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MicroRNAs (miRNAs), small non-coding RNAs of about 22 nucleotides, have been 
reported to regulate gene expression at the posttranscriptional level and are involved in 
several biological processes such as immunity, development, metabolism, and host-
pathogen interactions. Apart from miRNAs encoded by the host, miRNAs produced by 
pathogens also regulate host genes to facilitate virus replication and evasion of the host 
defense responses. In recent years, accumulated studies suggest that viral infections 
alter the host miRNAs expression profile, and both cellular and viral miRNAs may play 
vital roles in host-pathogen interactions. Bombyx mori, one of the critical lepidopteran 
model species, is an economically important insect for silk production. The mechanism 
of interaction between B. mori and its pathogens and their regulation by miRNAs has 
been extensively studied. Therefore, in this review, we aim to highlight the recent information 
and understanding of the virus-encoding miRNAs and their functions in modulating viral 
and host (B. mori) genes. Additionally, the response of B. mori derived miRNAs to viral 
infection is also discussed. A detailed critical view about miRNAs’ regulatory roles in  
B. mori-virus interactions will help us understand molecular networks and develop a 
sustainable antiviral strategy.
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INTRODUCTION

The understanding of gene expression guided by regulatory RNA molecules is not limited to 
the past 20  years. According to Britton and Davidson, genes might be  turned on and off by 
activator RNA molecules based on Watson-Crick base pairing to the sites located within genes. 
Later, the idea was abandoned with the discovery of transcription factors (Britten and Davidson, 
1969). As per our understanding, it is now clear that RNAs, especially the small RNAs (sRNA), 
actually regulate gene expression.

MicroRNA (MiRNA), small interfering RNAs (siRNA), and piwi-interacting RNAs (piRNA) 
are the three main classes of sRNAs that regulate gene expression (Farazi et  al., 2008; 
Moazed, 2009; Czech and Hannon, 2011). These three classes are based on size and interaction 
with a particular protein class called the argonaute (Ago) protein family (Kim, 2008). 
MiRNAs are endogenous ∼22  nt RNAs that have an interaction with Ago-1 protein in insects 
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FIGURE 1 | A typical model for miRNA biogenesis. RNA polymerase II(RNA pol II), transcribing miRNA gene into a hair-loop structure known as the pri-miRNA. The 
Drosha/Pasha microprocessor complex process pri-miRNA to pre-miRNA in the nucleus. The pre-miRNA is exported into the cytoplasm in a RanGTP/Exp-5 
dependent manner. The pre-miRNA is processed by Dicer-1 (Dcr-1) and Loquacious (Loqs) to form the miRNA-miRNA* duplex within the cytoplasm. The duplex 
strands are then sorted, and the miRNA strand is loaded into the RISC complex that typically includes Argonaut 1 (Ago-1).

(Kawamata et  al., 2009; Miyoshi et  al., 2009; Okamura et  al., 2009; 
Ghildiyal et al., 2010). siRNA with a length of 20 nt (Zografidis 
et  al., 2015; Santos et  al., 2019) interacts with Ago-2 (Czech 
et al., 2009) and piRNAs of 24–31 nt with the Piwi-subfamily 
of Ago proteins (Siomi et  al., 2011).

Two transcripts, the 22  nt lin-4  s (small) and the 61  nt 
lin-4  L (large) originating from the lin-4 locus, led to the 
discovery of the first miRNA in Caenorhabditis elegans (Lee 
et  al., 1993; Wightman et  al., 1993). These small transcripts 
were found to contain sequences complementary to the 3' 
untranslated region (UTR) of lin-14 mRNA, indicating that 
these transcripts regulate the lin-14 translation via some 
unique antisense mechanism. In 2000, after 7  years of the 
first miRNA discovery, the next miRNA was discovered in 
C. elegans, indicating that the 21 nt let-7 temporally regulates 
lin-41 by binding to the target sites within its 3' UTR 
(Reinhart et  al., 2000).

