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According to the latest statistics from the International Agency for Research on Cancer
(IARC), lung cancer is one of the most lethal malignancies in the world, accounting for
approximately 18% of all cancer-associated deaths. Yet, even with aggressive
interventions for advanced lung cancer, the five-year survival rate remains low, at
around 15%. The hedgehog signaling pathway is highly conserved during embryonic
development and is involved in tissue homeostasis as well as organ development.
However, studies have documented an increasing prevalence of aberrant activation of
HH signaling in lung cancer patients, promoting malignant lung cancer progression with
poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in
tumor therapy, however, they still cannot avoid the occurrence of drug resistance.
Interestingly, natural products, either alone or in combination with chemotherapy, have
greatly improved overall survival outcomes for lung cancer patients by acting on the HH
signaling pathway because of its unique and excellent pharmacological properties. In this
review, we elucidate on the underlying molecular mechanisms through which the HH
pathway promotes malignant biological behaviors in lung cancer, as well as the potential
of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung
cancer therapy.

Keywords: lung cancer, Hh pathway, proliferation, invasion, metastasis, natural product
INTRODUCTION

Lung cancer, which is one of the most lethal malignancies worldwide, can be classified into non-
small cell lung cancer (NCSLC) or small cell lung cancer (SCLC) based on histopathological type
(1–3). Among them, NSCLC accounts for approximately 85% of lung cancer cases (4–6).
Regrettably, most lung cancer patients are already in advanced stages at the time of diagnosis,
losing the opportunity for surgery. However, with decades of medical development, diverse and
individualized treatment strategies for advanced lung cancer, including chemotherapy,
radiotherapy, targeted therapy as well as immunotherapy have been developed (7, 8). Among
them, molecular targeted therapies targeting driver genes has shown good application prospects,
and the corresponding molecular targeted drugs have been developed for common lung cancer
driver genes, such as epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase
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(ALK) and c-ros oncogene 1 receptor tyrosine kinase (ROS1),
significantly prolonging progression-free survival (PFS) and
overall survival (OS) outcomes for lung cancer patients (9–11).

The HH signaling pathway is highly evolutionarily conserved,
and maintains tissue homeostasis and organ development (12,
13). There is evidence that HH signaling participates in
embryonic lung development, regulates epithelial-mesenchymal
interactions, differentiation of embryonic neuroendocrine cells,
and repair of injured airway tissues (14). Aberrant activation of
HH signaling is closely associated with lung cancer development
(15). The Kras/YY1/ZNF322/SHH transcriptional axis increases
the expression levels of the SHH protein, leading to lung cancer
malignant progression by inducing tumor angiogenesis (16).

In lung squamous cell carcinoma (LSCC), HH signaling
regulates EMT-associated proteins, such as E-Cadherin and b-
catenin to induce the EMT process (17), and Smo gene
amplification is one of the mechanisms through which HH
signaling is activated to increase the resistance of lung cancer
cells to epidermal growth factor receptor tyrosine kinase
inhibitors (EGFR-TKIs) by inducing the EMT process (18). In
an EGFR-TKIs-resistant lung cancer mouse model, the HH
inhibitor, LDE225 (Sonidegib), in combination with gefitinib
significantly inhibited tumor growth than gefitinib alone,
completely inhibiting the phosphorylation of PI3K/AKT and
MAPK signaling. Moreover, LDE225 enhanced the sensitivity of
lung cancer cells to standard chemotherapy (18). In addition, to
establish whether HH signaling was activated in lung cancer
cells, Gli1 protein levels in advanced NSCLC were assessed. Gli1
protein overexpression was found to be associated with poor
prognostic outcomes and immune checkpoint inhibitor
resistance (19). Activation of HH signaling is essential for the
development of some types of SCLC (14). In an SCLC mouse
model, inhibition of HH signaling using cyclopamine
significantly reduced tumor growth. HH inhibitors in
combination with radiotherapy or chemotherapy regimens
provide individualized treatment options for SCLC patients (14).

In this review, we elucidate on the underlying molecular
mechanisms of HH signaling in lung cancer development and
explore the relevance of HH signaling-related proteins in the
prognosis of several types of lung cancer, indicating new
directions for research.
THE CANONICAL PATHWAY OF
HH SIGNALING

The hedgehog (HH) gene was first detected in 1980 by Nüsslein-
Volhard and Wieschaus while studying the embryonic
development of Drosophila (20). As the canonical signaling
pathway in vertebrates, the HH-Ptch-Smo-Gli route consists of
several essential components, including Sonic hedgehog (SHH),
Desert hedgehog (DHH), and Indian hedgehog (IHH),
Smoothened (Smo), Patched (Ptch), three glioma-associated
oncogene transcription factors (Gli1, Gli2, Gli3), Suppressor of
fused (SuFu). Of the three HH homologs, the SHH protein is
highly expressed, with the most potent biological effects (21).
Frontiers in Oncology | www.frontiersin.org 2
Smo, a seven-pass transmembrane protein belonging to the G
protein-coupled receptor (GPCR) superfamily, can be inhibited
by Ptch. Ptch, a twelve-pass transmembrane protein to be the
receptor of SHH, can negatively regulate the HH pathway. As
downstream effectors of the HH signaling pathway, the Gli zinc-
finger transcription factor family plays a crucial role in final
activation or inactivation of the HH pathway (22). Gli1 acts as a
transcriptional activator because it lacks an N-terminal
inhibitory region, while Gli2 and Gli3 both have N-terminal
inhibitory regions and C-terminal activation regions that play
dual roles of activation and repression (23). The Gli1 protein acts
as a key transcription factor, regulating the expressions of
downstream target genes of the HH pathway.

In the absence of HH ligands, Ptch receptors constitutively
inhibit the activities of Smo proteins (24), leading to the
phosphorylation of Gli proteins (Gli2 and Gli3) within the
microtubule complex by casein kinase 1a (CK1a), protein
kinase A (PKA), and glycogen synthase kinase 3b (GSK3b).
The phosphorylated Gli proteins then bind b-transducing
repeat-containing protein (b-TrCP) to form the Gli/b-TrCP
complex that is sheared into a transcription-repressive form
(Gli-R) by the actions of ubiquitin-proteasome (25). Briefly,
when the HH signaling pathway is inactivated, Gli-R enters the
nucleus, where they bind target gene promoters to repress
gene transcriptions.

