disorder that affects about 27
million women and 10 million men in the US [1].
Migraine attacks manifest themselves from childhood

(usually 8–12 yrs.) to old age, with a decline among
women during the postmenopausal years. Migraine is a
unilateral throbbing headache that lasts 4–72 hours; it is
idiopathic, episodic and recurrent [2]. Although the

Published: 30 June 2009

Molecular Pain 2009, 5:34 doi:10.1186/1744-8069-5-34

Received: 14 May 2009
Accepted: 30 June 2009

This article is available from: http://www.molecularpain.com/content/5/1/34

© 2009 Prescot et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19566960
http://www.molecularpain.com/content/5/1/34
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Pain 2009, 5:34 http://www.molecularpain.com/content/5/1/34
causes of migraine are unknown, it is generally thought
that the pain originates from chemical activation of sen-
sory nerves that supply intracranial blood vessels and the
meninges [3]. However, the long-term consequences of
repeated intermittent attacks of acute migraine on brain
function, whatever the origin of the syndrome is, are not
well defined.

Two major unanswered questions in the field of migraine
relate to (1) Is there an underlying basis for the increased sen-
sitivity to various stimuli of the migraine brain during [4,5]and
even between [6-8]acute attacks? and (2) What is the under-
lying basis for the recent evidence suggesting that migraine,
may predispose to significant functional [9,10]and structural
changes [11-15]in the brain? One mechanism by which
both of these changes may take place is through altera-
tions in neurochemical systems in the brain that are aug-
mented by the repeated acute attacks. Such changes may
eventually drive the process on the evolution from acute
migraine to chronic daily headaches [16] and also the
resistance to drug therapy in the chronic daily headache
group [17]. By using magnetic resonance spectroscopy,
chemical changes in the brain can be measured in
patients. Here we have begun to explore this issue by try-
ing to define these changes during the interictal period in
acute intermittent migraine patients for reasons discussed
below. A definition of such chemical changes would pro-
vide a target for potential interictal therapies that may
decrease the severity and/or frequency of migraine and
provide a basis for evaluating changes that may take place
in the transition to chronic migraine.

A number of recent reports suggest alterations in the
interictal migraine brain based on changes in cerebral
blood flow [18-20] as well as changes in interictal cogni-
tive function in migraineurs with aura [21]. A wealth of
evidence, including measurements demonstrating
changes in physiological (i.e., evoked potentials) meas-
ures [22-24]), strongly supports the hypothesis of central
neuronal hyperexcitability as playing a key role in the
pathogenesis of migraine [25]. One potential mechanism
for neuronal excitability includes an abnormality of the
pre-synaptic release of excitatory amino acid neurotrans-
mitters. Although increased platelet [26,27] and plasma
[27,28] levels of neuroexcitatory amino acids including
aspartate (Asp), glutamate (Glu), Gln and glycine (Gly)
have been reported in migraine patients compared to
healthy control subjects [29], these changes are not always
good measures or indicators of changes of synaptic gluta-
mate in the brain. In addition, cerebrospinal fluid (CSF)
Gln, Gly and taurine (Tau) concentrations are elevated in
migraineurs [30] suggesting glutamatergic systems are
likely to be altered in the migraine brain. Indeed, given
that glutamate is the main excitatory transmitter in the
brain excess or under production of glutamate through
injury or disease can have pathophysiological effects. The

glutamate hypothesis for migraine has been discussed by
Ramadan [31] and reviewed recently by Vikelis and Mit-
sokostkas [32]. Increased synaptic concentrations of exci-
tatory amino acid neurotransmitters may lead to excessive
activity at the N-methyl D-aspartate (NMDA) Glu receptor
subtype, which may amplify and reinforce pain transmis-
sion in migraine and other types of headache. Indeed,
low-affinity NMDA receptor (NMDAr) antagonists, such
as memantine, have previously been shown to reduce fre-
quency of migraine and tension-type headaches [33].A
neuroimaging method capable of assessing potential
glutamatergic imbalances in the migraine brain in vivo
might provide key insights into the true nature of the neu-
rochemical impairment and to monitor its modulation
following pharmacotherapy.