The discovery of lin-4 and let-7 added a new dimension 
to our understanding of complex gene regulatory networks, 
and since their discovery, thousands of putative miRNAs have 
been identified in various organisms. MiRNAs encoded by 
host cells or by a viral genome are involved in the interaction 
between the host and the pathogen, opening new research 
windows in insect microbe interaction. In this review article, 
miRNA’s role in insect host-pathogen crosstalk, especially in 
Bombyx mori, with examples from viruses and the host with 
the availability of the most recent literature, will be discussed.

miRNA BIOGENESIS

Several processing steps are involved in miRNA biogenesis, 
including transcription of the miRNA, loading and assembly 
into the RNA-induced silencing complex (RISC), and miRNA 
maturation. As most of the short RNAs are transcribed by 
polymerase III (RNA pol III), it was thought that the transcriptions 
of the majority of miRNAs loci are also mediated by the RNA 
pol III. It is also suggested that RNA pol III may mediate the 
transcription of miRNAs positioned within repetitive sequences 
(Borchert et  al., 2006). On the other hand, the structure of 
genes encoding the miRNAs and direct experimental results 
indicate that RNA pol II is the primary RNA polymerase that 
initiates the transcription of miRNAs loci in animals. In several 
primary miRNA transcripts, the presence of traditional 5' 7-methyl 
guanosine caps and 3' polyadenylation and their sensitivity to 
α-amanitin having inhabiting interaction with RNA pol II suggest 
the class-II nature of genes having miRNA loci (Lee et al., 2004; 
Figure 1). All these results confirmed that RNA Poll II is involved 
in the transcription of miRNAs.

The Microprocessor Complex Fine-Tunes 
the pri-miRNA
The initial product of RNA Poll II transcriptions is primary miRNA 
(pri-miRNA) transcripts. These pri-miRNAs have one or more 
hairpin loop structures, and their length ranges into several hundred 
kilobases. The microprocessor complex processes these long 
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transcripts (pri-miRNAs) into 70 nt precursor miRNAs (pre-miRNA) 
in the nucleus (Conrad et al., 2014). Drosha, an RNase III enzyme 
along with its double-stranded RNA (dsRNA) binding partner, 
Pasha, constitutes the microprocessor complex (Lee et  al., 2003; 
Denli et  al., 2004; Gregory et  al., 2004; Han, 2004; Landthaler 
et  al., 2004; Kawai and Amano, 2012; Burke et  al., 2014; Nguyen 
et  al., 2015; Kim et  al., 2016a). The stem structure of pri-miRNA 
with 30 bp has a terminal loop, and flanking segments are processed 
by the microprocessor complex after recognition. The dsRNA 
binding partner protein Pasha recognizes substrate pri-miRNA, 
plays an important part in anchoring to the flanking single-stranded 
RNA (ssRNA) and dsRNA stem junction, and locating the position 
11  bp into the stem, where Dorsha is loaded to cleave the 
pri-mRNA (Lee et  al., 2003; Denli et  al., 2004). For further 
processing, the end product of Drosha-Pasha processing, a 70  nt 
pre-miRNA, is exported into the cytoplasm by Exportin-5 (Exp-5; 
Kim et  al., 2016). The pre-miRNA generated by Drosha’s action 
on pri-miRNA has a 2  nt 3' overhang, critical for pre-miRNA 
export. Exp-5, a dsRNA-binding receptor depending on ran 
guanosine triphosphate (RanGTP), starts the nuclear export of 
pre-miRNAs by identifying the 2  nt 3' overhang structure of 
pre-miRNA in the nucleus (Bohnsack, 2004). The Exp-5/pre-miRNA 
complex migrates through the nuclear pore complexes into the 
cytoplasm. In the cytoplasm, RanGTP is hydrolyzed to RanGDP, 
which results in the release of pre-miRNA from the Exp-5/
pre-miRNA complex. The pre-miRNAs are protected from digestion 
by nucleases of Exp-5, which is also the nuclear export factor 
of pre-miRNAs (Yi, 2003; Lund, 2004).

