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Alterations to interactions between networked brain regions underlie cognitive
impairment in many neurodegenerative diseases, providing an important physiological
link between brain structure and cognitive function. Previous attempts to characterize
the effects of Parkinson’s disease (PD) on network functioning using resting-state
functional magnetic resonance imaging (rs-fMRI), however, have yielded inconsistent
and contradictory results. Potential problems with prior work arise in the specifics of
how the area targeted by the diseases (the basal ganglia) interacts with other brain
regions. Specifically, current computational models point to the fact that the basal ganglia
contributions should be captured with modulatory (i.e., second-order) rather than direct
(i.e., first-order) functional connectivity measures. Following this hypothesis, a principled
but manageable large-scale brain architecture, the Common Model of Cognition, was
used to identify differences in basal ganglia connectivity in PD by analyzing resting-state
fMRI data from 111 participants (70 patients with PD; 41 healthy controls) using Dynamic
Causal Modeling (DCM). Specifically, the functional connectivity of the basal ganglia
was modeled as two second-level, modulatory connections that control projections
from sensory cortices to the prefrontal cortex, and from the hippocampus and medial
temporal lobe to the prefrontal cortex. We then examined group differences between
patients with PD and healthy controls in estimated modulatory effective connectivity
in these connections. The Modulatory variant of the Common Model of Cognition
outperformed the Direct model across all subjects. It was also found that these second-
level modulatory connections had higher estimates of effective connectivity in the PD
group compared to the control group, and that differences in effective connectivity were
observed for all direct connections between the PD and control groups.We make the
case that accounting for modulatory effective connectivity better captures the effects
of PD on network functioning and influences the interpretation of the directionality of
the between-group results. Limitations include that the PD group was scanned on
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dopaminergic medication, results were derived from a reasonable but small number of
individuals and the ratio of PD to healthy control participants was relatively unbalanced.
Future research will examine if the observed effect holds for individuals with PD scanned
off their typical dopaminergic medications.

Keywords: common model of cognition, resting-state fMRI, Parkinson’s disease, dynamic causal modeling, basal
ganglia

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative syndrome that
targets predominantly dopaminergic neurons in the substantia
nigra pars compacta (SNc; Dauer and Przedborski, 2003;
Jankovic, 2008). As the SNc provides dopamine to the striatum
along the nigrostriatal pathway, a decrease in dopamine results
in dysfunctional basal ganglia function. Reduced dopamine
input to the basal ganglia has been associated with impaired
motor function, specifically in neurodegenerative diseases like
PD. Contemporary accounts of basal ganglia function (Frank
et al., 2004; Stocco et al., 2010) suggest that they work by
controlling, or ‘‘gating’’, the influx of signals from other cortical
areas to the prefrontal cortex. The basal ganglia achieve this via
two main pathways, commonly referred to as the direct and
indirect anatomic pathways. The direct anatomic pathway has
an excitatory effect on the prefrontal cortex and is composed
of striatonigral neurons expressing D1 receptors. The indirect
anatomic pathway has an inhibitory effect on the prefrontal
cortex and is composed of striatonigral neurons expressing
D2 receptors. Both D1 and D2 receptors are modulated
by dopamine but have opposite responses in line with the
pathways in which they reside; dopamine has an excitatory
effect on D1 receptors, and an inhibitory effect on D2 receptors.
In PD, depletion of dopamine to the striatum translates
into an upregulation of the indirect anatomic pathway and
downregulation of the direct anatomic pathway, resulting in
more conservative gating of cortical signals to the prefrontal
cortex (Albin et al., 1989). In terms of the brake–accelerator
model, there is a tendency to favor the brake over the accelerator
(Albin et al., 1989; DeLong, 1990). Further understanding of
basal ganglia function in PD is vital to interpret themechanism of
the disorder and its effect on functional connectivity in the brain.

Although it is most intuitive to think about measuring
network function during tasks (when cognitive networks are
specifically recruited), most brain activity occurs spontaneously
and in the absence of specific stimuli and reflects activity in
task networks. Functional magnetic resonance imaging (fMRI)
measures brain activity by detecting changes associated with
blood flow which is coupled with neuronal activation. Blood
flow to a brain region increases when that region is in use.
Resting-state fMRI (rs-fMRI) is integral in the identification
and investigation of networks within the brain. rs-fMRI consists
of continuous recordings of brain activity while participants
are awake, but not engaged in any task. Analysis of rs-fMRI
data has shown that intrinsic activity has a rich spatiotemporal
structure, reflecting how networks of cortical regions combine
and recombine over time. These networks inform us about

the innate rhythms and oscillations in healthy and disordered
brains, and abnormality in the dynamics of these networks
has been reliably associated with neurodegenerative diseases,
psychiatric disorders, and aging (Sambataro et al., 2010;
Hohenfeld et al., 2018).