1H-MRS is a potential candidate for investigating gluta-
mate systems in vivo although its application to migraine
is relatively sparse in the literature. Functional 1H-MRS
studies have focused predominantly on changes in the vis-
ual cortex [34-36]. Other 1H-MRS studies have evaluated
metabolite ratios in cluster headache in the hypothalamus
and show that N-acetyl aspartate (NAA) to creatine (Cr)
ratio is lower in patients with cluster headache vs. chronic
migraine or controls [37]. In addition, single-voxel 1H-
MRS studies have investigated potential cerebellar metab-
olite alterations demonstrating significantly decreased
choline (Cho) levels in migraine patients compared to
healthy controls [38]. A similar study detected decreased
cerebellar NAA and Glu concentration and increased
myo-inositol (mI) levels in familial hemiplegic migraine
patients [39]. More recently, a 3.0 T 1H-MRS study
reported differences in thalamic metabolite ratios in
migraine patients compared to healthy controls [40].

Most of these earlier studies employed conventional 1H-
MRS methodology at a low static magnetic field strength
of 1.5 T and none reported changes in multiple brain
regions. For the present study we evaluated brain chemis-
try using medium field 4.0 T 1H-MRS in two regions, the
ACC and the insula. In addition, we employed a variant of
single-voxel 2D J-resolved 1H-MRS method in an attempt
to further enhance spectral resolution and sensitivity, and
to provide access to the quantification of an increased
number of metabolites [41-43]. The brain regions were
selected as an initial focus on evaluating brain metabolites
in migraine patients for a number of reasons. The ACC is
involved in a number of behaviors [44-46] and is usually
implicated in most pain studies [47,48] including
migraine [49] and related cognitive components [50].
With respect to the latter it is considered to be involved in
reinforcement history [44] that may be relevant in
repeated episodes of migraine. The region has been pro-
posed as a model for understanding components of cen-
tral sensitization of pain [51]. As for the insula, the region
is involved in both pain [52] and emotional processing
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[53], including the unpleasantness of pain [54]. Given the
nature of the regions in sensory and emotional process-
ing, we hypothesized that differences in glutamatergic
metabolism would be observed when comparing spectral
data from patients and healthy controls.

Methods
Patients and Controls
The overall experimental approach is shown in Figure 1.
The local Institutional Review Board of McLean Hospital
approved this study (IRB), which met the criteria for
investigations in human subjects based on the Helsinki
Accord http://ohsr.od.nih.gov/guidelines/helsinki.html.
Patients presenting with acute episodic migraine (AEM; n
= 12) and healthy age (n = 8), gender matched controls
(HC) were recruited for the study.

Data Acquisition
MRI Procedures
All measurements were performed at McLean Hospital on
a Varian 4.0 T Varian Unity/INOVA whole body MRI scan-
ner (Varian Inc., Palo Alto, CA, USA). A birdcage design
radiofrequency (RF) head coil tuned to 170.3 MHz was
used for RF transmission and signal reception. Three
orthogonal gradient-recalled scout images were initially
obtained to ensure optimal head positioning within the
coil (TR/TE = 30/10 ms, field-of-view = 24 × 24 cm, matrix
= 256 × 128, slice thickness = 5 mm). Manual global
shimming subsequently was performed until the unsup-
pressed water resonance linewidth was £ 25 Hz. High-con-
trast, 3D mpFLASH (magnetization-prepared, fast, low-
angle shot) T1-weighted axial, coronal and sagital MR
images (TE/TR = 6.2/11.4 ms, FOV = 24 × 24 × 8 cm, in-
plane resolution = 0.94 × 1.88 mm, slice thickness = 5

mm, readout points = 512, flip angle = 11°) then were
acquired to more accurately delineate brain substructures
and to enable more accurate positioning of the spectros-
copy voxel within the region-of-interest (ROI).