Pre-miRNA Processing by Dicer
An RNase III enzyme, Dicer-1 (Dcr-1), slices the terminal 
loop structure of pre-miRNA, releasing a ~22  nt miRNA-
miRNA* duplex in the cytoplasm (Hutvagner, 2001; Koscianska 
et  al., 2011; Feng et  al., 2012; Gurtan et  al., 2012; Bogerd 
et  al., 2014). Dicer, a core enzyme in the RNAi pathway, was 
first identified in Drosophila (Bernstein et al., 2001). Two Dicer 
enzymes, Dcr-1 and Dcr-2, are encoded by the B. mori genome 
having the specialized function in two crucial pathways, i.e., 
miRNA and siRNA pathways (Ponnuvel et al., 2007; Kolliopoulou 
and Swevers, 2013). A pre-miRNA processing complex is formed 
by the interaction of Dcr-1 with Loquacious (Loqs) (Saito 
et  al., 2005). The pre-miRNA is accumulated, and mature 
miRNAs are reduced when RNAi depletes the Loqs; depletion 
of Dcr-1 also results in similar effects (Jiang, 2005).

miRNA Strand Selection and Argonaute 
Loading
From mature miRNA-miRNA* duplex resulted from pre-miRNAs 
processing by Dcr-1, a strand from the duplex is loaded into the 
RISC. RNA-binding proteins guided by sRNA from the argonaute 
family are the fundamental components of the RISC. Four discrete 
ago proteins encoded by the B. mori genome are classified into 
two sub-clades: Ago and Piwi (Wang et  al., 2013). Subgroup ago 
includes the ago-1 and ago-2 proteins that bind with miRNAs 
and siRNAs, respectively (Hammond, 2001). The mature miRNA 
guide strand is loaded into ago-1, while the miRNA* strand is 

degraded (Kawamata et  al., 2009). The miRNA-Ago complex is 
ready to perform its action on target sequences.

miRNAs MODULATING HOST-PATHOGEN 
INTERACTION

The role of miRNAs in insect development has been studied 
extensively. A lot has also been studied in recent years related 
to miRNAs’ functional role in infection establishment as these 
modulate the host-pathogen interactions. For instance, quite 
a few reports describe viral and cellular miRNAs’ involvement 
in infection propagation by limiting viral replication (see below). 
The expression profile of a large number of miRNAs has been 
shown to alter upon the pathogen’s invasion. The modulation 
of host and pathogens genes is also reported by the miRNAs 
encoded by the host and pathogens. Below, we  will examine 
the manipulation of genes from different miRNAs sources, 
which intern mediate the host-pathogen interaction.

Impact of Viral Infection on the Host 
miRNA Profile
Several studies have reported change in cellular miRNAs 
expression levels in insects in response to pathogen infection 
based on deep sequencing or microarray analysis (Figure  2). 
For example, Karamipour investigated the difference in the 
expression profile of cellular miRNA-184 and let-7 following 
Autographa californica nucleopolyhedrovirus (AcMNPV) 
infection of Sf-9 cells. Findings suggested that following AcMNPV 
infection, there was a difference in the expression of cellular 
miRNAs at the post-infection times. The expression profile of 
the core components of miRNA’s biogenesis pathway, Dcr1, 
Ago1, and Exp5, was upregulated at 16  h post-infection (hpi) 
following AcMNPV infection. Though, in response to virus 
infection, Ran’s expression was decreased (Karamipour et  al., 
2019). An abundant miRNA, Bantam, accounts for more than 
5% of the total miRNA of Sf9 cells. Sequenced data suggested 
that the bantam level was increased late in AcMNPV infection 
and confirmed with real-time quantitative PCR in infected Sf9 
cells and Spodoptera litura larvae (Shi et  al., 2016).

At 24  h pi, there was an increase of 2.5-fold in bantam level 
in uninfected cells, and a high level of bantam was also present 
late in the infection. The bantam level was also about 1.5-fold 
more elevated than the control in AcMNPV-infected S. litura 
larvae, indicating that bantam has a role in the growth and 
modulates the insect-baculovirus interaction as well (Shi et al., 2016).