In the presence of HH ligands, inhibitory effects of Ptch
receptors on Smo proteins are alleviated. The Smo protein,
activated by CK1, PKA, and GPCR kinase 2 (GRK2)-mediated
phosphorylation, translocates to the primary cilium by
interacting with b-arrestin (26). As Smo proteins continuously
accumulate on the primary cilium, a microtubule complex
consisting of Gli and SuFu proteins translocate to the top of
the primary cilium (27), where it inhibits Gli proteins C-terminal
hydrolysis by interacting with Smo proteins, thereby activating
and releasing Gli proteins. The activated Gli protein (Gli-A),
which has a transcriptional activation function, enters the
nucleus to regulate the expressions of HH pathway target
genes (28). Target genes of the HH pathway include Gli1,
Ptch1, FoxA2, Bcl-2, Bcl-xl, Myc, and Cyclin family
(Figure 1) (29).
THE NONCANONICAL PATHWAY
OF HH SIGNALING

Noncanonical HH signal transduction is the signaling response
to any associated components of the HH pathway, different from
the common canonical HH signaling pathway. Based on HH
pathway-related components, the noncanonical HH pathway is
classified into four types: SHH-mediated, Ptch-mediated, Smo-
mediated, and Gli-mediated noncanonical signaling (Figure 2).

The SHH ligands selectively promote lymphatic endothelial cell
proliferation to induce lymphangiogenesis after kidney injury by
activating extracellular signal-regulated kinase-1 and -2 (ERK1/2)
pathway, leading to kidney fibrosis, independently of Smo (30).
Moreover, SHH proteins are involved in repairing responses of
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damaged cerebellum by upregulating the expressions of Nkx2.2
and Pax6 transcription factors in cadmium-exposed rats (31).

The Ptch-mediated noncanonical pathway is a Ptch-mediated
Smo-independent pathway. This pathway is accompanied by
cytoskeletal remodeling and Wnt signal activation, which
provides a possible explanation for the failure of Smo
inhibitors in HH-dependent malignant tumors (32). In
addition, active Smo induces autophagy and promotes
ciliogenesis by acting on LKB1-AMPK and Gai-LGN-NuMA-
dynein axes in some cell lines, including neurons, independently
of the Smo-mediated canonical pathway (33).
Frontiers in Oncology | www.frontiersin.org 3
The Gli-mediated noncanonical pathway is also known as
Gli-activated, but Smo-independent pathway. In drug-resistant
basal cell carcinoma (BCC), activator protein-1 (AP-1) and
transforming growth factor-b (TGFb) synergistically stimulate
a nuclear myocardin-related transcription factor (nMRTF) to
enhance transcriptional activities of Gli1 (34). Desmoglein 2
activates signal transducer and activator of transcription 3
(STAT3) to upregulate Gli1 expressions, resulting in BCC
occurrence and development (35). Astrocyte-derived TGFb1/
Smad2/3 signaling contributes to blood-brain barrier (BBB)
functions by increasing ZO-1 expression via upregulating Gli2
FIGURE 2 | Noncanonical HH signaling transductions are depicted, including SHH-mediated, Ptch-mediated, Smo-mediated and Gli-mediated noncanonical
signaling. SHH-mediated noncanonical pathway is associated with cellular repair and lymphangiogenesis. Ptch-mediated but Smo-independent pathway is activated
by SHH to induce Wnt signaling and cytoskeletal remodeling. In Smo-mediated but Gli-independent noncanonical pathway, the SHH ligand activates LKB1-AMPK
and Gai-LGN-NuMA-dynein axes in neurons, leading to activation of autophagy and ciliogenesis. There is a crosstalk between Gli activated and Smo-independent
pathways as well as with numerous oncogenic pathways, resulting in lung cancer tumorigenesis and development.
FIGURE 1 | The canonical HH signaling pathway. In the absence of the HH ligand (left), PTCH binds SMO, leading to its degradation. Microtubule complex
containing Gli and SUFU is phosphorylated by GSK3b/PKA/CK1 to activate Gli proteins, which subsequently combine with b-TrCP to switch into transcriptional
repressor (GLI-R). In the presence of HH ligand (right), SMO restriction by PTCH is relieved, active SMO moves to the primary cilium. Active Smo interacts with the
SUFU/GLI complex, localized at the top of the primary cilium, GLI proteins from the complex switch into transcription activators (GLI-A), which then translocate to the
nucleus and activate the HH target genes, including PTCH, GLI1, FOXA2, BCL-2, BCL-Xl, MYC, and CYCLIN family among others.
April 2022 | Volume 12 | Article 729088
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protein levels (36). In addition, dual-specificity tyrosine-
regulated kinase 1A (DYRK1A) phosphorylate Gli1 at Ser408
to enhance the transcriptional activities of Gli1, suggesting that
DYRK1A regulates noncanonical HH signaling (37).

In lung adenocarcinoma (LAC), KRAS and vascular
endothelial growth factor (VEGF) receptor, NRP2, trigger
MAPK/ERK/Gli1 signaling cascade to promote tumor
progression (38). As a downstream effector of the PI3K
pathway, p70S6K2 enhances the transcription activities of Gli1
by modulating the phosphorylation of GSK3b in NCSLC (39).
Finally, there are other oncogenic pathways involving
noncanonical HH signal transduction, such as AMP-activated
protein kinase (AMPK), PI3K-AKT-mTOR signaling, and
Protein kinase C (PKC) (40). Figure 3 shows the crosstalk
between the HH pathway with various oncogenic pathways.
THE HH PATHWAY PROMOTES THE
MALIGNANT PROGRESSION OF LUNG
CANCER

Abnormal activations of the HH signal are closely associated
with lung cancer occurrence and development. They are involved
in cell proliferation, invasion, metastasis, drug resistance,
stemness characteristics, and tumor microenvironment.
Therefore, we summarize the recent findings of HH signaling
in lung cancer and discuss the potential for targeting the HH
pathways to treat lung cancer.