MRS Procedures
For ACC 1H-MRS measurements, a cubic 8 cm3 voxel was
positioned within the predominantly midline gray matter
of the ACC (see Figure 2(a)). For insula measurements, a
cubic 8 cm3 voxel was positioned contralateral to the side
of the subjects headache (see Figure 2(b)). Automated
routines initially were used to optimize spatial localiza-
tion RF pulse flip angles for each ROI, and localized man-
ual shimming subsequently was applied to until the full
width at half maximum of the unsuppressed water-water
peak was £ 12 Hz. Water-water suppression was achieved
using a four-pulse WET module [55]; A modified PRESS
sequence was used for 2D J-resolved 1H-MRS acquisitions,
which utilized numerically optimized sinc RF waveforms
for excitation (duration = 3.0 ms; BW = 2850 Hz) and
refocusing (duration = 6.0 ms; BW = 1145 Hz). 2D J-
resolved 1H-MRS spectra were acquired from each ROI
using the following acquisition parameters (TR = 2000
ms, TE range = 30 – 260 ms, DTE = 10 ms, NEX = 16 per
TE, dummy scans = 4, 1024 complex points). Data
processing was performed offline with each of the 24 sub-
TEs being stored separately for preprocessing purposes.
The total measurement time for each 4.0 T study including
MRI, shimming and 1H-MRS procedures was approxi-
mately one hour.

Data Processing
Spectral Analyses
The 2D J-resolved time-domain data were transferred to a
personal computer and preliminary data pre-processing
and formatting steps performed using home-written code

Patient Enrollment and ScanningFigure 1
Patient Enrollment and Scanning.

Voxel Placement for Spectral AnalysisFigure 2
Voxel Placement for Spectral Analysis. Axial high-reso-
lution T1-weighted FLASH MR images recorded from a 42 
year-old male migraine patient showing a 8-cm3 spectroscopy 
voxel (black box) positioned within (a) the ACC and (b) the 
left insula.
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written in C programming language. The processing spe-
cifics were as follows. A raw 2D data matrix was con-
structed and zero-filled to yield a 2048 (F2) × 64 (F1)
matrix and a fast Fourier transformation subsequently was
applied to the 2048 column vectors along the F1 dimen-
sion. The 64 row vectors then were extracted from the
resulting interferrogram and each row was converted to
Linear Combination Model (LCModel) format for spec-
tral fitting and measurement of metabolite peak integrals
[56]; version 6.0-1). For spectral fitting with LCModel, we
utilized GAMMA-simulated [57] theoretical basis sets for
alanine (Ala), aspartate (Asp), choline (Cho), creatine
(Cr), N-acetyl-aspartate (NAA), N-acetyl-aspartyl-gluta-
mate (NAAG), g -aminobutyric-acid (GABA),, glutamine
(Gln), glutamate (Glu), glutathione (GSH), glycerophos-
phocholine (GPC), glycine (Gly), lactate (Lac), myo-
inositol (mI), phosphocholine (PC), phosphocreatine
(PCr), scyllo-inositol (sI), serine (Ser), and taurine (Tau).
We used GAMMA to generate 24 theoretical, TE-stepped
spectra ranging from 30 ms to 260 ms in 10 ms incre-
ments, and each GAMMA spectrum was modeled with a 2
kHz spectral bandwidth, 1024 complex pairs and a 2 Hz
Lorentzian lineshape. Each of the 24 spectra were zero
and first-order phased with no baseline roll. A formate
peak at 8.45 ppm and a 3-(trimethylsilyl)-1-propane-sul-
fonic acid (TSPS) reference peak at 0.0 ppm were also
modeled in order to mimic the standard LCModel stock
solution required for basis-set generation [58]. For each
GAMMA-simulated metabolite TE-series, we zero-filled
each complex time-point in each FID out to 128 TE points
and apodized with an exponential filter to approximate
the metabolite T2-decay at 4.0 T. These TE-specific metab-
olite FIDs were converted into separate LCModel basis sets
for each metabolite thus providing a means to quantify
the whole 2D surface of the in vivo datasets [59]. The
LCModel/GAMMA-derived 2D surface metabolite inte-
grals were normalized to the total Cr integral. 2D J-
resolved 1H-MRS-derived ACC metabolite:Cr ratio relia-
bility indices were taken from a previous study [59],
which employed the identical sequence and similar
parameters to that described for the present study. In brief,
ten healthy adult subjects (5 males and 5 females; ages
18–35) were scanned three times in a one week period,
except for two females whose third scan was 4 weeks later
at the same phase of the menstrual cycle. Within-subject
coefficients of variation (CV) were calculated as the stand-
ard deviation/mean of the three scans.