Deep sequencing of Bombyx mori cytoplasmic polyhedrosis 
virus (BmCPV) infected midgut of silkworm suggests that the 
expression profile of host miRNAs were altered after 72 and 96 h 
of viral inoculation. In the RNA libraries constructed from the 
BmCPV-infected midgut of silkworm and the control midgut, a 
total of 316 known miRNAs (including miRNA*) and 90 novel 
miRNAs were identified. A significant difference in the expression 
of 58 miRNAs was observed between the infected and the normal 
midgut (Wu et al., 2013). Two small RNA libraries were constructed 
from Bombyx mori nuclear polyhedrosis virus (BmNPV) infected 
larvae and the control larvae. Solexa sequencing results revealed 
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significant downregulation of miR-2819  in infected larvae  
(Wu et  al., 2019). Results showed that miR-2819 has a relatively 
high abundance in several tissues, including Malpighian tubules, 
fat body, hemolymph, silk gland, and midgut. The abundance of 
miR-2819 of infected cells was compared with that of control 
cells at different time points. The results showed that during the 
6–12  hpi, the expression level of miR-2819 was increased, while 
during 24–72 hpi, the expression level of miR-2819 was significantly 
declined (Wu et  al., 2019).

The knowledge about the modulation by miRNAs in the 
establishment of infection is increasing as more of these studies 
are emerging. New dimensions are now discovered how the 
complex phenomena of host-pathogens occurred upon pathogens 
invasion and how the host responds to these invading pathogens.

Host miRNA’s Impact on Viral Infection
Cellular miRNAs may directly target viral genes and impact 
the propagation and establishment of infection (Table 1). Apart 
from regulating cellular processes, host miRNAs also have a 
crucial role in defense against pathogen attack, thus helping 
in infection propagation (Skalsky and Cullen, 2010; Asgari, 
2011; Hussain and Asgari, 2014). miRNA also addresses the 
biotic stresses like protein-coding genes (Ghosh et  al., 2009; 
Croston et  al., 2018). A large number of miRNAs have a 
differential expression upon pathogen attack (Ghosh et  al., 
2009; Maudet et al., 2014; Croston et al., 2018). This differential 

expression of miRNAs indicated the critical role they play in 
host-pathogen interactions. For instance, with various putative 
binding sites, B. mori miR-8 was defined as an antiviral miRNA. 
The putative binding sites were on the BmNPV immediate-
early gene (ie-1) mRNA and other vital genes of BmNPV. On 
blocking of Bmo-miR-8, a 3-fold increase in the ie-1 transcript 
level and an 8-fold increase in BmNPV accumulation in fat 
body tissues of infected larvae was observed, indicating a 
significant increase in the virus load in the infected B. mori 
larvae (Singh et  al., 2012). Similarly, the role of bantam on 
viral infection was studied. The results indicated that cellular 

FIGURE 2 | Differential Expression of host miRNA upon viral invasion: Regulation of miRNAs upon BmNPV, BmCPV, and AcMNPV. Red color represents down-
regulated, while bold black represents up-regulated miRNAs after the viral attack.

TABLE 1 | Host miRNAs targeting viral genes.

Host 
miRNAs

Functional target in the 
viral genome

Function References

miR-8
BmNPV immediate-early 
gene (ie-1)

Replication Singh et al., 2012

bantam lef8, gp41, and p10 Shi et al., 2016

miR-278-3p
Insulin-related peptide-
binding protein 2 (IBP2)

B.mori immune 
response

Wu et al., 2016

miR-274-3p
BmCPV nonstructural 
protein 5 (NS5) and p10

Viral replication Wu et al., 2017

miR-2,819
BmNPV immediate-early 
gene (ie-1)

Replication Wu et al., 2019

miR-390 BmNPV-cg30
Occlusion bodies 
formation

Kang et al., 2018
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miRNA bantam in Sf9 cells plays an essential role in insect 
growth and baculovirus-insect interaction. The expression of 
the most affected viral genes lef8, gp41, and p10 was increased 
by 8, 10, and 40 times after applying bantam inhibitor or 
mimic in Sf9 cells. In infected Spodoptera exigua, larval mortality 
increased from 47% without antago-miR (bantam inhibitor) 
to 80% with it (Shi et  al., 2016). In another study, it was 
demonstrated that miR-278-3p plays a vital role in BmCPV 
replication. Insulin-related peptide-binding protein 2 (IBP2) 
gene, induced by BmCPV infection, having a vital role in  
B. mori immune response, was identified as one of the targets 
of miR-278-3p by using a luciferase reporter assay. Over-
expression of miR-278-3p negatively regulates the expression 
of IBP2  in silkworm larvae and positively regulates the mRNA 
transcript level of BmCPV, and confirms that the miR-278-3p 
is important for viral infection establishment (Wu et al., 2016). 
Bombyx mori miR-2,819 effectively downregulates the immediate 
early gene ie-1 required for viral replication, affecting the viral 
infection. miR-2,819 also affects other gene’s expression, i.e., 
polyhedrin and VP39 of BmNPV (Wu et  al., 2019).