The HH Pathway Promotes Lung Cancer
Cell Proliferation
The HH pathway remarkably induces tumor proliferation (41,
42). HH signaling regulates INSM1 interactions with N-myc to
Frontiers in Oncology | www.frontiersin.org 4
promote SCLC cell growth in a Gli-dependent manner (43). The
E3 ligase (HERC4) and liver kinase B1 (LKB1) inhibit cell
proliferation in lung cancer by inactivating the HH pathway.
Mechanistically, HERC4 has been shown to negatively regulate
the HH pathway by destabilizing the Smo protein (44), while the
mechanisms through which the HH pathway is inhibited by
LKB1 have not been elucidated (45).
HH Pathway Promotes Lung Cancer Cell
Invasion and Migration
The HH pathway is involved in cell invasion and migration of
multiple tumors (46). SAM- and SH3-domain containing 1
(SASH1) inhibit hepatocellular carcinoma invasion and
migration by inactivating the HH and PI3K/AKT pathways in
vitro and in vivo (47). In vitro, transmembrane 107 protein
(TMEM107) inhibited epithelial-mesenchymal transition (EMT)
and invasion by negatively regulating HH signaling in NSCLC
(48). Besides, Gli1, the downstream gene of the HH pathway,
promotes NSCLC cell invasion and metastasis in vitro and in vivo
by inducing the EMT process. The downregulation of Gli1
significantly inhibited tumor growth and enhanced E-cadherin
expressions (49). Interestingly, the KRAS mutation activated the
Kras/YY1/ZNF322A/SHH axis by triggering the expression of
downstream genes, including YY1, ZNF322A, and SHH, which
promoted angiogenesis in NSCLC in vitro and in vivo (16). The
overexpression of phosphatidylethanolamine‐binding protein 4
(PEBP4) promotes NSCLC cell proliferation and EMT by
regulating the HH pathway (50) while fibroblast activation
protein a (FAPa) promoted LSCC cell growth, adhesion, and
migration in vitro via the PI3K and HH pathways (51).

Hedgehog-interacting proteins (HHIP) negatively regulate
the HH pathway by binding SHH proteins (52–54). HHIP
serve as tumor suppressors by significantly inhibiting lung
cancer cell proliferation, migration, and invasion (53).
Similarly, overexpression of signal peptide-CUB-EGF domain-
containing protein 2 (SCUBE2) inhibits NSCLC cell proliferation
and invasion by modulating the HH pathway. The SCUBE2-
mediated inhibition of the HH pathway can be reversed by
recombinant SHH proteins (55). GATA-6 impairs the metastatic
abilities of LAC cells (56). Moreover, GATA-6 suppresses cell
proliferation and migration in LSCC by inhibiting the
expressions of SHH at transcriptional levels (57). Additionally,
miR‐520b enhances NSCLC cell proliferation and metastasis by
activating the SPOP‐Gli2/3 axis (58). Hematopoietic pre-B-cell
leukemia transcription factor (PBX)-interacting protein (HPIP)
is a nucleo-cytoplasmic shuttling protein (59) that promotes
NSCLC cell proliferation, invasion, and migration in vitro and
tumor growth in vivo by interfering with the HH pathway (54).

In an A549 cell line, tumor suppressor candidate 3 silencing
(TUSC3) inhibited growth, proliferation and induced apoptosis
as well as radiation sensitivity (60). In contrast, TUSC3
overexpression in NSCLC promoted cell proliferation,
migration, and invasion in vitro and in vivo, possibly by
involving HH signaling (61). Leucine zipper transcription
factor-like 1 (LZTFL1) inhibits lung cancer tumorigenesis, at
least partly by inhibiting HH signaling pathway to maintain
FIGURE 3 | Construction of the crosstalk network for both HH pathway and
other cancer-related pathways using the STRING database. The left bottom
literal statements are the alternative names of the molecule.
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epithelial cell differentiation (62). Figure 4 shows HH signaling
interaction networks in lung cancer patients.

HH Pathway and Drug Resistance
Drug resistance is one of the leading causes of tumor treatment
failure (63), while hyperactivation of the HH pathway is
frequently described in many drugs resistant malignant
tumors. The HH pathway promotes cell proliferation as well as
invasion in LAC with acquired drug resistance to EGFR-TKIs,
partially by acting on HGF and MET signaling (64). Della Corte
et al. (65) investigated the mechanisms in acquired resistance to
EFGR-TKI during NSCLC treatment. The HH pathway was
found to induce drug resistance by regulating the EMT
process. Additionally, the active HH pathway was shown to
induce EMT and upregulated ABCG2 in EGFR-TKI-resistant
NSCLC patients, while the opposite result was observed when the
HH pathway was inhibited (66).

MiRNA disorders are prevalent in many malignant tumors,
including lung cancer (67, 68). miR-182-5p is the direct target of
Gli2, the negative feedback axis of miR-182-5p/Gli2 regulates cell
cisplatin resistance in LAC (69).

HH Pathway and Lung Cancer CSCs
A small proportion of tumor cells are regarded as CSCs that play
a vital role in tumor occurrence, development and recurrence
(70, 71). Aberrantly HH signaling is common in CSCs (72, 73).
SHH-positive (SHH+) cells in NSCLC, expressing an uncleaved
full-length SHH protein, exhibited drug resistance and CSC
characteristics. A high abundance of SHH+ cells is a biomarker
for worse prognostic outcomes for NSCLC patients (74). Low-
folate (LF) is associated with malignant progression of lung
cancer. Functionally, the LF microenvironment increases
CSCs-like potential, partially through the HH pathway (75).
Fibroblast growth factor receptor 1 (FGFR1) amplification in
NSCLC is particularly prevalent, especially in LSCC (76, 77),
Frontiers in Oncology | www.frontiersin.org 5
where it stimulates the expressions of Gli2 through ERK pathway
activation. The FGFR1/Gli2 axis upregulates the expression
levels of CSCs markers (78). Aberrantly activated Notch and
HH pathways induce CSCs phenotypes. Notch-Hedgehog
positive tumor cells mediate immune evasion by enhancing the
functions of regulatory T cells (79).