Image and Voxel Segmentation
All image analyses were performed using the freely-avail-
able FMRIB Software Library (FSL; for an overview see
[60]). Tissue segmentation of the 3D T1-weighted FLASH
MR images into grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) used FSL's fast automated
segmentation tool (FAST; [61]). The ACC and insula 8-

cm3 voxels subsequently were extracted from segmented
images using the FSL 'fslroi' tool, and voxel GM, WM and
CSF fractions were determined from the generated image
histogram.

Assessment of motion effects during 1H MRS
The duration of each TE-averaged 1H-MRS acquisition was
13 minutes for each brain region and subject/head
motion throughout the measurement was a potential con-
found between datasets and subject cohorts. Motion
effects would lead to modification of the local B0 field
over the ROI potentially leading to modulation of peak
linewidth throughout the 1H MRS scan. To evaluate
motion effects we measured the NAA 2.01 ppm methyl
proton signal linewidth for each of the 24 TE steps across
all subjects for both brain regions. The intrasubject mean
NAA peak linewidth then was calculated for both the ACC
and insula and the group mean FWHM values were statis-
tically compared (unpaired t-test). In addition, the
intrasubject NAA peak linewidth CV was calculated using
all 24 TE steps for both brain regions, and the group mean
CV values were evaluated (unpaired t-test).

Statistical Analyses
Standard statistical analyses including ANOVA were per-
formed using Origin version 7.5 (OriginLab Corp., North-
ampton, MA, USA). In addition LDA was used to evaluate
separability of the two subject cohorts (migraine and con-
trol) using metabolite measurements across the two
groups in each ROI. This method enables multivariate
extraction of differences between groups. Home-written
scripts were used for performing LDA analyses (MATLAB,
The Mathworks, Natick, MA, USA). For each ROI a set of
two metabolites were selected that had the best group dis-
crimination ability via a stepwise forward search using the
hotelling T2 statistic. We restricted our search to only two
responses so as to enable robust estimation of the LDA
covariance.

Results
Patients and Controls
As noted in Table 1, patients recruited all had migraine
and were compared with age-gender matched controls. Of
the 12 patients recruited, 1 dataset could not be used
owing to poor spectral quality. A second patient had also
been taking methylene sulfonyl methane (MSM) supple-
ments and a large-amplitude MSM-specific resonance was
observed at 3.1 ppm. Data from that subject was also
excluded from the final analyses.