Accumulation of 20-hydroxyecdysone (20E) in the late phase 
of larval instar results in the initiation of molting and 
metamorphosis (Riddiford et al., 2003). MiRNA bantam affects 
baculovirus-host interaction by regulating 20E. Reduction in 
bantam level results in an increased level of 20E, resulting in 
high mortality in virus-infected S. exigua (Ran et  al., 2018). 
Bmo-miR-390 effectively downregulates the expression of 
BmNPV-cg30  in BmNPV-infected BmN cells. Cg30 gene of 
BmNPV is required to replicate BmNPV as a deletion or 
mutation in this gene results in decreased occlusion bodies 
(OB) production and reduction in toxicity to the silkworm 
larvae (Ishihara et  al., 2013; Kang et  al., 2018).

The impact of miR-274-3p on the BmCPV replication in 
the silkworm larvae infected with the BmCPV was investigated. 
The experimental techniques, including bioinformatics analysis, 
identified BmCPV Nonstructural protein 5 (NS5) as the potential 
target of miR-274-3p. qRT-PCR and Western blotting results 
revealed that the level of NS5 was reduced significantly by 
miR-274-3p inhibitors, while the polyhedrin gene expression 
was increased after the application of miR-274-3p inhibitors. 
The inhibition of miR-274-3p facilitates BmCPV replication 
by upregulating BmCPV NS5 gene expression (Wu et al., 2017). 
The authors demonstrated that mature artificial miRNAs 
(amiRNAs) expressed successfully target the viral lef-11 gene. 
Mature amiRNAs efficiently inhibited the BmNPV proliferation 
by silencing the target gene. The overexpression of mature 
amiRNAs may induce acute cellular toxicity (Zhang et  al., 
2014). Next-generation sequencing (NGS) showed that 167 
genes were upregulated and 141 genes were downregulated in 
larval instars of B. mori following pathogenic infection. Several 
genes with a role in B. mori immune response against BmCPV 
were identified. The 2-fold upregulation of the core RNAi genes 
Ago-2 and Dcr-2 was observed during pathogenic infection 
(Kolliopoulou et  al., 2015). Reports revealed that exo-RNAi is 
operative in the silkworm B. mori against pathogenic infection 
of BmCPV, which is characterized by a segmented dsRNA 
genome (Zografidis et  al., 2015).

Viral miRNA Can Target Viral Own Genes
MicroRNAs carry out their functions through their targets, 
and for viral miRNAs, their targets can be  the host genes 
or the viral genes. MiRNAs can bind to the 3' or 5' UTR 
of the target mRNA, and they also can bind to coding 
sequences to manipulate target gene expression (Table  2). 
For instance, bmnpv-miR-3 miRNA encoded by BmNPV 
modulates the expression of DNA binding protein (P6.9), 
vital for the late stage of viral infection in the host, B. 
mori. The downregulation of BmNPV late genes helps BmNPV 
escape the host’s early immune response (Singh et al., 2014). 
The viral miRNAs are mainly involved in the active regulation 
of viral genes. It may reduce the viral DNA load and the 
number of infectious budded virions (BVs) to avoid host 
surveillance and prolong residence duration inside the 
host cell.

