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ABSTRACT Here, we present the genome sequence of lymphocystis disease virus 2
LCDV-JP_Oita_2018 (genus Lymphocystivirus, family Iridoviridae), which was isolated from
a diseased Japanese flounder (Paralichthys olivaceus) in Japan. The LCDV-JP_Oita_2018
genome was assembled into a circular contig of 186,627bp, with 140 predicted protein-
coding genes and a GC content of 27%.

Lymphocystis disease (LCD), which is caused by LCD virus (LCDV) (genus Lymphocystivirus,
family Iridoviridae), is a common viral disease in fish (1–6). Here, we sequenced the ge-

nome of LCDV 2 LCDV-JP_Oita_2018, which was isolated from a Japanese flounder
(Paralichthys olivaceus).

A dead P. olivaceus fish exhibiting tumor-like lesions on the body surface (a typical clinical
sign of LCD) was provided by a commercial farm in Oita Prefecture, Japan, in 2018. Skin
lesions were excised, homogenized in phosphate-buffered saline, and stored at230°C. Two
milliliters of thawed lysate was diluted with 6ml of TNES-urea buffer (6 M urea, 10mM Tris-
HCl [pH 7.5], 125mM NaCl, 10mM EDTA, 1% SDS) (7) and treated with proteinase K (final
concentration, 500ng/ml) for 2 h at 60°C. Five milliliters of 5 M NaCl was added, and the
lysate was cleared by centrifugation. Genomic DNA was extracted from the supernatant
using the cetyltrimethylammonium bromide (CTAB) method (8). The crude DNA was puri-
fied using a NucleoBond AXG 100 column (Macherey-Nagel). No shearing or size selection
of the extracted DNA was performed before library preparation. Default parameters were
used for all software unless otherwise noted.

A paired-end library was prepared with the Nextera XT library preparation kit
(Illumina) and was sequenced with the MiSeq reagent kit v2 (2� 150 bp) (Table 1). The
raw Illumina reads were quality trimmed using Fastp v0.20.0 (9) and were de novo
assembled by SPAdes v3.13.0 (10), to generate a draft LCDV-JP_Oita_2018 genome.

A long-read library was prepared with a ligation sequencing kit (SQK-LSK109; Oxford
Nanopore Technologies) and was sequenced using an R9.4.1 flow cell on a GridION platform
(Table 1). The fast5 files were base called using Guppy v3.2.81bd67289 with the fast mode.

The Nanopore reads were mapped to the draft LCDV-JP_Oita_2018 genome using
minimap2 v2.17-r963-dirty (11). The mapped Nanopore reads were extracted using
SAMtools v1.10 (12) and filtered by length (.50kb) using SeqKit v0.10.0 (13). The filtered
Nanopore reads (Table 1) were de novo assembled using Flye v2.6 (14), yielding a single
contig. The filtered Nanopore reads and trimmed Illumina reads were mapped back using
minimap2 to prepare input for polishing with HyPo v1.0.2 (15). Protein-coding genes were
predicted using Prodigal v2.6.3 (16). The proteins were manually annotated based on BLASTP
search results with the NCBI nonredundant protein database (accessed February 2020).

The LCDV-JP_Oita_2018 genome was assembled into a 186,627-bp circular sequence with
a GC content of 27% and 140 predicted protein-coding genes. BLASTN pairwise alignment
(task megablast v2.11.01) with a Chinese isolate (LCDV-C, 186,250bp [GenBank accession
number AY380826]) revealed 99.91% nucleotide identity with 99% coverage. The small
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amount of divergence between the two LCDV isolates supports the view that LCDV strains
affecting P. olivaceus in East Asia are virologically identical, as suggested by the high nucleo-
tide identities ($99.6%) of major capsid protein gene sequences (5).

Data availability. The LCDV-JP_Oita_2018 genome is available in DDBJ/EMBL/GenBank
with the accession number LC534415. The raw read data are available with the accession
numbers DRR213899 and DRR213900.
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TABLE 1 LCDV-JP_Oita_2018 sequencing statistics

Parameter

Data for:

Illumina reads (accession no. DRR213899) Nanopore reads (accession no. DRR213900)

Raw Filtered Raw Filtered
No. of reads 3,682,911 3,659,510 97,124 1,065
Total length (bp) 867,436,261 863,771,560 630,612,147 71,205,129
Avg read length (bp) 118 118 6,493 66,859
N50 (bp) 15,501 64,930
No. of mapped reads 2,570,459 2,530,934 66,333 1,065
Proportion mapped (%) 69.79 69.16 68.30 100.00
Mean coveragea (�) 3,137 3,161 2,480 372
aCalculated using SAMtools coverage v1.10 (12) from alignments generated by minimap2 v2.17 (11), with the settings ax sr for Illumina reads and ax map-ont for Nanopore
reads.
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