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Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. 
While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predispo-
sition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as ge-
nome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased 
risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and re-
programmed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of 
periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated 
with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of mo-
lecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in 
future oral treatment and disease prevention.
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INTRODUCTION

Periodontitis is one of the most common oral diseases in 
adult populations worldwide and is a major public health con-
cern due to its substantial cost to the medical care system [1]. It 
is characterized by inflammation and destruction of tooth 
supporting tissues, in severe cases leading to tooth loss [2]. It 
is also highly associated with systemic inflammation, result-
ing in an increased risk for subsequent chronic diseases, such 
as cardiovascular diseases [3,4], diabetes [5], metabolic syn-
drome [6-8], pneumonia [9,10], and rheumatoid arthritis [11]. 

Periodontitis is a complex disease with an etiology involv-
ing multiple factors. It includes both extrinsic (modifiable) 
and intrinsic (nonmodifiable) factors. Although the definitive 
mechanisms remain unclear, inflammation and infection via 

outgrowth of multiple opportunistic microbes in the oral en-
vironment, including Porphyromonas gingivalis, Tannerella 
forsythia, and Actinobacillus actinomycetemcomitans, are a con-
tributing factor. [12]. While the presence of microbiological 
pathogens is a factor leading to this condition, it is not solely 
sufficient to cause periodontitis. It was recently proposed that 
dysbiosis of the oral microbiota leads to periodontitis via in-
terference of the host-microbial homeostasis, rather than 
simple outgrowths of a few pathogens [13,14]. Lifestyle-related 
factors, such as smoking and dietary patterns, as well as oral 
hygiene, have also been highly correlated with the prevalence 
of periodontitis [15,16]. While periodontal research so far has 
focused on studies of microbiological pathogenesis and oral 
environments, it is now widely accepted that susceptibility to 
inflammation is also determined by intrinsic factors such as 
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genetics (Fig. 1A). This is emphasized by the fact that some 
people are more disease-susceptible or treatment resistant. 
In this review, we summarize the genetic factors that are of 
importance in the establishment and progression of peri-
odontitis, and highlight what epigenetic alterations may be 
critical in the etiology of periodontitis, especially as key me-
diators between genetic and environmental factors. This in-
formation will provide future guidelines for development of 
novel biomarkers that will aid in the diagnosis, treatment, 
and cure of this common disease.

PERIODONTITIS-RELATED GENETIC VARIA-
TION

Genetic variations of inflammatory genes 
While genetic factors undoubtedly are very important in 

the development of periodontitis, genetic variations can only 
become a risk factor when challenged by extrinsic agents and 
physical insults. Genetic variations linked to complex diseas-
es are not easily identified in multifactorial traits. Single nu-
cleotide polymorphisms (SNP) of the DNA are often used as 
genetic markers when they can be linked to a distinct pheno-
type. Per definition, a SNP has to occur in at least 1% of a giv-

en population, while individual mutations, not fixed in the 
population, are referred to as single nucleotide variations 
(SNVs). Some SNPs alter gene expression levels that may in-
fluence host response levels to microbiological growth. For 
example, SNPs in receptors, antigen sensors in cell surfaces, 
and cytokines and chemokines have been shown to influence 
host immunity and inflammatory response [17,18]. Putative 
periodontitis-related SNPs have been investigated in the Fc-γ 
receptor (FCGR2A) [19-22], interleukin-1 (IL-1) [23,24], IL-4 [25-
27], IL-6 [27,28], IL-10 [29,30], IL-18 [31,32], tumor necrosis fac-
tor alpha (TNFA) [23,33,34], vitamin D receptor [21,35-37], clus-
ter of differentiation-14 [38-40], matrix metalloproteinase-1 
[41,42], Toll-like receptor-2 (TLR-2) [43,44], TLR-4 [31,32,39,40, 
43,44], and cyclo-oxygenase-2 (COX-2) [45,46]. These studies 
suggest a connection between genetic variation and peri-
odontitis at some loci, while their penetrance remains elu-
sive. It is worth emphasizing that the connection between 
SNPs and periodontitis is not always strong because of varia-
tions within populations and subtypes of periodontitis. 