AcMNPV-miR-1 is an AcMNPV encoded miRNA. The 
ac-94 gene involved in producing infectious BVs was 
downregulated by AcMNPV-miR-1, resulting in the decreased 
production of BVs and enhancing the formation of occlusion-
derived virions (ODVs). The overexpression of 
AcMNPV-miR-1 reduces the budded virus’s infectivity, 
affecting viral DNA replication and accelerating ODVs 
formation. AcMNPV-miR-1 moderately downregulated ac95 
and upregulated ac18. These findings suggest that 
AcMNPV-miR-1 restrains virus infection of cells but facilitates 
virus infection of larvae (Zhu et  al., 2016; Wang et  al., 
2020a). The most distinct downregulation for AcMNPV-miR-2 
was observed for lef-6, with lef-11, orf-49, and orf-63 also 
showing apparent downregulation, while orf-38 did not 
exhibit significant regulation (Wang et  al., 2020a). 
AcMNPV-miR-3 plays a regulatory role in BV and ODV 
production. AcMNPV-miR-3 is located on the opposite strand 
of the viral gene ac101 coding sequence in the AcMNPV 
genome and detected at 6 hpi. and reaches a maximum 
level of around 12 hpi. in AcMNPV-infected Sf9 cells. 
AcMNPV-miR-3 downregulates ac101 through a siRNA-like 
cleavage mode. Ac101 is a core gene required for BV and 
ODV production, viral infectivity, and virus-induced nuclear 
actin polymerization. Dual-luciferase reporter assay revealed 
a slight downregulation with ac23, ac25, ac86, and ac98 
target sites (Jiao et  al., 2019; Wang et  al., 2020a).

TABLE 2 | Viral micro RNA can target viral own genes.

Viral miRNA Target genes Function References

BmNPV-miR-3 P6.9-gene
Viral infection 
establishment

Singh et al., 2014

AcMNPV-miR-1 Ac-94-gene Viral DNA replication Zhu et al., 2016

AcMNPV-miR-3 Ac101-gene
BV and ODV  
production

Jiao et al., 2019

AcMNPV-miR-1
Ac-95(down 
regulation) & Ac-18 
(up Regulation)

DNA helicase, 
replication related

Wang et al., 2020a

AcMNPV-miR-2
lef-6, lef-11,  
orf-49, and orf-63

DNA replication, late  
gene transcription

Wang et al., 2020a

AcMNPV-miR-3
Ac23, ac25, ac86, 
and ac98

Polynucleotide inase/ 
ligase and fusion protein

Wang et al., 2020a
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The cellular state from susceptible to resistant or vice versa 
may be remodeled upon abnormal-expression of cellular miRNAs 
due to the abnormal expression of their target genes (Ghosh 
et al., 2009). A huge amount of literature is available describing 
miRNAs’ identification from insect hosts, but the exact role 
in host-pathogen interactions is still limited to a few reports 
(Ylla et  al., 2016; Kozomara et  al., 2019). Moreover, these 
studies mainly focus on miRNA alterations due to the viral 
attack in insects (Tang et  al., 2019).

Viral miRNAs Exploit the Host Machinery
Recent investigations have revealed that viral miRNAs might 
target and regulate host genes to establish infection and 
successfully replicate. However, the information is minimal 
concerning insect viruses. The miRNAs’ impact might be  via 
regulation of a specific gene leading to modifying a particular 
pathway or might cause a global reduction in the host miRNA 
depending on the target genes (Table  3). For instance, a 
BmNPV encoded miRNA (bmnpv-miR-1) has been shown to 
downregulate the host GTP-binding nuclear protein Ran’s 
expression, thereby inhibiting small RNA transport from the 
nucleus into the cytoplasm to ensure their active proliferation 
(Singh et  al., 2012). Reports indicated that an insect double-
stranded RNA virus (BmCPV) might generate miRNAs, and 
these miRNAs play an essential role in host viral interaction. 
BmCPV-miR-3 and BmCPV-miR-5 regulate host target genes 
and manipulate viral replication and proliferation (Pan et  al., 
2017) AcMNPV encoded miRNA AcMNPV-miR-4 interfere 
with the host cell cycle, cytokine secretion, exocytosis, and 
membrane fusion as it targets the ALG2 and ROP genes. 
ALG-2 is involved in apoptosis initiation. Rop is highly expressed 
in the nervous system and in specialized tissues where intensive 
exocytic/endocytic cycles occur, providing evidence that it 
impacts viral infection and propagation (Jiao et  al., 2019). A 
BmCPV-derived miRNA (BmCPV-miR-1) effectively up-regulates 
the expression of the B. mori inhibitor of apoptosis protein 
(BmIAP) gene. It inhibits cell apoptosis mechanisms, hence 
favoring better replication of the virus and helps in viral 
infection establishment (Guo et  al., 2020).