Despite the previous success of rs-fMRI in related disease
and aging fields, attempts to characterize the effects of PD on
network functioning using rs-fMRI have yielded inconsistent and
contradictory results. While somestudies did identify functional
connectivity abnormalities related to the basal ganglia (Hacker
et al., 2012; Szewczyk-Krolikowski et al., 2014), other studies
failed to do so (Amboni et al., 2015; Gao and Wu, 2016) even if
the disease originates precisely in this circuit. We hypothesized
that a potential problem with prior work is the difficulty of
capturing the specifics of second- order interactions. Initial
choices made about how functional connectivity is analyzed
have important consequences for their ultimate outcome. For
example, the most common approach in functional connectivity
analysis relies on measuring pairwise correlations between pairs
of regions; the degree to which changes in metabolic activity in
one region occur in synchrony with changes in activity in another
region is taken as a proxy of their functional relatedness (Göttlich
et al., 2013; Baggio et al., 2015). If, however, the function of
the basal ganglia is to gate signals between cortical regions, then
pairwise correlations are unlikely to discover any abnormalities.
Rather, abnormal basal ganglia function would manifest itself
in second-order effects, with changes in basal ganglia activity
associated with changes in the correlations between regions.
Therefore, measures of cortico-cortical connectivity are biased
by underlying patterns of basal ganglia activity. This has been
empirically verified in patients with PD (Hammond et al., 2007;
Schroll and Hamker, 2013; Lebedev et al., 2014).

These second-order modulatory effects require a different
methodological approach. One such method is Dynamic Causal
Modeling (DCM; Friston et al., 2003). DCM estimates effective
(that is, directional) connectivity between pairs of regions by
iteratively refining the parameter estimates of a dynamic system,
in which brain regions are approximated as neural mass points.
DCM is a generative technique: it proceeds from an initial
network based on a selected theoretical model of cognitive
function, and iteratively refines its connectivity parameters until
they are best matched with the observed time courses. The
relationships between the network nodes can include both first
order (direct) and secondorder (modulatory) connections, thus
making this method uniquely adapt to the case of PD.

The power afforded by DCM, however, comes at a price.
In contrast to most functional connectivity analyses, DCM is
a purely ‘‘top-down’’, model-based technique, and requires an
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initial theoretical model of network connectivity that is fit to
the data.

Because final estimates of connectivity depend on the larger
network model in which a connection is embedded, we adopted
a minimal but reasonable and biologically plausible network
architecture that captures the large-scale interactions between
brain regions. The selected model is named the Common
Model of Cognition (CMC; Laird et al., 2017), and representsa
consensus architecture for general intelligence that serves as a
blueprint to understand the organization of a human-like mind
(Laird et al., 2017). There are five functional components in
the CMC that can be mapped to anatomical regions: long-term
memory (hippocampus and medial temporal lobe, MTL),
working memory (prefrontal cortex, PFC), procedural memory
(basal ganglia, BG), perception systems (visual, auditory, and
sensory cortices, SENS), and action systems (motor cortex,
MC; see Figure 1A). Although the CMC is a purely functional
architecture, whose components are characterized in terms of
abstract computations, researchers havemapped the components
of the CMC onto homologous brain regions (see Figure 1B)
and translated the relationships between CMC components
onto predicted patterns of functional connectivity (Steine-
Hanson et al., 2018; Stocco et al., 2018). An investigation
usingmultiple neuroimaging recordings from 200 individuals
in the Human Connectome Project (Sibert et al., 2021) has
shown that, when used as a network model for connectivity
analysis, the CMC provides a better fit to the data than any of
12 other large-scale architectures (six based on a hierarchical
organization and six based on a ‘‘hub-and-spoke’’ network
design) derived from the literature. Furthermore, the CMC’s
provided a superior across six different tasks spanning different
domains (working memory, relational reasoning, decision-
making, emotional processing, language, social cognition), a fact
that confirms its wide applicability as a large-scale, systems-level
neural architecture.Thus, by estimating the effective connectivity
of the basal ganglia within the larger network of the CMC, we are
maximizing the rigor of the analysis and the generalizability of
our conclusions.

Importantly, the CMC provides theory-driven hypotheses
about the functional relationship between brain regions with
clear connections to PD. The loss of dopamine neurons in
PD has cognitive consequences that can be computationally
characterized (Frank et al., 2004) and successfully modeled in
cognitive architectures (Stocco, 2018).