HH Pathway and the Tumor
Microenvironment in Lung Cancer
The tumor microenvironment, a local homeostatic environment
composed of tumor cells, stromal cells (including fibroblasts,
immune and inflammatory cells) as well as the extracellular
matrix, provides the necessary materials for tumor initiation and
progression (80). Forkhead box F1(FoxF1) is associated with
poor prognostic outcomes in some lung cancer subtypes. FoxF1,
a downstream effector of HH signaling, stimulates the secretions
of HGF and FGF2 by lung cancer fibroblasts, promoting lung
cancer cell growth and migration in vivo (81).

NSCLC cells activate HH signaling in lung fibroblasts in a
paracrine manner to stimulate the production of pro-angiogenic
and metastatic factors, which induce fibroblast proliferation,
invasion and collagen deposition, leading to lung cancer
progression (82). Similarly, tumor cell-derived HH ligands
stimulate perivascular stromal cells to secrete VEGF-A,
promoting tumor angiogenesis in vitro and in vivo (83). CAFs-
derived SHH ligands activate HH signaling in NSCLC cells in a
paracrine manner, upregulating the expressions of EMT-related
genes such as a-SMA and FAP, and enhancing the migration
abilities of lung cancer cells (84). CAFs remodel actin
cytoskeleton-induced EMT process in an Smo-dependent
manner, enhancing the insensitivity of lung cancer cells to
EGFR-TKIs (85).

TAMs receiving HH ligands secreted by tumor cells activate
KLF4 and STAT3, downstream transcription factors of HH
signaling, which drive TAMs M2 polarization, reduce CD8+ T
FIGURE 4 | The HH pathway interacts with other oncogenes or tumor suppressors in patients with HH-dependent lung cancer. The interactome in the center was
obtained through the STRING database.
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cells, and inhibit their functions, thereby promoting malignant
progression in various tumors (86, 87). By co-culturing A549
cells with THP-1-derived macrophages, A549 cells stimulated
THP-1-derived macrophages toward TAMs M2 polarization. In
contrast, THP-1-derived macrophages upregulate the
expressions of stemness-related genes, including Sox2 and
NANOG through HH, STAT3 and Notch signaling, increasing
the stemness characteristics of lung cancer CSCs (88).

In conclusion, CAFs and TAMs interact with tumor cells to
induce a pro-tumorigenic microenvironment, and HH signaling
in the tumor microenvironment regulates CAFs, TAMs, and
tumor cells in an autocrine and paracrine manner to increase
stemness characteristics and promote the EMT process.
Targeting HH signaling is a promising strategy to inhibit the
formation of the tumor microenvironment.
HH PATHWAY AND LUNG
CANCER PROGNOSIS

It has not been conclusively determined whether HH pathway-
related proteins are associated with lung cancer prognosis. We
reviewed recent findings regarding the biological functions of the
HH pathway in lung cancer, to establish the link between HH
signaling proteins and prognostic outcomes of lung cancer
patients (Table 1).

Hwang et al. (91) performed immunohistochemistry (IHC) to
assess the expressions of SHH, Gli1, LYVE-1, and VEGF-D in 40
cases of primary NSCLC tissues. HH signaling protein
overexpression, especially SHH, represent an independent risk
factor for NSCLC. Moreover, SHH protein overexpression is
negatively correlated with tumor differentiation and predicts
poor prognostic outcomes in LSCC patients (89).

Gli proteins are potential CSCs markers and independent
prognostic factors in LSCC. Their overexpression is closely
associated with various malignant behaviors of LSCC,
including TNM staging, lymph node metastasis, and clinical
staging (94). Ishikawa et al. (95) measured the expression levels
of Gli1, Gli2, and Gli3 mRNA in surgical samples from stage II-
IV LAC patients using q-PCR. Their findings implied that Gli1
mRNA can serve as potential independent biomarker for
prognosis in advanced LAC patients. Moreover, Lim et al. (98)
Frontiers in Oncology | www.frontiersin.org 6
evaluated the expression levels of HH signaling-related proteins,
including SHH, Ptch, Smo, and Gli1, in extensive-stage SCLC
samples. Their data revealed that the other markers have nothing
to do with patient prognosis, while SHH proteins are potential
markers for PFS and OS. Additionally, it has also been reported
that truncated Gli3 (Gli3TR) is essential for LAC initiation and
acts as a potential prognostic risk factor (90).

Overexpression of Gli1 tends to imply progressive stages and
is associated with unfavorable prognostic outcomes (89, 99). In
contrast, Gli1 mRNA overexpression is associated with better
survival outcomes for advanced SCLC patients (97). Savani et al.
(93) assayed tissue microarray with 81 samples from 42 patients
with various NSCLC histologies. Minimum overexpression of
HH signaling-related proteins in NSCLC do not correlate with
patient outcomes. Additionally, there were no significant
correlations between HH signaling-realted proteins, ALDH1A1
and RFS, OS in early-stage NSCLC (92). Kim et al. (96) showed
that SHH and Gli1 overexpression imply better OS and PFS in
LAC, but they are not independent prognostic factors.
RECENT ADVANCES IN HH INHIBITORS

The three currently marketed HH inhibitors, Vismodegib and
Sonidegib, are used to treat locally metastatic and advanced BCC
(100–104), while Glasdegib is used for the treatment of acute
myeloid leukemia (AML) (105, 106). Unfortunately, HH
inhibitor resistance, which is attributed to both Smo acquired
resistance and activation of noncanonical HH signaling, can
never be avoided (107, 108). Therefore, there is an urgent need to
develop new HH inhibitors to overcome HH inhibitor resistance
and prolong the survival outcomes for patients with advanced
HH-dependent tumors. Table 2 shows the HH inhibitors
currently in clinical trials for lung cancer.

Itraconazole, a classic antifungal drug, has excellent
pharmacological characteristics and safety. It acts on Smo
proteins with a site of action distinct from that of Vismodegib,
exhibiting potent anti-HH signaling effects (109–111). In a phase
2 trial involving metastatic nonsquamous NSCLC, itraconazole
combined with pemetrexed significantly prolonged the overall
survival outcomes for patients by up to 32 months, compared to
pemetrexed alone (8 months) (112). In a randomized controlled
TABLE 1 | The correlation between HH signaling proteins and the prognosis of lung cancer.