Genome-wide analysis of genetic variation and their prod-
ucts 

Lately, multiple “omics” technologies have been utilized to 

Figure 1. Intrinsic and extrinsic risk factors for periodontitis. (A) Factors influencing the pathogenesis of periodontitis in the oral cavity. (B) 
Methods of large-scale analysis to identify genetic factors, epigenetic patterns, comprehensive transcriptomics, proteomics, metabolomics, 
and microbiomics in close connection to environmental factors.
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increase the understanding of periodontitis disease progres-
sion by overcoming the limitations that candidate approach-
es have provided. The most prominent approaches are ge-
nomics, transcriptomics, proteomics, and metabolomics of 
the host as well as metagenomics of the oral microbiota [47] 
(Fig. 1B). From a large set of SNPs distributed over all chro-
mosomes, genome-wide association studies (GWAS) have 
been applied comprehensively to identify genetic variations 
that are associated with periodontitis [48,49]. GWAS studies 
have identified novel genes for susceptibility, including 
GLT6D1 in aggressive periodontitis [48], NIN, NPY, and WN-
T5A in severe chronic periodontitis, and NCR2 and EMR1 in 
moderate chronic periodontitis [49]. While it has not been 
fully determined how the identified susceptibility genes af-
fect pathogenesis, GWAS has provided novel insights into 
the etiology of periodontitis genome-wide, compared to pre-
viously taken candidate approaches. 

Furthermore, apart from genome-wide genetic variation 
analysis, total gene transcript analysis, generally referred to 
as transcriptomics, has been conducted on periodontal tis-
sues as well as peripheral blood cells [50-52]. Proteomics and 
metabolomics have also been applied to saliva or gingival 
crevicular fluid to identify proteins and metabolites with a 
negative or positive influence on host defense mechanisms 
[53-55]. It is noteworthy that the levels of transcripts, proteins 
and metabolites may reflect not only the genetic program-
ming, but also the consequences of response to environmen-
tal factors and disease progression. There are layers of chem-
ical modifications on the DNA and its associated proteins that 
regulate gene expression, commonly referred to as epigene-
tic effects. These become established or erased based on an 
environmental response, subsequently leading to intracellu-
lar signaling.

EPIGENETICS IN HUMAN DISEASE

Epigenetic modifications
The genetic material, thought of as a database of cellular 

information, is not only charged by its coding capacity. The 
last three decades of genetic research has uncovered key fac-
tors that reproducibly bind the DNA and organize it into 
functional units [56]. The DNA is wrapped around histone 
proteins, the nucleosomes, which serve the purpose of con-
densing and decondensing the DNA depending on gene ac-
tivity, and in maintaining chromosome integrity at times of 
cessation and cell division. The nucleosomes are fairly evenly 
distributed over the chromosomes, and there are recently 
developed techniques that allow us to accurately predict 
where those are positioned [57]. Importantly, each protein in 
the nucleosome is subject to post-translational modifica-

tions, appearing at defined positions of the genome, and is 
strongly correlated with the activities observed at the DNA 
(e.g., transcriptional activity and elongation). For instance, 
trimethylation at histone H3 lysine 4 (H3K4me3) is associated 
with transcriptional activation, while H3K9me3 and H3K27me3 
are associated with transcriptional repression [58] (Fig. 2). The 
most well characterized epigenetic modification is DNA 
methylation, which occurs at the 5th carbon of cytosines in 
mammals (5mC), most commonly next to a guanosine (CpG). 
Methyl-groups are placed by DNA methyltransferases (DN-
MTs) that catalyze the transfer from the methyl donor S-ade-
nosyl methionine to the cytosines. Methylation at previously 
unmethylated sites is placed by the DNMT3a/b, while it is 
commonly maintained by the DNMT1, referred to as the de 
novo and maintenance methyltransferases, respectively. To-
gether they assure that the vast majority of the genome is 
methylated at all times, leaving only regulatory elements like 
promoters and enhancers, and CpG-rich islands unmethyl-
ated [59]. The acquisition of DNA methylation at the promot-
er is predominantly associated with gene silencing (Fig. 2). 
DNA methylation can be further modified via oxidation by 
the TET proteins, implicated in DNA demethylation process-
es via the base excision repair machinery [60]. On many oc-
casions, multiple epigenetic modifications, including DNA 
methylation and various histone modifications, work coordi-
nately or antagonistically [59,61,62].