Two variations of the CMC have been put forward that
reflect two theories of basal ganglia function. The first is the
Direct CMC (not to be confused with the direct anatomic
pathway), in which all regions of interest (ROIs) are directly
connected, and effective connectivity is measured across these
direct connections (see Figure 2B). The second is theModulatory
CMC, which incorporates additional assumptions that capture
our modern understanding of the basal ganglia, the brain region
associated with the CMC’s procedural memory component. This
model replaces the direct connection between the BG to the
PFC with two second-level, modulatory connections that control
projections from the MTL to the PFC and from the SENS
to the PFC (see Figure 2A). Although both implementations

are in principle compatible with the tenets of the CMC (Laird
et al., 2017), the use of modulatory connections reflects a
contemporary functional interpretation of the role of the basal
ganglia; according to this view, the basal ganglia do not directly
manipulate the contents of working memory, but rather ‘‘gate’’
(Frank et al., 2004) or ‘‘route’’ (Stocco et al., 2010) information
from other areas to the prefrontal cortex. It is important to note
that, in this context, the term ‘‘modulatory’’ only refers to the
non-linear, multiplicative effect of the basal ganglia on cortico-
cortical connectivity. This effect captures the complex interplay
of cortico-cortical and thalamo-cortical synaptic activity within
a mathematical formalism, and should not be confused with
the neuromodulatory effect of dopamine: although dopamine
is depleted in PD, its neuromodulatory effect in the basal
ganglia is not supposed to be altered by the disease, and is not
captured at the level of analysis of functional connectivity. A
recent re-analysis of the data of the HCP study that showed
the superiority of the CMC (Sibert et al., 2021) provided
preliminary evidence that, at least in healthy young adults, the
modulatory version of the CMC provides a better fit than its
direct, non-modulatory counterpart.

Based on the existing literature, two hypotheses were
examined:

Our first hypothesis is that the DCM analysis will confirm
that the Modulatory CMC will provide a better fit to the
fMRI data than the Direct CMC, across all participants. This
hypothesis is suggested by the fact that the modulatory model
better captures the functional role of the basal ganglia, as seen
in contemporary computational models (Frank et al., 2004;
O’Reilly and Frank, 2006).

Our second hypothesis is that, within theModulatorymodel, a
difference will be found between PD patients and controls in the
parameters that describe modulatory connectivity. Specifically,
we predict that modulatory signals will be weaker in PD patients
than in controls. This hypothesis follows from our knowledge
that PD restricts the gating of cortical signals to the prefrontal
cortex (Albin et al., 1989), which, in DCM, would be reflected in
a lower or negative value of the BG modulatory connections.

MATERIALS AND METHODS

Participants
Participants were recruited from a larger, multimodal study of
functional networks in typical PD. As part of a comprehensive
protocol involving EEG and MRI, 113 participants received
a resting fMRI scan. Participants were monitored using
eye-tracking for wakefulness. Of these, two participants were
excluded based on a diagnosis of dementia (PD = 2). Among
the 111 remaining participants (PD: N = 70, Age = 67.92 ± 8.12,
Female = 26; Controls:N = 41, Age = 69.87± 8.92, Female = 16),
106 were also enrolled in the Pacific Udall Center (PUC)
Clinical Core. The PUC PD group was ascertained by referral
from local neurologists and the Washington State Parkinson
Disease Registry (WPDR; Kim et al., 2018). All participants
from the PUC PD group who were included in this study met
UK Parkinson’s Disease Society Brain Bank clinical diagnostic
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FIGURE 1 | (A) Architecture of the Common Model of Cognition (CMC), as described by Laird et al. (2017). (B) Theoretical mapping between CMC components
and homologous cortical and subcortical regions.

FIGURE 2 | Illustration of the signal flow for the Modulatory and Direct Model. (A) In the Modulatory Model, the basal ganglia modulate the signals flowing through
incoming connections to the prefrontal cortex. The connection between the prefrontal cortex and basal ganglia is unidirectional with no direct connection from the
basal ganglia to the prefrontal cortex. Short arrows highlight the directionality of the modulatory connections. (B) In the Direct Model, the basal ganglia have a direct
(and bidirectional) connection to the prefrontal cortex. The circled arrow highlights the connection that is only present in the Direct model. Regions are labeled as
follows: 1. Motor cortex, 2. Prefrontal cortex, 3. Basal ganglia, 4. Hippocampus and medial temporal lobe, 5. Visual, auditory, and sensory cortices.

criteria for PD (Goetz et al., 2007). All members of the PUC
control group had no signs of Parkinsonism on examination.
No such data were available from the five participants (PD = 4,
non-PD = 1) who did not take part in the PUC Clinical
Core and their diagnosis of PD was provided by a movement
disorder specialist (PD = 1) or by community neurologists
(PD = 3). All patients with PD were judged to have early or
mid-stage idiopathic PD, as evidenced by a Hoehn & Yahr
stage of 3 or less. The control group included spouses of PD
patients, community volunteers, and participants designed as

‘‘controls’’ in the WPDR. All PUC participants underwent: (1) a
neurological examination and the Movement Disorder Society-
sponsored revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) PartIII (Gibb and Lees, 1988) performed by
a movement disorder neurologist, (2) detailed cognitive testing
includes the Montreal Cognitive Assessment (MoCA), and (3) a
structured interview to collect data on demographics, medication
use, and clinical history.