Sample Pathology subtype TNM Method Gene or Protein Prognostic marker Reference

167 LSCC, LAC I-IV IHC SHH SHH (89)
403 LSCC, LAC I-IV IHC Gli3FL, Gli3TR Gli3TR (90)
40 LSCC, LAC I-II IHC SHH, Gli1, LYVE-1, VEGF-D SHH, Gli1, LYVE-1 (91)
248 LSCC, LAC I-II IHC SHH, Ptch1, Smo, Gli1, Gli2, ALDH1A1 NO (92)
81 LSCC, LAC I-IV IHC SHH, Ptch1, Smo, Gli1, NO (93)
101 LSCC I-III IHC Gli1, LSD1, CD44, Sox9, Gli1, Sox2 Gli1 (94)
102 LAC II-IV qPCR Gli1mRNA, Gli2mRNA, Gli3mRNA Gli1mRNA (95)
166 LAC I-IV IHC SHH, Gli1, Gli2, Gli3, ABCG2 NO (96)
12 SCLC III-IV qPCR Gli1mRNA Gli1mRNA (97)
36 SCLC III-IV IHC SHH, Gli1, Ptch1, Smo SHH (98)
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study investigating the effects of itraconazole on clinical outcomes
in patients with advanced NSCLC receiving platinum-based
chemotherapy, it was confirmed that itraconazole significantly
improved 1-year PFS and overall response rates (ORR), but not 1-
year OS (113). The rationale for these two studies was based on
anti-angiogenic effects of itraconazole. HH signaling is highly
associated with tumor angiogenesis, however, a limited number of
studies have determined whether itraconazole affects tumor
angiogenesis through HH signaling. In advanced SCLC patients,
the Smo inhibitor, Sonidegib, combined with standard
chemotherapy, improved clinical outcomes were well tolerated.
In one case of advanced SCLC with Sox2 amplification,
progression free survival after combination therapy was as long
as 27 months (114).

In conclusion, HH inhibitors alone or combined with other
agents, including chemotherapeutic agents and small molecule
targeted agents, have significant therapeutic implications in HH-
dependent lung cancer patients. The current clinical trials have
some limitations. First, there was no patient stratification before
clinical trials; Second, activation mechanisms of canonical and
non-canonical HH signaling in lung cancer are poorly
understood; Third, there is a lack of large samples, multicenter
data for further validation.
Frontiers in Oncology | www.frontiersin.org 7
HHat Inhibitors
Through autoproteolytic cleavage, full-length SHH proteins
generate 25 kDa SHH-C and 19 kDa SHH-N. Then, SHH-N
undergoes C-terminal cholesterylation and N-terminal
palmitoylation to mature into the SHH-N ligand (22). HHat
mediates N-terminal palmitoylation of SHH-N and is essential
for SHH-N ligand maturation. HHat inhibitors inhibit SHH-
mediated activation of canonical and noncanonical HH
pathways by blocking SHH-N ligand palmitoylation. RU-SKI43
(IC50: 0.85 mM), a small molecule inhibitor, exhibited HHat
inhibitory effects in vitro and in vivo (115). RU-SKI-201 (IC50:
0.73 mM), optimized based on RU-SKI43, overcame the off-target
toxicity of RU-SKI 43 and specifically inhibited HH signaling in
multiple tumor cell lines (116). Although both small molecule
inhibitors exhibit potent anti-HH signaling activities, their oral
availability and pharmacological toxicities should be evaluated at
the animal level.
SHH Inhibitors
The inhibition of HH proteins induces all Ptch-induced pro-
apoptotic pathways (117). 5E1, a monoclonal antibody to SHH-
N, has been widely used in biological experiments. Interestingly,
TABLE 2 | HH inhibitors in clinical trial, mainly focusing on lung cancer therapy.

Drug Target Number Cancer Type Clinical Trial NCT trial Status

Sonidegib Smo – BCC – – FDA
Vismodegib Smo – BCC – – FDA
Glasdegib Smo – AML – – FDA
Vismodegib (GDC-0449) Smo 168 SCLC Phase 2 NCT00887159 Completed

Smo 67 Solid cancers Phase 1 NCT00968981 Completed
Smo 68 Unspecified adult solid tumor Phase 1 NCT00607724 Completed
Smo 63 Malignant neoplasm Phase 1

Phase 2
NCT01174264 Completed

Smo 31 Cancer Phase 1 NCT01546519 Completed
Smo 55 Adult solid neoplasm Phase 1 NCT00878163 Active, not recruiting
Smo 6452 Advanced malignant solid neoplasm Phase 2 NCT02465060 Recruiting

Sonidegib (LDE225) Smo 19 Lung cancer Phase1 NCT01579929 Completed
Smo 114 Advanced solid tumor Phase 1 NCT01769768 Completed
Smo 10 Ptch1 or Smo activated solid and hematologic tumors Phase 2 NCT02002689 Terminated
Smo 45 Advanced solid tumors Phase 1 NCT01208831 Completed
Smo 103 Advanced solid tumor cancers Phase 1 NCT00880308 Completed
Smo 30 Solid tumor Phase 1 NCT01954355 Completed

PF-04449913 Smo 23 Solid cancers Phase 1 NCT01286467 Completed
IPI-926 (Saridegib) Smo 94 Neoplasms Phase 1 NCT00761696 Completed
Itraconazole Smo 17 NSCLC Early phase 1 NCT02357836 Completed

Smo 60 Lung cancer Phase 1 NCT03664115 Unknown
Taladegib
(LY2940680)

Smo 26 SCLC Phase 1
Phase 2

NCT01722292 Terminated

Smo 19 Neoplasm metastasis Phase 1 NCT01919398 Completed
LEQ506 57 Advanced solid tumors Phase 1 NCT01106508 Completed
BMS-833923 5 SCLC Phase 1 NCT00927875 Completed
Arsenic Trioxide (ATO) Gli 9 NSCLC Phase 1 NCT02066870 Unknown