It is easy to conceive that misplaced modifications and the 
reduced dynamics of their distribution lead to obstructed 
gene activity and disease (Fig. 3). This generally occurs as a 
result of mutations of factors that directly make or influence 
epigenetic modifications [63]. Since each factor has an influ-
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Figure 2. Chromatin changes by epigenetic modifications and tran-
scriptional status. Schematic overview of chromatin changes by typi-
cal epigenetic modifications. Combinations of epigenetic modifica-
tions contribute to determining chromatin structure, leading to an 
open or closed chromatin configuration and transcriptional state. 
For example, reduced DNA methylation at the promoter of the in-
terferon gamma (IFNG) gene is associated with increased expression 
of IFNG in the inflamed tissues from periodontitis patients, com-
pared to healthy periodontal tissues. 
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ence on a genome-wide level, the effect can be dramatic.

Epigenetics in complex diseases
There is an ever increasing amount of evidence showing 

that understanding the epigenetic pattern in disease progres-
sion will provide invaluable information in the diagnosis and 
treatment of human disease [64]. Genome-wide analysis of 
epigenetic patterns in tissues that undergo defined changes 
as a result of external stress have provided insight into how 
cells respond to external factors [65]. Furthermore, such anal-
ysis offers detailed insight into how the cells try to cope with 
the changes and what may be the outstanding factors that 
determine whether the changes can be dealt with or result in 
skewed differentiation or cell death.

The response is hidden in the genetic background, since 
the results of GWAS have identified correlations with disease 
susceptibility and progression [66]. This was investigated by 
screening for quantitative trait loci that are in linkage disequi-
librium with genes in close proximity and inferred to be caus-
ative in disease predisposition. Extensive studies have been 

conducted to identify gene expression patterns and/or epige-
netically modified loci to determine which ones are correlat-
ed with a particular disease [67,68].

An important part of identifying and characterizing the 
epigenetic pattern in development and disease is to use the 
information to predict the treatment and cure of diseases 
based on a suggested genetic response [69]. This information 
has led to the identification of biomarkers that directly cor-
relate with a defined condition [70]. Similarly, epigenetic pat-
terns that suggest a predisposition for a particular disease 
have been identified and should be possible to use as the ba-
sis for developing personalized and preventive treatment re-
gimes to prevent future problems. However, this is more a 
vision than a reality in today’s medicine.

Epigenetics in environmental response
The placement of epigenetic modifications is tightly con-

trolled both spatially and temporally. Each tissue has a unique 
epigenetic profile, and changes do occur as a result of devel-
opmental and regenerative processes. There is clear evidence 
that embryonic stem cells have a unique epigenetic pattern 
that changes upon differentiational cues [71]. Extrinsic factors, 
such as hormones, regulate differentiation, and in effect in-
fluence epigenetic modifications [63]. The epigenetic pattern 
that we observe in any particular tissue at any particular point 
in time is a reflection of its activity [72]. Most of the informa-
tion is then further reflected by its gene expression pattern. 
Hence, the observed epigenetic pattern can be used to infer 
the transcriptional condition of the cell or tissue.

Treatment of cells in vitro generates a defined epigenetic 
pattern, as evidenced by studies of induced pluripotent stem 
cells [73] and epithelial-to-mesenchymal transition [74]. The 
gut microbiome can alter the epigenetic pattern of the gut 
endothelial cells [75,76] by excreting signals that trigger a re-
sponse. Likewise, a similar effect can be achieved in the oral 
cavity, which is under the constant influence of extrinsic fac-
tors and foreign agents from food intake. Oral hygiene is 
naturally a contributing factor to oral health. Mounting evi-
dence suggest that a lifestyle of smoking, food intake, lack of 
exercise, and use of drugs strongly influences the epigenetic 
pattern and predisposition to most conditions that lead to 
human disease [77].