Data collected from PUC participants were discussed at a
diagnostic consensus conference to assign a cognitive diagnosis
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(normal or dementia) using procedures previously described
(Cholerton et al., 2013). Two participants with PD were
diagnosed at a consensus with dementia. PD and control groups
did not differ significantly in cognitive testing using the MoCA
(PD: MoCA = 26.18 ± 2.27, Controls: MoCA = 26.30 ± 2.89,
p = 0.83).

Participants with PD completed the fMRI measurements
while on their prescribed PD medications. Of the 67 participants
with PD, 15 were taking levodopa without a dopamine agonist,
two were taking dopamine agonists without levodopa, 44 were
taking both levodopa and a dopamine agonist, one was taking
levodopa, a dopamine agonist, and a cholinesterase inhibitor,
and five were taking neither levodopa nor a dopamine agonist.
Levodopa equivalent daily dose (LEDD) was collected for all
participants.

This study was approved by the University of Washington
Institutional Review Board and all participants provided written
informed consent.

Image Acquisition and Processing
MRI data were acquired on a research-dedicated 3T Philips
Achieva whole-body scanner (Philips Medical Systems, R5.1.7)
with a 32-channel SENSE head coil at the Integrated Brain
Imaging Center of the University of Washington, Seattle.
Functional data were acquired while participants were instructed
to lay quietly and focus on a fixation cross, using a
gradient echo-planar multi-echo pulse sequence with TR = 2,
500 ms, a 79◦ flip angle, and TE = 9.5/27.5/45.5 ms.
Multi-echo recordings allow for increased sensitivity and
a reduced number of artifacts (Power et al., 2018). Each
volume acquisition consisted of 37 oblique axial slices,
each of which was 3.5 mm thick with 0-mm gap and
contained 64 × 64 voxels with an in-plane resolution of
3.5× 3.5 mm.

Two sets of functional neuroimages were acquired, one
continuous run of resting-state data and one of the task-based
data. During the task-based data, participants performed
multiple trials of a visual discrimination task. The task-based data
was only used to identify group-level seed coordinates for the
main nodes in the connectivity network examined in the resting
state data, and will not be analyzed here (Barch et al., 2013).

During the resting state data, participants were asked to keep
their eyes open while a fixation cross was presented on the screen,
and were not required to engage in any specific cognitive activity.

In addition to functional images, a T1-weighted structural
scan was acquired as an anatomical reference (1-mm isotropic
multiecho MP-RAGE: Sagittal TR = 10.019 ms, TE = 4.61 ms,
FoV = 260× 260× 189.6 mm, and an 8◦ flip angle).

Resting-state fMRI data were processed using a combination
of FSL, AFNI, and SPM. Functional data underwent slice-timing
correction, motion correction and realignment, removal of
baseline drift, and then spike detection and removal. From there
the data were co-registered to the skull-stripped T1-weighted
structural scan, normalized to the MNI ICBM152 stereotactical
space, and smoothed using a 3D Gaussian filter with 8-mm
full-width half maximum.

Bilateral Regions of Interest
The ROIs were selected by translating CMC components
into anatomical regions. To characterize each component, the
ROI coordinates were selected based on the functional data
of an attention-based task from the same participants that
were collected as part of the larger study, thus accounting
for individual differences in functional neuroanatomy (Stocco
et al., 2021). This procedure proceeds by first identifying the
candidate regions in a group-level analysis of all data. To
account for individual differences in functional neuroanatomy,
the coordinates of each ROI were localized on an individual brain
by identifying the peak of functional activity that is closest to
the centroid of the group-level ROIs. The distribution of the
centroids of the individual-level ROIs is visually represented in
Figure 3. Departing from our previous work that has focused
on left-hemisphere regions (Friston et al., 2003), this study
used bilateral, instead of unilateral ROIs. Bilateral ROIs were
obtained by combining homologous regions in the left and right
hemispheres. By averaging hemispheric regions, we can better
capture full-brain effects in PD. As part of the attention-based
task, almost all participants used their right hand to respond to
the task stimuli and left-hand activity was not present. Therefore,
all ROIs were bilateral except for the Action ROI which was
lateralized to the left hemisphere.

Dynamic Causal Modeling Definition
DCM is composed of both a neural model, that receives
experimental stimuli and predicts the underlying dynamics
of brain activity, and an observational model, that takes in
the predicted underlying dynamics and outputs predictions of
observed brain activity. In the case of fMRI, the neural model is
given regions of interest (ROIs) and represents the time course of
activity in each region i as a nonlinear state equation:

ẏ = Ay+ Cx+
∑
i

yi D(i)y

Equation 1. Nonlinear state equation of the neural model
using DCM.