Gli 30 Lung cancer Phase 2 NCT00075426 Completed
Gli 20 Lung cancer Phase 2 NCT01470248 Completed

Simvastatin Oxysterol 62 SCLC Phase 2 NCT00452634 Completed
Oxysterol 70 SCLC Phase 2 NCT04698941 Not yet recruiting
Oxysterol 110 Lung cancer Phase 2 NCT00452244 Completed
Oxysterol 192 SCLC Phase 2 NCT01441349 Recruiting
Oxysterol 84 NSCLC Phase 2 NCT01156545 Unknown
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most of the binding sites of 5E1 on SHH-N ligands overlap with
HHIP (118). Similar to 5E1, Tolani et al. developed a new
therapeutic antibody that targets the full-length SHH protein
and SHH-N ligand to inhibit tumor growth (119). Owens et al.
identified HL2-m5 (IC50: 230 nM), a macrocyclic peptide
inhibitor with a high affinity for SHH ligands, which inhibited
HH signaling in vitro without significant pharmacological
toxicities (120). This compound should be further validated via
animal experiments to assess its oral availability and safety.

Smo Inhibitors
Smo inhibitor resistance is the leading cause of progression in
most HH-dependent tumor patients and is mainly attributed to
mutations in the drug binding pocket of the Smo protein (121).
In a phase I trial, patients with locally metastatic and progressing
BCC previously treated with, or not with HH inhibitors exhibited
good clinical responses to LY2940680 (Taladegib) and were well
tolerated (122). Cyclopamine and its derivatives from natural
compounds reverse HH signaling activation by targeting Smo,
thereby limiting HH-dependent tumor cell growth (123). As a
semisynthetic cyclopamine analogue, IPI-926 (Saridegib)
addresses the issues of low potency and poor aqueous
solubility of cyclopamine. Significantly, it inhibited tumor
progression in HH-dependent medulloblastoma (MB) mice
models with no obvious toxicity (124). IPI-926 has certain
inhibitory activities against SmoD473H (Smo mutant), which is
resistant to GDC-0449 (Vismodegib). When combined with
gemcitabine, IPI-926 was shown to enhance anti-tumor
activities of gemcitabine by increasing tumor vascular densities,
which prolonged the survival outcomes of mice with pancreatic
ductal adenocarcinoma (125). In a clinical phase I study
involving basal cell carcinoma patients, despite differences in
chemical structures between IPI-926 and Vismodegib, both
exhibited similar sites of action on the Smo protein and shared
same resistance mechanisms (126).

The FDA approved itraconazole for antifungal treatment, and
its safety as well as side effects are well understood (111, 127).
Compared to Vismodegib, Itraconazole inhibits Smo through
different mechanisms. Itraconazole exerts significant anticancer
activities in vivo, even targeting Vismodegib-resistant SmoD477G

(110). Similar to itraconazole, posaconazole exerts anti-tumor
activities by targeting Smo. Interestingly, posaconazole without
triazole retains its antagonistic effects on HH signaling and
disrupts the inhibitory effect on Cyp3A4 (128). The des-
triazole derivatives, based on the posaconazole scaffold, were
effective at inhibiting HH signaling and were well tolerated (128).

The presence of an oxysterol binding site in each of the seven
transmembrane domains and extracellular cysteine-rich domain
(CRD) of the Smo protein is necessary for HH signaling
activation (129, 130). Cholesterol molecules can be transferred
from the cytoplasm to oxysterol sites on the seven
transmembrane regions or extracellular CRD via hydrophobic
channels on Smo proteins, mediating Smo activation (129, 130).
Therefore, the oxysterol binding site on the Smo protein is a
potential HH signaling target. There is a need to determine the
mechanisms through which the Smo protein integrates the
information conveyed by the two oxysterol binding sites to
Frontiers in Oncology | www.frontiersin.org 8
determine the activities of HH signaling in vivo. As a Bcl-2
inhibitor, ABT-199 is approved by the FDA for treatment of
chronic lymphocytic leukemia (ALL). ABT-199 (IC50: 215.9 nM)
targets the extracellular CRD of Smo while acting as a potential
competitive inhibitor of oxysterol, which inactivates HH
signaling (131). In addition, ABT-199 was shown to target the
drug binding pocket mutant and/or constitutively activated Smo
proteins with excellent pharmacological properties and safety,
therefore, its effects in patients with HH inhibitor resistance
should be evaluated (131).

Multi-targeted HH inhibitors act on multiple components of
HH signaling and/or inhibit multiple noncanonical HH
pathways, exhibiting potent inhibitory anti-HH signaling
effects. Lospinoso Severini et al. identified compound 22 (IC50:
7.1 mM), which contains an isoflavone scaffold, to be a multi-
target HH inhibitor that inhibits MB cell growth by targeting
Smo and Gli proteins (132). As a semisynthetic oxysterol
analogue, Oxy210 (IC50: 1.83 mM) is a dual inhibitor of TGFb
and HH signaling, with excellent pharmacological properties, but
should be further evaluated at the animal level (133). Li et al. and
Zhu et al. determined that HH-13, HH-20 (IC50: <0.2 mM), and
L-4 (IC50: 2.33 nM) act as potential Smo inhibitors by targeting
SmoD473H, respectively (134–136). Moreover, L-4 showed high
efficiency, good tolerability, and high oral bioavailability in ICR
mice (134).

In conclusion, reliable HH inhibitors from FDA-approved
drugs, such as itraconazole and ABT-199 have been screened and
their toxic effects as well as side effects evaluated. The Oxysterol
site of the Smo protein is essential for activation of HH signaling,
and the development of Smo inhibitors, based on the Oxysterol
site, can overcome Smo acquired resistance, with great potential
for clinical applications.