MRI/MRS
Figure 2 shows the high-resolution axial MR images
recorded from a 32 year-old female migraine patient and
displays positioning of the spectroscopy voxel within the
(a) ACC and (b) left insula. The percentage (mean ± SD)
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of GM in ACC and insula was 69 ± 8% and 56 ± 5% (HC),
and 72 ± 6% and 59 ± 7% (AEM), respectively. The per-
centage (mean ± SD) of GM in ACC and insula was 69 ±
8% and 56 ± 5% (HC), and 72 ± 6% and 59 ± 7% (AEM),
respectively. Similarly, the percentage (mean ± SD) of WM
in ACC and insula was 16 ± 6% and 37 ± 5% (HC), and
15 ± 6% and 33 ± 5% (AEM), respectively. For both brain
regions, standard ANOVA showed that at the P < 0.05
level no significant differences in tissue content existed
between the two groups. However, the WM fraction was
significantly higher in the insula voxel compared to corre-
sponding ACC voxel for both subject cohorts (ANOVA: P
< 0.01).

For the control group, the FWHMs (mean ± SD) measured
for the unsuppressed water resonance were 9.75 ± 1.6 and
9.25 ± 1.0 Hz for the ACC and insula voxels, respectively.
For the migraine group, the FWHMs (mean ± SD) meas-
ured for the unsuppressed water resonance were 10.2 ±
2.0 and 10.0 ± 1.1 Hz for the ACC and insula voxels,
respectively. Figure 3(a) shows a 2D J-resolved 1H-MRS
representation of data acquired from the left insula in the
same subject. Figure 3(b) then shows a 1H-MR spectrum
(labeled 'Raw spectral data'), which was produced by
extracting a single row from the 2D J-resolved spectrum at
F1 = 0 HzThe scaled LCModel fits for thirteen individual
metabolites are displayed at the bottom of Figure 3(b)
and each metabolite fit is superimposed on a baseline cal-
culated by the LCModel software. Lipid contamination is
once again observed at and around 1.4 ppm although the

broad peak has been treated as a macromolecular reso-
nance and fitted by LCModel. The 1D and 2D 1H-MRS
data presented in Figure 3 is representative of the spectra
acquired from all brain regions in both subject cohorts.
The above information indicates high spectral quality and
therefore a basis for robust quantification via LCModel.

Assessment of Motion Effects during 1H MRS
Table 2 shows the group averaged NAA peak linewidth
and CV data for the ACC and insula MRS voxels in the
control and migraine patient populations. Note that the
group mean FWHM values appear higher than those pro-
vided earlier for the unsuppressed water resonance, an
observation that is likely due to signal contribution from
other metabolite resonances including Gln, Glu, GABA
and NAAG to the NAA 2.01 ppm resonance, which
increases the 'raw' NAA signal linewidth particularly for
the lower TE values. For each subject, the mean NAA peak
FWHM and linewidth CV calculations were computed
using all 24 TE steps (see methods section for more
details). It is clear from Table 2 that no statistically signif-
icant differences in NAA signal FWHM or its CV were
detected for both brain regions between the patient popu-
lations, inferring that any existing motion effects were
comparable between groups.

Statistical Analyses
Standard statistical analyses showed no significant metab-
olite differences between the two subject cohorts. How-
ever, by using LDA, we show that we can separate patients

Table 1: Epidemiology of Patients

Age Gender Migraine Frequency (per month) Migraine History (years) Migraine Prophylaxis