In this equation, A defines intrinsic connectivity between
different regions (fixed connectivity), C defines effects by task
inputs, D defines the modulatory effects that regions have on the
connections between other regions, x defines task inputs, and y
defines brain activity.

The observational model is composed of a hemodynamic
model that uses neural activity to cause changes in blood
flow, which in turn causes changes in blood volume and the
amount of deoxyhemoglobin. From there, the volume of blood
and deoxyhemoglobin concentration are entered into an output
nonlinearity and give rise to an observed BOLD response (Friston
et al., 2003).

Dynamic Causal Modeling Comparison
DCM was the preferred methodological approach to apply
the CMC over other approaches such as Structural Equation
Modeling (SEM) and Granger Causality Modeling (GCM) for
three reasons. First, it can account for the temporal dynamics of
an fMRI time-series, whereas SEM cannot (Friston, 2011). This
is important as without temporal dynamics the data is effectively
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FIGURE 3 | Location of the centroids of each individual ROI. Each point represents the centroid of one ROI; variations in the centroids account for individual
differences in functional anatomy.

reduced by one dimension, leaving out a significant source of
variability. Second, it allows us to better model directed causal
influences, which are implied in the directed arrows between
CMC components (Figure 1A). Although GCM can disentangle
the direction of influence, DCM has proven superior at dealing
with the variable nature of the BOLD response timing (Friston,
2009). Finally, DCM, but neither SEM nor GCM, is capable of
modeling second-order interactions between nodes in a network,
i.e., cases in which a region modulates the connectivity between
two other regions. This specific case, as it will be shown, is of
particular interest in PD, as it plays a significant role in capturing
the nature of basal ganglia function.

First-Level Model Setup
The application of DCM to rs-fMRI posed a significant challenge
because during rs-fMRI there is no task to be performed nor
significant external events driving brain activity. Without any
task conditions or an external input to initiate network dynamics,
and therefore a null C matrix, the DCM would simply remain
uninitialized with all parameters left at the default values.

Friston et al. (2014) circumnavigated the problem by creating
a deterministic DCM. Their version of resting-state DCM
estimates effective connectivity based on second-order statistics
rather than on the time-series of activation. This transforms
analysis from the computationally expensive issue of estimating
hidden neuronal states to the more efficient problem of
estimating the spectral density of activity changes (Friston et al.,
2014). While more computationally efficient, by using second-
order statistics their method can no longer capture temporal
dynamics in the estimation of effective connectivity. For this
reason, we adopted an alternative procedure proposed by Di and
Biswal (2014).

One of the characteristics of resting-state brain activity is the
presence of spontaneous correlations at very low-frequencies,
which organize brain networks along different rhythms (Fox
et al., 2005). Stephan et al. (2009) explicitly modeled these
low-frequency fluctuations (LFF) within the resting-state signal
using deterministic inputs. Because this study similarly dealt with
rs-fMRI, we borrowed the procedure developed by Di and Biswal

(2014), making use of a total of eight boxcar regressors derived
from sine waves of different frequencies and phases (Figure 4).
We used periodic sine and cosine functions at 0.01, 0.02, 0.04,
and 0.08 Hz as task conditions for the C matrix. As drivers
for activity in DCM cannot be partial, the periodic functions
were transformed into boxcar functions. There were two boxcar
functions for each frequency with a 90 degree lag in between, at
cycles of 100, 50, 25, and 12.5 s. The boxcars were used as input to
every node in the analysis replacing traditional task-based inputs.

CMC Implementations for PD
As the correct interpretation of the role of the basal ganglia
within the CMC is crucial to understanding PD, two different
interpretations of the CMC were explored and tested across the
full set of participants.

In the first model, the Direct CMC, all ROIs that are directly
connected (see Figure 1A) are implemented as patterns of direct
connectivity (i.e., matrix A). The remaining model parameters
in A in which there are no direct connections are set to 0.
Matrix D is set equal to 0 when fitting the DCM for this
model because no modulatory effects are examined. Critically,
the BG directly projects to the PFC (Figure 2B), reflecting the
assumption that procedural knowledge directly manipulates the
contents of working memory.

The second model, the Modulatory CMC, incorporates
additional assumptions that capture our modern understanding
of the basal ganglia, the brain region associated with the CMC’s
procedural memory component. As its name implies, this model
replaces the direct connection between the BG to the PFC
with two second-level, modulatory connections that control
projections from the MTL to the PFC (Connection 1), and
from the SENS to the PFC (Connection 2; Figure 2A). These
connections imply the basal ganglia’s modulatory involvement
from the temporal lobe and the sensory, auditory, and visual
brain regions to the parietal and dorsal prefrontal cortex.
Dysfunction in the modulation of these connections could be
explanatory for symptoms in the PD group. Thus, in this model,
the connection between Procedural and Working Memory in
A is set to 0, and the modulatory connections representing
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FIGURE 4 | (A) Illustration of how low-frequency fluctuations were transformed into boxcar functions, which were then (B) used as drivers for the activity in all ROIs.