Gli Inhibitors
Gli inhibitors target Smo downstream genes to overcome Smo
acquired resistance and inhibit Gli-dependent noncanonical
pathways, thereby achieving better clinical efficacies and
improving patient clinical outcomes. GANT58 and GANT61
(IC50: 5 mM) are widely used in biological experiments by
targeting the Gli1 transcription factor (137). Notably, GANT61
is more active against HH signaling than GANT58, which is
mainly attributed to its ability to interfere with the binding of
Gli1 to DNA (137). The Gli-activated but Smo-independent
pathway is activated in some types of LSCC, including PI3K/
AKT and RAS-MEK signaling. Therefore, GANT61 is more
potent than Vismodegib in Gli-dependent LSCC patients (138).

Arsenic trioxide (ATO) (IC50: 2.7 mM), approved by the FDA
for acute promyelocytic leukemia (APL), targeted the Gli1
transcription factor and exhibited significant cytotoxicity in
mice models of MB and Ewing sarcoma, supporting further
pharmacological evaluation in Gli1-dependent malignancies
(139). ATO kills SCLC CSCs by downregulating CSCs-related
genes, such as Sox2 and c-Myc at least in part by targeting HH
signaling (140). The lack of efficacy of ATO in relapsed SCLC
patients and SCLC patient-derived xenografts (PDX) mice in
phase II clinical trials may be attributed to low proportions of
SCLC CSCs and intermittent dosing regimens (141). The
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therapeut ic benefi t s of ATO in combinat ion with
chemotherapeutic agents and daily continuous dosing
regimens in SCLC patients should be investigated (141). Due
to differences in study methods and different cell lines, it should
be determined if the primary target of ATO is Gli1 or Gli2 (142).
Pyrvinium (IC50: 10nM) is an FDA-approved casein kinase-1a
(CK1a) agonist with high efficacies. Moreover, CK1a can also act
as a negative regulator of HH signaling (143). Mechanistically,
CK1a downregulates HH target genes by modulating their
stability via phosphorylation of Gli transcriptional factors (143).

Studies have found that VDR signaling negatively regulates
Gli1 expression through crosstalks with HH signaling (144–148).
Vitamin D3-based derivative compounds 16, 21, and 22
modulated Gli1 proteins in vitro by targeting VDR signaling
and HH signaling (149). However, the mechanisms through
which VDR regulates HH signaling have not been elucidated,
which requires further investigations.

Bromodomain (BRD), a class of conserved protein domains
that specifically recognize acetylated lysine in histones, promote
the enrichment of chromatin remodeling factors and transcription
factors to specific gene transcription sites by binding acetylated
lysine, altering the activities of RNA polymerase II, and regulating
gene expressions (150, 151). Liu et al. developed non-selective BET
inhibitors, compounds 25 and 35 (IC50: < 1nM) by further
optimization of the BRD4 inhibitor, ABBV-075, which inhibited
Gli protein expressions and overcame resistant Smo mutations in
MB mice without apparent toxicity (152). Compared to
compound 35, compound 25 exhibits stronger efficacies and
better safety, however, it should be optimized to improve its
pharmacokinetic parameters (152).

In patients with recurrent metastatic BCC, Itraconazole in
combination with ATO (ATO-ITRA) reduced Gli1 mRNA levels
by 75% from baseline levels (153). Three of the five patients
treated with an ATO-ITRA regimen were stable for three
months, but did not achieve tumor shrinkage, which was
attributed to sequential dosing as well as lower doses. Higher
doses and/or daily continuous dosing regimens should be used to
evaluate the clinical efficacy of the ATO-ITRA regimen (153).

In conclusion, Gli inhibitors overcome Smo acquired
resistance and inhibit Gli activatation via the Smo-independent
noncanonical pathway, with robust anti-tumor activities in Gli-
dependent tumors. Gli inhibitors (including ATO and GANT61)
combined with Smo inhibitors (including Itraconazole and
Taladegib) or chemotherapeutic agents represent a promising
strategy for patients with HH-dependent tumors (Figure 5).
THE HH PATHWAY AND NATURAL
PRODUCTS FOR LUNG
CANCER THERAPY

Apart from being easily accessible, natural products have potent
anti-inflammatory, anti-bacterial as well as anti-tumor activities
(154, 155). Natural products inhibit cell proliferation, invasion,
EMT processes as well as stemness features by targeting HH
Frontiers in Oncology | www.frontiersin.org 9
signaling in various malignancies, including lung cancer
[Figure 6 (156, 157)].

Natural Products Induce Cell Apoptosis in
Lung Cancer by Inhibiting the HH Pathway
Autophagy, a process of cellular self-degradation, removes
damaged or redundant proteins as well as organelles. It plays
an important role in maintaining intracellular homeostasis as
well as tumorigenesis (158–161). Autophagy is a double-edged
sword that promotes and inhibits tumor development (162–164).
Lei et al. reported that Jervine triggers autophagy and increases
the expressions of cleaved caspase 3, leading to NSCLC cell
apoptosis by acting on AKT/mTOR and HH pathways (165).

The additional natural products that block cell proliferation
include Evodiamine, Sulforaphane, and Cordyceps militaris.
Evodiamine inhibits cell proliferation by modulation of the
AKT/NF-kB and HH pathways in NSCLC (166). Cordyceps
militaris induces NSCLC cell apoptosis by blocking Gli1 nuclear
translocation via inhibiting the expressions of tectonic protein 3
(TCTN3) (167). In the PC9 cell line, Sulforaphane reversed
lung cancer cell resistance to gefitinib by regulating HH
signaling (168).