30 F 3 4 rizatriptan, ibuprofen aspirin/butalbital/caffeine 
acetominophen

49 F 2 – 3 28 eletriptan, naproxen aspirin/butalbital/caffeine topiramate

40 F 4 7 muscle relaxants

57 M 2 – 7 50 ibuprofen, amitriptyline caffeine/ergotamine fexofenadine

32 F 2 – 3 6 acetominophen

42 M 2 – 3 elitriptan, verapamil

58 F 2 – 3 45 naratriptan

51 M 3 45 sumatriptan, eletriptan acetominophen/aspirin/caffeine 
hydrocodone/ibupfrofen

28 F 4 – 8 12 indomethacin, naratriptan sumatriptan, eletriptan

47 F 2 10 omeprazole
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(a) Left Panel: 2D J-resolved 1H-MR spectrum recorded from the voxel shown in figure 2bFigure 3
(a) Left Panel: 2D J-resolved 1H-MR spectrum recorded from the voxel shown in figure 2b. Only the large singlet 
resonances are labeled at F1 = 0 Hz although information from J-coupled metabolites is spread over the 2D surface. The 2D 
spectrum is presented in magnitude mode for presentation purposes, and is characterized by two orthogonal frequency axes: 
chemical shift (F2) and J-coupling (F1) dimensions. Exponential apodization was applied along F2 (line broadening = 3 Hz) 
whereas a sinebell-squared apodization filter (30° phase-shifted) was applied along the F1 axis. The chemical shift axis has been 
expanded to show the 0.6 – 4.4 ppm region whereas the full J-coupling dimension (± 50 Hz) is presented. The dominating sin-
glet resonances corresponding to the NAA, total Cr and total Cho methyl groups are labeled and reside perpendicular to F1 = 
0 Hz (solid black line) at 2.0, 3.0 and 3.2 ppm, respectively. Lipid signals that probably arise due to chemical shift displacement 
are identified at and around 1.4 ppm (F1 = 0 Hz) and the total Cr methylene resonance is observed at 3.9 ppm. (b) Right Panel: 
LCModel analysis of a single row extracted from F1 = 0 Hz. The raw data, LCModel fit, residual and individual metabolite fits 
are displayed. It is important to note that the 1D 1H-MR spectrum is real data, which is the data type required for LCModel 
analysis. The LCModel fit (solid red line) for the F1 = 0 Hz extraction is overlaid on the raw data and the residual (LCModel fit 
minus raw data) is displayed at the top of the figure. The residual is free from large subtraction artifacts and clearly illustrates 
the high-quality spectral fit achieved using the described quantification methods. Data extracted from the center of the F1 
dimension in this manner is entirely equivalent to signal averaging all 24 TE steps, a procedure often referred to as TE-averag-
ing. TE-averaged 1H-MRS spectra typically show the large singlet methyl (CH3) resonances of NAA, total Cr and total Cho with 
significant attenuation of resonances J-coupled metabolite species. (see text for more details).
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vs. controls as shown for the ACC and insula in figures
4(a) and 4(b), respectively The classification is achieved
using the metabolites NAAG and Gln for both brain
regions, and the within-subject CV's for these particular
metabolites were 23 and 21%, respectively. For each ROI,
we also assessed the statistical accuracy of the estimated
LDA coefficients using a bootstrap calculation [62]. The
sampling unit for bootstrap included the set of metabolite
measurements and a group label (migraine/control) sam-
pled with replacement from the original data. We fitted
the LDA model to each bootstrap data set and calculated
a distribution of the LDA coefficient value for each metab-
olite. This distribution was then used to estimate the prob-
ability of LDA coefficient values being positive or
negative. Small values of the coefficient being positive
indicate a statistically significant negative coefficient and
vice versa. Figures 4(c) and 4(d) show the bootstrap calcu-
lations for the ACC and insula, respectively. Since LDA
allows for the simultaneous comparison of observables
the approach allows us to utilize brain metabolite ratio's
to establish differences between cohorts i.e., migraine and
healthy controls.

Discussion
Here we report novel differences in 1H-MRS defined levels
of metabolites in the ACC and insula measured in the
interictal period of migraine patients. Although conven-
tional descriptive statistics yielded no differences on the
analysis of the spectra, a LDA demonstrated significant
differences between migraine subjects and age-gender
matched controls. This type of analysis allows for the
determination of discrimination of two or more groups
(e.g., migraine vs. healthy) based on Cr-normalized levels
of specific metabolites. This analysis separated out a rela-
tionship between NAAG and Gln within the ACC and
insula during their interictal period. NAAG is the most
abundant peptide neurotransmitter in the mammalian
CNS [63] being synthesized exclusively in neurons from
NAA and Glu by NAAG synthetase. In addition to its role
as a neurotransmitter, NAAG is a source of Glu [64] and
like NAA is thought to play a role as a major osmolyte in
the vertebrate brain [65,66]. Glutamine on the other hand