EPIGENETICS IN PERIODONTITIS

Inflammation-specific gene expression and epigenetic reg-
ulation 

A typical inflammatory response results in the upregulation 
of genes associated with the production of lectins that then 
coat epithelial cell surfaces, with the function of recruiting 

Normal expression

Abnormal expression

Genetic variations or mutations influences expression

Disease

Epigenetic alteration influences expression without genetic changes

Figure 3. Genetic and epigenetic alterations in disease progression. 
Genetic and epigenetic alterations contribute to gene expression ei-
ther with or without changes in DNA sequences, respectively. Nor-
mal expression can be interrupted via genetic alteration by produc-
tion of abnormal protein or altered efficiency of gene transcription. 
Likewise, interruption can be accomplished by epigenetic alterations 
at transcriptionally regulatory regions. The ‘black box’ represents 
exons while the ‘grey box’ represents introns or regulatory regions. 
The ‘highlighted G’ represents a nucleotide that has replaced a dom-
inant or a normal nucleotide as genetic variation or mutation, re-
spectively. White and black circles indicate the different statuses of 
epigenetic modifications at the regulatory elements of a given gene. 
Specifically, white circles indicate unmethylated cytosines at the 
promoter that usually allow active transcription, while ‘black circles’ 
indicate methylated cytosines at the promoter that usually suppress 
transcription.
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neutrophiles to the site of infection. This initiates an immune 
response that involves both innate and adaptive-related pro-
cesses. It is at this stage that epigenetic regulation of gene 
expression patterns seems to play the most important role 
[78] and is key in the upregulation of proinflammatory cyto-
kines and other signaling molecules to activate a full response 
from immune cells, while simultaneously downregulating 
anti-inflammatory cytokines. The cytokine genes have been 
suggested as targets of multiple epigenetic events including 
transcriptional activation via loss of DNA methylation and 
active histone modifications at regulatory elements [79-81]. 

The IL-1, IL-2, IL-6, IL-8, IL-10, and IL-12 genes may be regu-
lated by epigenetic mechanisms [79,82]. In chronic obstruc-
tive pulmonary disease, proinflammatory cytokines (IL-1, IL-
2, IL-8, and IL-12) are highly expressed via increased H3K9 
acetylation at the promoters of CBP/p300 and decreased his-
tone deacetylase activity, following the recruitment of NF-kB 
to gene promoters [83]. TNFA, encoding TNF-α, is also regu-
lated by epigenetic modifications both constitutively and in 
response to acute stimulation in myeloid cells [84]. DNA 
methylation also involves cytokine expression such as inter-
feron gamma (IFN)-γ and IL-10 by transcriptional inactiva-
tion and skewed differentiation toward IL-10-expressing reg-
ulatory T cells, respectively [85,86]. In addition to cytokines, 
TLR-2 and TLR-4, associated with an increased proinflam-
matory response, are regulated by DNA methylation in bron-
chial and intestinal epithelial cells [87,88]. The TLRs, expressed 
on the cell surface, are involved in the recognition of bacteri-
al components such as lipoproteins, lipo-polysaccharide, fla-
gellin, and DNA [89], so that DNA methylation-mediated 
regulation of their expression is crucial to determining the 
magnitude of the bacteria-induced response.

Intriguingly, inflammation signaling itself influences epi-
genetic changes in cells. IL-6 and IL-1b promote transcrip-
tion or protein activity of DNMTs, respectively [90,91]. Cyto-
kine-induced methylation changes lead to transcriptional re-
pression of multiple target genes. Taken together, epigenetic 
mechanisms play a key role in the initiation and progression 
of inflammation by determination of cytokine profiles in re-
sponse to environmental stimuli, but also by regulating down-
stream target genes in response to cytokines. 

Epigenetic alterations in periodontitis
Epigenetic studies on the epithelial lining of the oral cavity 

are in their infancy, but several studies suggest that these cells 
have a unique capacity to respond to environmental factors. 
In the periodontal cavity, the inflammatory response involves 
upregulation of transcription factors (e.g., NF-κB and STAT) 
and epigenetic chromatin changes similar to other inflam-
matory diseases [92] (Table 1). Chronic periodontitis patients 

showed overexpression of cytokines such as IL-6 and IFN-γ 
in their inflamed tissues [28,93]. The associations between IL-6 
and periodontitis are also supported by genetic evidence [27,28]. 
The expression changes of some loci (e.g., IFNG), occur as a 
result of the loss of methylation at their promoters [93]. On 
the other hand, the overexpression of IL-6 is not associated 
with DNA methylation at its promoter. IL-6 upregulation 
may rather activate the DNMTs [90], leading to methylation 
changes at the IL-6-induced target genes and development 
of a chronic inflammatory condition.