Natural Products Suppress Lung Cancer
Cell Invasion and Metastasis by Inhibiting
the HH Pathway
As a traditional Chinese medicine, Scutellariabarbata D. Don
extraction (SBE)has been used in clinical management for many
years because of its reliable and effective anti-cancer activities
(169, 170). SBE downregulates the downstream components of
HH signaling, leading to tumor cell cycle arrest and increasing
lung cancer cell sensitivity to cisplatin (171).
FIGURE 5 | Recent advances in HH inhibitors, including HHat inhibitors,
SHH inhibitors, Smo inhibitors, and Gli inhibitors.
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Tumor angiogenesis is closely associated with multiple
malignant behaviors of lung cancer, such as proliferation,
invasion, and metastasis. Inhibition of tumor angiogenesis is of
great clinical significance. However, angiogenesis inhibitors that
target VEGF/VEGFR2 did not significantly improve the five-year
survival rate for cancer patients (172, 173). Therefore, there is a
need to develop novel angiogenesis inhibitors that lack toxic
effects. Pristimerin, a compound isolated from Celastrus
aculeatus Merr, exhibits multiple pharmacological activities,
including anti-inflammatory, anti-microbial, anti-tumor, and
anti-peroxidative effects (174, 175). In NSCLC, Pristimerin
affects the maturation of tumor angiogenesis by regulating the
translocation of its downstream gene (Gli1) to the nucleus
through HH signaling (176).
Natural Products Eliminate Lung Cancer
CSCs by Inhibiting the HH Pathway
Triptonide, a natural compound separated from Tripterygium
wilfordii Hook, exhibits potent anti-inflammatory (177) and
anti-tumor efficacies (178, 179). It has been shown to inhibit
the proliferation, invasion, as well as migration of lung cancer
cells and eliminates stem-like signatures by reducing the
expression levels of Gli1 at both transcriptional and
translational levels via inhibiting Gli1 promoter activities (180).

Curcumin is a potent compound isolated from the rootstalk
of Curcuma longa (181, 182). It was shown to effectively
eliminate various cancer stem cells and reduce their CSCs-like
characteristics (183–185). Curcumin has powerful inhibitory
effects on lung cancer CSCs in vitro. Mechanistically,
Curcumin downregulates the expression levels of CSCs
markers, including CD133, CD44, ALDHA1, Nanog and Oct4,
by inhibiting the HH and Wnt/b-catenin pathways (186). In
addition, SBE suppresses stemness-like phenotypes in NSCLC by
targeting the Sox2/Smo/Gli1 positive feedback loop (187).
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSIONS AND FUTURE
DIRECTIONS

The HH pathway plays a pivotal role in lung cancer oncogenesis
and development. The HH pathway is involved in drug
resistance and CSCs. In resistant-EGFR-TKIs lung cancer cells,
aberrant activations of the HH pathway are frequently observed.
Therefore, the combination of HH inhibitors and EGFR-TKIs
provide a novel treatment strategy for advanced lung
cancer patients.

The noncanonical HH pathway, especially the Gli-activated
but Smo-independent signaling, promotes the malignant
progression of lung cancer, including cell proliferation,
invasion, migration, metastasis, EMT and stemness features.
Thus, it is necessary to block the noncanonical HH signaling
in patients with HH-dependent tumors.

Additionally, we summarized recent findings regarding the
molecular mechanisms of the HH pathway in promoting lung
cancer progression and discussed the correlation between HH
pathway-related proteins and prognostic outcomes for lung
cancer patients. HH pathway-related proteins have been shown
to predict prognostic outcomes in advanced NSCLC patients,
and overexpressions of SHH and Gli1 are strongly associated
with poor prognostic outcomes. Therefore, studies should focus
on prognostic values of HH pathway-related proteins in patients
with late-stage lung cancer.

Studies are aimed at developing novel Smo and Gli inhibitors.
However, although Vismodegib and Sonidegib have shown good
efficacies in clinical treatment, they remain at risk of drug
resistance, which is mainly attributed to mutations in the drug
binding pocket of the Smo protein. Itraconazole exerts potent
anti-tumor activities in Vismodegib-resistant tumors because it
has a different active site on Smo than Vismodegib. Furthermore,
the safety, pharmacokinetics and toxicity of itraconazole as a
traditional antifungal drug are well understood, resulting in
FIGURE 6 | The mechanisms through which natural products exert potent anti-cancer activities by regulating the HH pathway in lung cancer. Jervine (Jer),
Evodiamine (Evo), Scutellariabarbata D. Don extraction (SBE), Sulforaphane (SFN), Triptonide (TN), Curcumin (Cur), Pristimerin (PM), Cordyceps militaris Exerts
(C militaris), Tectonic protein 3 (TCTN3).
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significant cost saving in drug development. The clinical efficacy
and toxicity of Itraconazole in treatment of lung cancer has been
assessed. A Phase II study conducted by Rudin et al. investigated
the implications of itraconazole in combination with pemetrexed
in lung cancer therapy. The results showed that itraconazole
significantly prolonged the overall survival outcomes of patients
by up to 32 months, compared to pemetrexed alone (8 months),
with mild adverse effects. Notably, the preclinical trial was
designed based on the principle that itraconazole inhibits
tumor angiogenesis. However, it was not determined whether
itraconazole affects malignant progression by inhibiting lung
cancer angiogenesis through the HH pathway. By targeting the
downstream transcription factors of HH signaling, Gli inhibitors
overcome Smo mutations and block Gli-activated but Smo-
independent noncanonical signaling, with promising clinical
applications in HH-dependent tumors. ATO, an FDA-
approved drug for APL treatment, exerts potent antitumor
activities by targeting Gli1/2 proteins and has excellent
pharmacological properties. Itraconazole, in combination with
ATO, significantly downregulated Gli1 mRNA expression levels
and prolonged PFS in BCC patients (3 months). However, due to
sequential dosing and lower doses, the ATO-ITRA regimen did
not downsize the tumor. Studies on ATO-ITRA may allow us to
test higher doses or continuous dosing regimens to assess clinical
efficacies in HH-dependent tumor patients.

In addition, some natural compounds have been used in
oncology treatment for many years, and are characterized by
wide sources, low-toxicity and broad-spectrum anti-tumor
properties. A phase II trial of whether curcumin in
combination with Lovaza (made with fish oils) reduces the
sizes of lung nodules will be conducted soon. Interestingly,
Frontiers in Oncology | www.frontiersin.org 11
despite the general disadvantages of poor oral bioavailability
and low potency of some natural compounds such as curcumin,
researchers have developed a number of nano-delivery systems
for curcumin, which have greatly improved its aqueous solubility
and anti-tumor potency. In addition, various natural compounds
can act on multiple targets and are involved in extensive
oncogenic signaling networks, which should be investigated
further. In future, more natural extracts will be developed, but
further optimization and modification for these compounds to
enhance their anti-tumor activities, oral bioavailability and
reduce drug toxicity will be a great importance.
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