is synthesized exclusively in glial cells from Glu and
ammonia by the enzyme glutamine synthetase. Subse-
quently, Gln is released back into the extracellular space,
shuttled back into neurons and converted to Glu by
glutaminase. The Glu that is regenerated may then go on
to play a direct role in excitatory neurotransmission,
packed and stored in vesicles or incorporated into NAAG.
An intriguing observation in the present study is the LDA-
detected classification of migraine patients and control
subjects for two different brain regions based on NAAG
and Gln, which are closely linked by this excitatory neuro-
transmitter system. Interestingly, the ACC and insula LDA
plots show oppositely signed gradients, an observation
that might be explained by (i) the significant tissue type
differences within ACC and insula voxels detected by
image segmentation and (ii) the known uneven distribu-
tion of Gln and NAAG throughout the brain and within
brain tissue type [67]. The measured changes in these exci-
tatory amino acid neurotransmitters (NAAG) and related
species (Gln) provide some insights into altered central
nervous system (CNS) mechanisms in migraine and may
contribute to abnormal CNS processing including
changes during the migraine state (e.g., process of central
sensitization [68,69], progressing from acute episodic to
chronic/daily migraine [70] or abnormalities during the
interictal period [71-74]. We did not detect direct differ-
ences in Glu levels between controls and migraine
patients although preferential storage of excess synaptic
Glu in the form of Gln and/or NAAG might explain com-
parable Glu levels within the two cohorts. Note that a pre-
vious 1H-MRS study showed decreased cerebellar Glu
levels in migraine patients compared to healthy controls
[39] yet similar cortical 1H-MRS findings have not been
reported to date.

A growing body of preclinical and clinical data supports
the notion of aminergic dysfunction in migraine head-
ache including alterations in both the glutamatergic and
glutaminergic systems [31,32]. For example, NMDA
receptor antagonists inhibit cortical spreading depression
in the rat brain [75]. Cerebrospinal fluid [76] and plasma
[27] Glu and Gln levels are increased in chronic migraine

Table 2: Assessment of NAA peak linewidth

Subject Cohort Brain Region FWHM (Hz; Group mean ± SD) CV (%; Group mean ± SD)

Migraine ACC 18 ± 5.1† 19.4 ± 4.6††

Control ACC 18 ± 3.7† 19.1 ± 5.2††

Migraine Insula 15.3 ± 8.3* 29.3 ± 14.1**

Control Insula 17.9 ± 3.7* 34.5 ± 12.4**

(see text for details; †P = 1; ††P = 0.91; *P = 0.51; **P = 0.36)
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patients, although no such data is available for episodic
migraine (i.e. our population). It has been postulated that
increased brain Glu leads to cortical hyperexcitability typ-
ical of migraine [77,78] and potential pharmacological
targets for migraine therapy include the ionotropic
(NMDA, AMPA and kainate) and metabotropic glutamate
receptor antagonists [79]. The use of a tridimensional per-
sonality questionnaire in migraine and tension-type head-
ache clinical sub-populations has shown that
glutaminergic dysfunction might also be a specific feature
associated with migraine headache [80]. The develop-
ment of novel pharmaceutics that can modulate the
glutaminergic system and block central and peripheral
sensitization might be efficacious for treating migraine. It

is also worth noting that, although little is known in the
literature for a potential role of NAAG in migraine, there
may be a potential role for NAAG antagonists (via
mGluR3 receptor blockade) for the therapy of migraine.