Connection 1 and Connection 2 in D are estimated. The
difference in the number of parameters between the two models
can be set to n = 1, which corresponds to the two modulatory
parameters in the matrix D in Equation 1 minus the direct
parameter removed from matrix A in Equation 1.

Statistical Analysis
GLM Analysis
We first conducted a general linear model (GLM) analysis
to ensure that our oscillatory regressors successfully captured
brain activity. To do so, we calculated an omnibus ANOVA
across all oscillatory regressors at the participant level. This test
captures any variance that can be accounted for by any of the
oscillatory regressors. The resulting F-statistic map was then
log-transformed, yielding a measure of the difference between
the variance explained by regressors and the residual variance
(i.e., noise). Finally, a group-level T-test was performed across
all subjects on the individual-specific log-transformed F-maps.
The result of this analysis is a statistical test of whether the
variance captured by the regressors was significantly greater than
the variance of the residuals.

Bayesian Model Selection
We compare the Direct and Modulatory models by using
Bayesian Model Selection (BMS; Stephan et al., 2009). BMS is
implemented by estimating the log group Bayes factor across
subjects. The Bayes factor represents the ratio of the likelihoods
of two models. The likelihood L of a model m given data
y is defined as the probability that m would generate y,
i.e., L(m | y) = P(y | m). The log Bayes factor log Bmod, dir
represents the log ratio of the likelihood of the modulatory
model L(mmod | y) given data y over the likelihood of
the direct model L(mdir | y) given the same data. Because
of the properties of logarithms, the log of the ration can
be simply expressed as log L

(
mmod

∣∣y )− log L
(
mdir

∣∣y ). The
group likelihood of a model is the joint probability that themodel
would generate the data of each of n individuals in the group,

which can be calculated as
∏

iP(yi
∣∣m) = ∏

iL(m
∣∣yi) . Because

log
∏

iL
(
m
∣∣yi ) = ∑

i log L
(
m
∣∣yi ) the log group Bayes factor

log Bmod, dir can ultimately be rewritten as:

logBmod,dir =

n∑
i = 1

log L(mmod
∣∣yi)− n∑

i = 1

log L(mdir
∣∣yi)

Equation 2. Log Bayes Factor equation
where n is the number of subjects, mmod and mdir represent the
modulatory and direct model, respectively (Stephan et al., 2007).

The value of log Bmod,dir can be interpreted as thestrength of
evidence in favor of one of the two comparative models. In this
model comparison setup, the Direct model represents the null
hypothesis, and theModulatory model represents the alternative
hypothesis. A log Bayes Factor of >3 provides moderate evidence
for rejecting the null hypothesis and >10 is representative of
strong evidence for rejecting the null hypothesis in favor of the
Modulatory model. A value of <3 represents a failure to reject
the null hypothesis and theDirectmodel would be preferred (Lee
and Wagenmakers, 2013). Direct and Modulatory models were
compared across all subjects (Dima et al., 2009).

Bayesian Parameter Averaging
Bayesian Parameter Averaging (Hoeting et al., 1999; BPA) was
used to calculate a Bayesian estimate of direct and modulatory
connectivity parameters for each group, respectively. BPA (as
implemented using SPM12 software) calculates the posterior
mean and variance of each of the modulatory and direct
connectivity parameters. These parameters are assumed to
be normally distributed. To determine whether modulatory
parameter means were lower in the PD group compared to the
control group, we tested the following hypothesis:

H0 : MPD −MHC = 0

HA : MPD −MHC < 0
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FIGURE 5 | T-test showing voxels whose brain activity was significantly captured by the oscillatory regressors.

where MPD is the group distribution of the PD group’s
connectivity parameters and MHC is the group distribution
of the healthy control group’s connectivity parameters. As an
exploratory analysis, we tested the same hypothesis for the Direct
model connectivity parameters.

RESULTS

Regressor Quality Analysis
Figure 5 shows the results of the group-level t-test performed for
each participant’s specific log-transformed F-map, thresholded
at a value of t(110) > 3.166, which corresponds to p < 0.05 when
corrected for multiple comparisons through the family wise
error correction procedure. This test was designed to show how
much variance was captured by our eight oscillatory regressors
across all voxels (Di and Biswal, 2014). As Figure 5 shows,
most of the gray matter voxels exhibited such oscillatory activity.
Importantly, the significant voxels in Figure 5 include most of
the regions in our predefined ROIs, with the only exception
being the subcortical basal ganglia (Figure 1B, visible in the axial
and sagittal sections of Figure 4). The lack of effect could be
explained by the lower signal-to-noise ratios that are observed in
subcortical brain regions in high-density neuroimaging protocols
as well as the peculiar BOLD activity of the basal ganglia, which
typically spikes in response to reward-signaling events rather
than showing sustained spontaneous activity (Delgado, 2007).
Note that, since each region’s activity in DCM is affected by
the oscillatory regressors as well as the activity of other regions
(see Equation 1), the lack of effect in the basal ganglia does not
compromise the validity of our DCM analysis as long as the rest
of the ROIs show modulation by the oscillatory regressors.