Recently, Zhang et al. [94] showed that the TNFA promoter 
was hypermethylated at two CpG sites, resulting in decreased 
expression. By reversing the methylation by treatment with a 
demethylating agent in vitro, it caused increased expression 
of TNFA, indicating that the methylation indeed regulated 
the expression. Lower expression in patients compared to 
healthy controls was, however, in conflict with a previous re-
port [95]. The authors speculated that the discrepancy might 
be due to the difference in the state of inflammation of the 
patients, considering the fact that only severely afflicted pa-
tients showed elevated TNF-α [96]. It could also be due to the 
not-always-direct relationship between the mRNA level and 
protein level. Either way, further investigations are required 
to determine the role of TNF-α in periodontitis.

Further evidence of epigenetic changes associated with 
periodontitis comes from data on COX-2, an enzyme govern-
ing the production of prostaglandins that promote inflam-
mation and pain. It has been reported that COX-2 inhibitors 
were able to reduce the symptoms of periodontitis patients 
[97]. Nevertheless, COX-2 expression in inflamed gingival tis-
sues from chronic periodontitis patients was lower and its 
promoter was hypermethylated [98], which was confirmed 
by an independent study [99]. Similar to TNF-α, methylation 
changes occur more frequently in periodontitis than in healthy 
individuals, but it remains unclear whether it is linked to peri-
odontitis etiology or rather indicates the consequence of 
DNMT activation by persistent chronic inflammation. 

In addition to DNA methylation, other epigenetic changes 

Table 1. Epigenetic alterations at inflammatory genes in chronic 
periodontitis. 

Gene Epigenetic alteration Reference

TNFA Hypermethylation at promoter & decreased expression 94
IL-6 No altered DNA methylation & increased expression 26
E-Cadherin, 

COX-2
Hypermethylation at promoter 99

IFNG Hypomethylation at promoter & increased expression 93
COX-2 Hypermethylation at promoter & decreased expression 98

TNFA, tumor necrosis factor-alpha; IL-6, interleukin 6; COX-2, cyclo-oxygenase-2; 
IFNG, interferon gamma.
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such as histone modifications are involved in periodontitis. 
Treatment by HDAC inhibitors efficiently suppressed peri-
odontal bone loss in a mouse model of periodontitis [100]. 
Treatment with novel HDAC inhibitors, such as 1179.4b and 
MS-275, on P. gingivalis-inoculated mice resulted in signifi-
cantly reduced bone loss, indicating that maintenance of 
acetylation is crucial to preventing bone loss.

Collectively, gingival tissues from periodontitis patients 
seem to have altered epigenetic patterns, particularly at in-
flammation-related genes. However, it needs to be deter-
mined whether 1) the alterations account for the susceptibili-
ty like genetic variations in those loci; 2) they are directly re-
lated to a mechanism driving the pathogenesis by transcrip-
tional changes in critical target genes; or 3) they are just con-
sequences of chronic inflammatory events. Future genome-
wide studies on epigenetic factors promise to provide insight-
ful answers to these questions.

CONCLUSION

The understanding of periodontitis has substantially bene-
fited from the recent identification of genetic factors (in par-
ticular SNPs and SNVs) and epigenetic regulatory mecha-
nisms (i.e., aberrant epigenetic patterns). These findings pro-
vide novel insight into the etiology of periodontitis, especial-
ly regarding the tissue response to infection, as well as high-
lighting putative mechanisms by which genetic and environ-
mental factors influence each other. While analysis of candi-
date inflammation-related genetic factors have been com-
mon so far, current ongoing genome-wide analysis of genet-
ic variation and epigenetic alterations in periodontitis will 
likely expand our understanding of the pathogenesis of peri-
odontitis in an unbiased way. The newly gathered informa-
tion will be used in developing novel therapeutic interven-
tions, potentially involving epigenetic modifiers, leading the 
way to personalized medicinal treatment and preventional 
regimes.
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