E66 a structural protein of the ODV encoded by ORF37 
of the BmNPV genome. It also encodes a miRNA 
BmNPV-miR-415, which produces bmo-miR-5738 when 

introduced into the host cells. Bmo-miR-5738 upregulates the 
expression of TOR2 through its 3' UTR. TOR2, as a member 
of the phosphatidylinositol kinase-related kinase family, plays 
a critical role in metabolism, development, growth, and survival 
at the cellular and organism levels. Recently it has been revealed 
that TORE2 also upregulates the molting hormone 20E 
(Cao et  al., 2017). Apoptosis in Sf9 cells due to the inhibition 
of miR-14 indicates that it is essential for constitutive cell 
survival. When mimics of miR-14 precursor molecules were 
applied, they partially inhibited the cell death induced by 
actinomycin-D (Act-D). MiR-14 might have inhibitory interactions 
with caspases, as it functions downstream of mitochondrial 
cytochrome and hence averting Act-D-induced apoptosis 
(Kumarswamy and Chandna, 2010). Similar exploitation of host-
pathogen interaction by miRNAs was also observed in other 
diamondback moths. Certain miRNAs are also produced by 
Cotesia vestalis, (a parasitoid of Plutella xylostella) and bracovirus 
(CvBV). The parasitized host revealed that most of the miRNAs 
that arrest the host’s growth were of C. vestalis origin. In contrast, 
the expression profile of the miRNAs encoded by CvBV was 
100-fold increased in parasitized hosts than non-parasitized 
ones. miRNAs arrest the growth of the host by modulation of 
the host ecdysone receptor (EcR; Wang et  al., 2018).

INTERACTION OF miRNAs WITH OTHER 
CODING AND NON-CODING TRANSCRIPTS

With the invention of modern techniques and a better 
understanding of genomic approaches, it is clear that miRNAs 
can have regulatory interaction with other transcripts. This 
complex interplay of miRNAs with these transcripts mediates 
the regulatory role of the different transcripts. A recent report 
suggests that differentially expressed long non-coding RNAs 
interacting with the target genes and miRNAs participate in 
the host response to the viral infection (BmNPV) by targeting 
the genes enriched ubiquitin-mediated proteolysis endocytosis 
and lysosome pathways in B. mori (Zhang et  al., 2020).

To better understand the pathogenesis of BmCPV, the role 
of circular RNAs (circRNAs) acting as positive regulators in 
BmCPV infections was investigated. The researchers constructed 
the circRNA-miRNA interaction networks based on correlation 
analysis between the differentially expressed circRNAs and their 
miRNA binding sites. The constructed complex explained an 
abundant interaction between miRNAs and circ RNAs, indicating 
the possible role of miRNAs in association with circular RNAs 
(Hu et  al., 2018). The circRNA circEgg encoded by B. mori 
histone-lysine N-methyltransferase eggless (BmEgg) gene 
positively regulates histone deacetylase (HDAC) Rpd3 (BmHDAC 
Rpd3) gene expression by sponging the miRNA bmo-miR-
3,391-5p (Wang et  al., 2020b; Figure  3).

In one study, miRNAs’ role in host specificity was examined 
as miRNAs regulate the virus-host interaction. The downregulation 
of several genes determined the specificity. The screening of miRNA 
induced by AcMNPV infection combined with NGS predicts 
possible regulation networks indicating that these are also involved 
in the host specification of the virus (Chen et  al., 2018).

TABLE 3 | Viral mRNAs exploit the host machinery.