Model Comparison
To test the first experimental prediction, the log group Bayes
factor (see Equation 2) was calculated to compare the Direct
and Modulatory models over all subjects. The value of the log
Bayes factor for the model comparison was 100, which, according
to Kass and Raftery (1995) represents strong evidence to reject
the null hypothesis. This means that, across all participants, the
Modulatory model provided a better fit to the data and was
therefore highly preferred over the Direct model.

Modulatory Parameter Comparison
Having established the superiority of the Modulatory model,
we analyzed whether the PD group modulatory connection
strengths were weaker for the control group.

PD modulatory connectivity was found to be positive, or
excitatory, and PD patients exhibited higher modulatory effects
than controls across Connection 1, which is the modulatory
connection of the BG over the MTL to the PFC (see Figure 6
and Table 1). The modulatory connectivity for both the PD and
control groups was negative, or inhibitory, and the PD group
exhibited higher modulatory effects across Connection 2, which
is themodulatory connection of the BG over the SENS to the PFC
(see Figure 6 and Table 1).

The hypothesis test that the PD group had lower modulatory
connectivity than the control group (HA: MPD − MHC <

0) resulted in p-values of 1 for both modulatory parameters.
This indicates that we cannot reject the null hypothesis in this
instance.

Based on these findings and the graphical summaries of the
modulatory parameters in Figure 6, we examined the hypothesis
that the PD group had higher modulatory connectivity than the
control group. This hypothesis test results in p-values< 0.001 for
both modulatory connections indicating that the null hypothesis
can be rejected. The PD group displayed higher modulatory
connectivity than the control group across both Connection
1 and Connection 2.

Direct Parameter Comparison
In addition to the modulatory connectivity, group differences
were also investigated across direct connectivity parameters in
the Modulatory model, that is, those encapsulated in matrix A
of Equation 1. As for the modulatory parameter comparison, we
first tested for the hypothesis that the PD group demonstrated
weaker effective connectivity than the control group (H0: MPD
− MHC = 0; HA: MPD − MHC < 0). Then, for those parameters
for which we could not reject the null hypothesis, we tested the
hypothesis that the PD group demonstrated higher connectivity
than the control group (H0: MPD − MHC = 0; HA: MPD −

MHC > 0).
The PD group had decreased effective connectivity across

SENS to MC, MC to SENS, MTL to PFC, PFC to MTL, SENS
to MC, SENS to PFC, PFC to MC, and PFC to BG (p < 0.001)
compared to the control group. The PFC to SENS connection
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FIGURE 6 | Connection 1 and 2 parameters and their associated posterior probability distributions. (A) In Connection 1, the basal ganglia modulate the signals
flowing from the hippocampus and temporal lobe to the prefrontal cortex. (B) In Connection 2, the basal ganglia modulate the signals flowing from the visual,
auditory, and sensory cortices to the prefrontal cortex.

had a p-value of 1 so we were unable to reject the null hypothesis
in this instance. Therefore, we tested the hypothesis that PD had
higher connectivity across this connection which was found to be
the case (p< 0.001, see Table 2).

DISCUSSION

Based on the findings, there was clear support for theModulatory
model over the Direct model which was in-line with our
hypothesis. This provides evidence that the Modulatory model
is better able to capture the functional significance of the basal
ganglia.

The direction of the modulatory connection over SENS
to the PFC (Connection 2), with PD patients exhibiting
inhibition of cortico-cortical connectivity from the basal
ganglia, is consistent with the known etiology of the disease
(Frank et al., 2004; Stocco et al., 2010). However, the PD

group displaying excitatory modulatory connectivity over the
MTL to the PFC (Connection 1) and a lower magnitude
of connectivity in the SENS to the PFC do not support
the prediction of weaker modulatory signals in PD. These
findings are unexpected based on the results of previous
studies that show the BG, which is impacted in PD, plays
a role in information transfer that results in the release
of dopamine to modulate workings between SENS to the
PFC and MTL to the PFC (Stocco et al., 2010; Schroll and
Hamker, 2013). These findings suggest that a compensatory
dopaminergic interaction may explain the stronger modulatory
connectivity in the PD group. Although we expected the PD
group to have decreased connectivity in these connections,
taking dopaminergic medications has the effect of reducing
the lower range of dopamine values (Stocco et al., 2021).
Therefore, the on-medication state of the PD group may
explain the counterintuitive findings. Because we expect

TABLE 1 | Group comparison of modulatory connectivity between PD and Control groups.