A number of reports indicate that modulation of the
glutamatergic system in the ACC takes place following
pharmacological or sensory manipulation. Alterations in
ACC neurons may be dependent on prior events that
change or modulate neuronal activity. For example, drugs
may decrease levels of glutamate in the ACC [81] and exci-
tatory synapses into the ACC are in part NMDA mediated
changes in this region [82]. In addition, amputation of a
hind paw digit in rats results in a loss of activity-depend-

Linear Discriminant Analysis (LDA)Figure 4
Linear Discriminant Analysis (LDA). (a) The figure depicts 2 metabolite ratios (e.g., NAAG/Cr and Glu/Cr) that separate 
controls from migraineurs through the black line in the cingulate. (b) Similar data is shown for the insula. (c) and (d) show a 
bootstrap calculation for assessment of statistical accuracy of the estimated LDA coefficients for the ACC and insula, respec-
tively.
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ent long-term depression in the ACC [83] and potentia-
tion of sensory responses [84]. NMDA receptors in the
ACC mediates pain-related aversion [85]. Thus, in
migraine patients either as a result of intermittent pain or
medications, ACC glutamatergic impairment would
account for an increase in activation in this region. In data
from another report we observe increased sensitivity in
the descending modulatory systems in the brainstem in
interictal migraine patients vs. controls [86]. In functional
imaging studies of pain, activation in the insula is
observed and it has been suggested that the region has
important contributions to both pain and emotional
processing [87,88]. However, 1H-MRS detected changes in
this region in the interictal period have not been reported.

For the present study, we chose to use a 3D localized var-
iant of J-resolved 1H-MRS, a method that has been shown
to enhance spectral resolution at several field strengths
including 1.5 T [42,43], 3.0 T [89] and 4.0 T [90].
Increased spectral resolution is achieved as J-coupled
metabolite resonances are effectively spread over a 2D sur-
face whereas uncoupled peaks remain along F1 = 0 Hz.
Glutamine contains a single methine (CH; 3.75 ppm) and
two methylene (CH2; 2.1 and 2.4 ppm) groups and each
proton resonance is split owing to J-coupling effects [91].
It follows that, for 2D J-resolved 1H-MRS data, glutamine
shows multiple proton resonances across the 2D surface.
In combination with LCModel fitting and GAMMA-simu-
lated basis sets, we use information from the whole 2D
datasets and this approach further improves multiple-
metabolite quantification of 2D 1H-MRS data. Recently
we applied these methods in vivo and demonstrated their
utility for reliably measuring brain glutamate and
glutamine levels [59]. NAAG, a dipeptide composed of
NAA and Glu joined by a peptide bond, also benefits from
the 2D 1H-MRS approach. The major resonance of NAAG
is its CH3 resonance at 2.04 ppm that appears as a shoul-
der on the dominating NAA CH3 2.0 ppm peak. In con-
ventional 1H-MR spectra, this chemical shift region is
further complicated by underlying J-coupled resonances
of Gln, Glu and GABA, and a major advantage of 2D J-
resolved data is the fact these J-coupled metabolite reso-
nances are shifted away from the F1 = 0 Hz axis. This yields
a cleaner chemical shift region that is essentially com-
prised of NAA and NAAG CH3 singlet peaks, both of
which are more reliably fitted by the described LCmodel
template and fitting procedures.

It is certainly true that MRS studies are limited by the rel-
atively low SNR of the spectra and some studies of chronic
pain patients have noted larger between group differ-
ences. However, the methods that were employed in the
present study were designed to allow the detection and
quantitation of a larger number of lower concentration
metabolites. This has to make observations that would

not have been possible using more standard methods. In
addition the interictal migraine group may differ from the
chronic pain state in that it produces prolonged and con-
tinuous brain changes that manifest in profound struc-
tural [15] and functional changes [92,93].

Conclusion
Our results have examined changes in biochemical con-
centrations in two brain regions in which we report some
abnormal relation between a pair of peaks in only two
brain regions. Nevertheless, the approach may be used for
determining an underlying alteration in the biochemical
dysfunction in this group of migraine patients would
allow for specific therapeutic interventions that may nor-
malize these changes in the interictal period rather than
current approaches of treating migraine during the ictal
period [94,95].
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