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The lateral geniculate nucleus (LGN) is a small, inhomogeneous structure that relays
major sensory inputs from the retina to the visual cortex. LGN morphology has been
intensively studied due to various retinal diseases, as well as in the context of normal
brain development. However, many of the methods used for LGN structural evaluations
have not adequately addressed the challenges presented by the suboptimal routine
MRI imaging of this structure. Here, we propose a novel method of edge enhancement
that allows for high reliability and accuracy with regard to LGN morphometry, using
routine 3D-MRI imaging protocols. This new algorithm is based on modeling a small
brain structure as a polyhedron with its faces, edges, and vertices fitted with one plane,
the intersection of two planes, and the intersection of three planes, respectively. This
algorithm dramatically increases the contrast-to-noise ratio between the LGN and its
surrounding structures as well as doubling the original spatial resolution. To show the
algorithm efficacy, two raters (MA and ML) measured LGN volumes bilaterally in 19
subjects using the edge-enhanced LGN extracted areas from the 3D-T1 weighted
images. The averages of the left and right LGN volumes from the two raters were
175 ± 8 and 174 ± 9 mm3, respectively. The intra-class correlations between raters
were 0.74 for the left and 0.81 for the right LGN volumes. The high contrast edge-
enhanced LGN images presented here, from a 7-min routine 3T-MRI acquisition,
is qualitatively comparable to previously reported LGN images that were acquired
using a proton density sequence with 30–40 averages and 1.5-h of acquisition time.
The proposed edge-enhancement algorithm is not limited only to the LGN, but can
significantly improve the contrast-to-noise ratio of any small deep-seated gray matter
brain structure that is prone to high-levels of noise and partial volume effects, and can
also increase their morphometric accuracy and reliability. An immensely useful feature of
the proposed algorithm is that it can be used retrospectively on noisy and low contrast
3D brain images previously acquired as part of any routine clinical MRI visit.
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INTRODUCTION

The lateral geniculate nucleus (LGN) is a small wedge-shaped
ventral area at the termination of the optic tract on each side
of the brain. The LGN is the relay center and main hub for
visual processing, connecting the output of the retina to the
primary visual cortex, and playing an early gatekeeper role in
the control of visual attention and awareness (Kastner et al.,
2006). In addition to the afferent connections, the LGN receives
strong efferent connections from the primary visual cortex that
modulate attentional function and the coordination of cortical
regions (Halassa and Kastner, 2017).

The crucial role of LGN in visual processing has been the focus
of investigations into how various visual and brain disorders
may affect the LGN’s morphology and function (Garey and de
Courten, 1983; Bush and Allman, 2004). For example, the LGN
was found to be enlarged in patients with mood disorders, but
not in patients with schizophrenia (Selemon and Begovic, 2007;
Dorph-Petersen et al., 2009). The LGN has been reported to be
significantly smaller in volume and differed in shape in patients
with dyslexia (Giraldo-Chica et al., 2015; Müller-Axt et al., 2017;
Giraldo-Chica and Schneider, 2018). The LGN volume has also
been reported to be reduced in patients with one eye (Moro et al.,
2015; Wong et al., 2018), in patients with neuromyelitis optica
spectrum disorders (Papadopoulou et al., 2019a,b), glaucoma
(Dai et al., 2011; Hernowo et al., 2011; Zhang Y.Q. et al., 2012;
Chen et al., 2013; Lee et al., 2014; Wang et al., 2015, 2016; Schmidt
et al., 2018), albinism (McKetton et al., 2014; Grigorian et al.,
2016), patients with hemianopia (Bridge et al., 2011), and patients
with Parkinson’s disease (Bohnen et al., 2019). The volume of
the LGN has also been shown to be significantly affected by the
normal aging process (Li et al., 2012).

To date, Magnetic Resonance Imaging (MRI) is an
indispensable method for visualizing not only gross
neuroanatomy but also deep-seated gray matter nuclei such as
the LGN, in vivo (Fujita et al., 2001; Li et al., 2012; Aldusary et al.,
2019). However, as with the imaging of other structures, there
are two main issues that severely compromise the visualization,
delineation and accuracy of LGN volume measurements: first
is the area’s low contrast-to-noise ratio (CNR), and second is
the problem of partial volume uncertainty. At times, the low
CNR and/or high partial volume effect/artifact is so severe that
the LGN is only qualitatively assessed (Bridge et al., 2011) with
no quantification. The low CNR in LGN imaging results from
the low contrast of the LGN with respect to its surrounding
tissue composition (e.g., white matter, gray matter, CSF) (Horton
et al., 1990). The LGN image contrast can be enhanced by
optimizing the MRI sequences, for example, using white matter
nulled sequences (Aldusary et al., 2019) to enhance gray matter
structures or to increase CNR by averaging over repetition
time (TR) (McKetton et al., 2015). However, increasing LGN
visibility by optimizing MR sequence parameters often occurs at
the higher cost of increased acquisition time and possibility of
greater subject motion.

The CNR of the LGN images can also be increased by using
a high magnetic field, such as 7T MRI systems (Lee et al.,
2014; Schmidt et al., 2018; Aldusary et al., 2019). Although high

magnetic field systems (e.g., 7 Tesla) improve CNR and offer
better LGN visibility, they are rarely used in routine clinical
imaging for patient diagnostic evaluations. Therefore, there still
remains a great need for the improvement of LGN visibility on
the 3D T1 weighted images that are a major component of the
routine clinical protocols of radiological evaluations.