Modulatory connection PD (n = 70) Control (n = 41) MPD − MHC < 0 MPD − MHC> 0

µ σ µ σ

MTL to PFC 0.24 0.11 −3.84 0.02 1.00 <0.001
SENS to PFC −1.59 0.31 −2.39 0.56 1.00 <0.001

µ = mean; σ = standard deviation, MPD = group distribution PD connectivity parameters, MHC = group distribution of control connectivity parameters, MTL = hippocampus and medial
temporal lobe, PFC = prefrontal cortex, SENS = visual, auditory, and sensory cortices.
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FIGURE 7 | Comparison of differences in direct effective connectivity between PD and Control groups for the Direct and Modulatory Models.

to see differences in the modulatory connectivity of the
BG over PFC connections based on the disruption of the
dopaminergic pathway in PD, introducing dopaminergic agents
may influence the strength, or even the directionality of
our findings. The direct and indirect anatomic pathways
(see ‘‘Introduction’’ Section) implicated in the gating of
signals by the basal ganglia from other cortical regions to
the prefrontal cortex would be altered by the introduction
of dopamine.

Contrary to the modulatory connections, the PD group
had significantly weaker effective connectivity in all direct
connections except for PFC to SENS in the Modulatory
model. This is counter to the direction of group differences
observed in modulatory connectivity. While the examination
of these parameters was exploratory, the findings suggest that

an impairment in the basal ganglia’s function modulation
might have downstream effects across multiple cortico-cortical
connections. These effects might be partially responsible for the
variety of visuo-motor and cognitive problems that emerge in
PD as the disease progresses. Furthermore, our results suggest
that most of these effects might be invisible in traditional
functional connectivity analyses and become apparent only
when the modulatory effect of the basal ganglia is properly
modeled.

Because the direct effective connectivity parameters differed
from the modulatory connectivity parameters, we completed
a post-hoc exploratory analysis to examine the difference
in direct effectivity parameter values between groups for
the Direct Model compared to the Modulatory Model (see
Figure 7).

TABLE 2 | Group comparison of direct connectivity between PD and Control groups.

Direct connection PD (n = 70) Control (n = 41) MPD − MHC < 0 MPD − MHC > 0

µ σ µ σ

SENS to MC −0.16 0.002 0.11 0.006 <0.001 —1

MC to SENS 0.07 0.001 0.27 0.004 <0.001 —1

MTL to PFC 0.19 0.003 0.31 0.005 <0.001 —1

PFC to MTL 0.28 0.003 0.46 0.005 <0.001 —1

SENS to PFC −0.22 0.003 0.10 0.006 <0.001 —1

PFC to SENS 0.08 0.002 −0.002 0.004 1.00 <0.001
PFC to MC 0.07 0.002 0.27 0.006 <0.001 —1

PFC to BG 0.08 0.004 0.13 0.006 <0.001 —1

µ =mean; σ = standard deviation, MPD = group distribution PD connectivity parameters, MHC = group distribution of Control connectivity parameters, MC =motor cortex, SENS = visual,
auditory, and sensory cortices, MTL = hippocampus and medial temporal lobe, PFC = prefrontal cortex, BG = basal ganglia. Note: 1 Hypothesis test not completed for this connection.
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While the Direct Model parameters largely agree with the
ModulatoryModel, there were a few notable differences. The PD
group had higher connectivity than the control group in the PFC
to MC, PFC to MTL, and BG to PFC connections. These findings
indicate that accounting for modulatory connection effective
connectivity influences the interpretation of the directionality of
the between group results.

Limitations to the findings were that the PD group was
scanned on dopaminergic medication. Future research will
focus on examining if the observed effect holds for individuals
with PD that are scanned off their typical PD medications.
Further, results were derived from a reasonable but still
small number of individuals (n = 111) and the ratio of
PD to healthy control participants was relatively unbalanced
(70:41). The method used for resting-state DCM also does
not allow for dynamic changes in effective connectivity.
It uses data from the entire 10-min resting-state scan to
create a single account of brain connectivity. We understand
that this account is in part naive, as the brain fluctuates
throughout resting, and see this as an area for future
research.

Limitations notwithstanding, there are clear differences in
functional connectivity between PD and controls in resting-
state networks. This is demonstrated by the differences across
all comparisons of direct and modulatory connectivity. The
results also suggest that the Modulatory model of the CMC is
the correct interpretation of basal ganglia function in which
the basal ganglia do not directly manipulate the contents of
working memory, but rather route information to other brain
regions.
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