Viral mRNAs Targets gene in 
host

Function References

BmNPV-miR-1
GTP-binding 
nuclear protein Ran 
encoding gene

Inhibits transport from 
nucleus to cytoplasm

Singh et al., 2012

BmNPV-
miR-415

TOR2
Metabolism and 
development

Cao et al., 2017

BmCPV-miR-3
Purine nucleoside 
phosphorylase 
encoding gene

Cell proliferation 
inhibition

Pan et al., 2017

BmCPV-miR-1 BmIAP gene Inhibits cell apoptosis Guo et al., 2020

AcMNPV-miR-4
ALG2 and ROP 
genes

Apoptosis initiation 
blocked

Jiao et al., 2019
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CONCLUSION

With the discovery of the first miRNA nearly 30  years ago and 
the invention of new techniques, we  have started to understand 
these regulatory molecules’ biogenesis and diversity. The 
identification and characterization of miRNAs is a rapidly growing 
area of research. Continuing genome-wide efforts in insect miRNA 
discovery and expression profiling have revealed that conserved 
and species-specific miRNAs may play important roles in insect 
biology. Recently, the role of these miRNAs in host-pathogen 
interactions has been reported by several publications, with the 
majority of researchers concentrating on the impact of infection 
on host miRNA profile. Understanding the role of miRNAs and 
their targets as modulators of the insect-virus interaction can 
open avenues for using miRNAs, targets, and miRNA modulation 
pathways as a novel approach for managing viral infections and 
disrupting the epidemiological cycle of transmission. The host-
viral interactions mediated by miRNAs provide us the basis for 
the use of miRNAs for insect control (Monsanto-Hearne and 
Johnson, 2018). Previously, similar techniques were employed 
by other groups when the introduction of the inverted repeat-
containing transgene was made, which in turn results in B. mori 
resistance to baculovirus (Sahara et al., 2003; Subbaiah et al., 2013).

MicroRNA profile of the host is generally altered upon the 
infection, but the amount of damage depends on the host-pathogen 
interaction. The host miRNA profile change might be  the host 
response to pathogen attack, which modeled the signaling pathway 

and immune responses or provided aid to pathogen replication 
and manipulation as an optimal environment. Important regulatory 
roles, i.e., suppression of host anti-pathogen responses, regulation 
of pathogen replication, are played by the miRNAs encoded by 
the host to avoid the host’s demise. In that context, the role of 
small non-coding RNAs in cross-kingdom and cell-to-cell 
communications in secreted forms such as exosomes opens up 
new windows of research. An exciting unmapped area is the 
involvement of miRNAs in the interaction of the gut microbiome 
with insects. With recent reports from mammals, it is suggested 
that host miRNAs might adjust the microbiota by modulating 
the bacterial gene transcription and hence have effects on their 
growth (Liu et  al., 2016). It will not be  surprising if similar 
associations exist in insects. Another remarkable aspect of miRNAs 
in host-pathogen interaction is their application in pest control. 
Zhang et al. (2014) reported the inducible and related production 
of amiRNAs to limit the pathogen infection in beneficial insects 
such as B.mori. In the same way, miRNAs may well be  engaged 
to improve the effectiveness of biocontrol agents used against 
agricultural pests. In-depth investigations are required in this 
aspect. Several other publications also focused on the differential 
abundance of miRNAs. Experimental methodologies explaining 
the role of the differentially abundant miRNAs in host-pathogen 
interactions and insect immunity are of great importance. Several 
miRNAs encoded by viruses have also been identified, affecting 
virus replication by regulating or modulating the host genome 
facilitating their replication. These miRNAs modulate the host 

FIGURE 3 | Inter-Play between miRNA and non-coding circRNAs. The circRNA-miRNA co-expression network in silkworm. circRNAs that sponged more than four 
miRNAs and modulating the vital processes are shown.
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and viral transcripts during viral infection. To develop novel 
strategies to reduce the risk of viral infection the mechanisms 
of miRNA-mediated processes provide us the basis.

A given miRNA can target hundreds of different mRNAs, and 
on the other hand, a mRNA can be regulated by different miRNAs. 
This complex interplay is far from simple, and we  are far from 
fully understanding the complex molecular mechanisms that regulate 
the crosstalks between baculovirus encoded miRNAs and insects. 
Further researches will be required to validate these scientific issues.

Additionally, the mechanisms by which cellular miRNAs 
are degraded after they finish their task needed to be  clarified. 
Otherwise, they will affect cell metabolism and interfere with 
cellular functions. McCaskill reported RNA-mediated miRNA 
degradation, but it remains unclear whether the mechanism 
is a widespread viral strategy (McCaskill et al., 2015). Therefore, 
further investigations are required to answer the question.
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