The image noise can be further reduced by post-processing.
The most efficient state-of-the-art methods of denoising MR
images are based on the non-local means (NLM) algorithm which
counteracts noise using redundancy found in natural images
(Coupé et al., 2008; Buades et al., 2010; Sutour et al., 2014).
The NLM algorithm finds and averages similar patches extracted
around each pixel rather than averaging nearby pixels. This
method effectively removes the noise from smooth areas and
repetitive textures with a size of 7× 7× 7 mm3 or larger (Manjón
et al., 2010a; Coupé et al., 2013), but might not work for denoising
small, irregular, or inhomogeneous structures such as the LGN,
and is prone to false detections of similar patches at high image
noise (Sutour et al., 2014).

Partial volume artifact occurs when a structure is not within
the imaging building block of image resolution (pixel, voxel)
in its entirety, because of the limited resolution of the imaging
system. This will result in signal averaging of the structure of
interest with other adjacent or surrounding structures. These
issues surrounding the uncertainty of a pixel, to be accounted
or not accounted for as part of LGN volume, primarily occurs
at the border (edge) of the LGN and its surrounding tissue.
Such partial volume induced edge artifact is easily shown in
the example below where the LGN borders cerebral spinal fluid
(CSF). As shown in Figure 1A, the pixels with light gray intensity
primarily belong to the LGN, whereas the pixels with dark
black intensity are occupied by CSF. The border pixels between
the LGN and CSF, denoted by the red arrows, point to voxels
that belong neither entirely to LGN nor CSF, causing the well-
known phenomenon of partial volume. Thus, the signal intensity
of the LGN border voxels are varied from the voxels that are
encompassing the LGN entirely, making accurate assignment of
these voxels to the LGN difficult. This ambiguity may be resolved
by setting a threshold exactly to the mean value of the voxel
intensities of LGN and non-LGN tissue. However, due to the
intrinsic inhomogeneity within the LGN structure (McKetton
et al., 2015; Müller-Axt et al., 2020), variability in the type of the
neighboring tissue (gray matter, white matter, CSF), and elevated
noise (Horton et al., 1990), the best value of the threshold is
difficult to calculate. Setting the threshold for a voxel intensity
to match the measured LGN volume to some previously obtained
values such as LGN signals from the imaging of the fixed brain
tissue (Renauld et al., 2016) is prone to underestimation. The
LGN volume in post-mortem fixed tissue could be half of in vivo
LGN volume measurements (McKetton et al., 2015).

As shown in Figures 1B,C, the magnitude of partial volume
artifact and its effect on errors associated with LGN volume
assessment can be demonstrated by estimating the LGN as a
cube-shaped object (Castaldi et al., 2016). Figure 1B shows LGN
as a cubical object of a size of 7 × 7 × 7 voxels (in black) with an
isotropic resolution of 0.8 mm and a true volume of 175.6 mm3.
Figure 1C demarcates the LGN surrounding environment as
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FIGURE 1 | Partial volume uncertainty. (A) A segment of the right LGN in coronal orientation depicting partial volume pixels by red arrows. (B) The LGN is estimated
as a cubical object in a 7 × 7 × 7 voxel box (black). The green line demarcates a co-centered box of 8 × 8 × 8 voxels or total of 512 cube voxels. (C) Full volume is
shown in black within a cube of 6 × 6 × 6 voxels, encompassing 216 voxels (inside a red box). The partial volume is represented as gray voxels between the red and
green boxes, amounted to 296 voxels. Depending on which partial volume voxels are counted, the measured volume of the object would be between 216 and 512
voxels.

a green box, estimated with a co-centered box of 8 × 8 × 8
voxels and a total of 512 voxels. The partial volume is shown
in Figure 1C as gray voxels surrounding a 6 × 6 × 6 cube (red
box) with a volume of 216 voxels, or 110.6 mm3. Assuming all
the edge voxels contribute to the partial volume, it would result
to 296 voxels (gray voxels between the red and green boxes), or
151.6 mm3. Depending on whether no or all partial volume voxels
are accounted for as part of LGN volume, the measured volume of
the LGN would be between 110.6 and 262.1 mm3 (or ∼2.4-fold),
thus making the partial volume uncertainty the major source of
the variability in the LGN volume measurements. For example,
the range of human LGN volume measured in proton density MR
images of 100–240 mm3 (Bürgel et al., 1999) or 112–276 mm3

(Grigorian et al., 2016) is in good agreement with our estimate
of the range of LGN volume of 110.6–262.1 mm3. The partial
volume uncertainty can generally be decreased by increasing
image resolution (McKetton et al., 2015; Aldusary et al., 2019),
but that often results in lower CNR and, therefore, a much noisier
image. In addition, brain motion due to physiological noise, such
as pulsation and respiration as well as head motion (McKetton
et al., 2015) would be more noticeable when using a voxel size
smaller than the magnitude of the brain motion.

The only way to reduce the partial volume uncertainty is
dividing the MRI image voxel into smaller subvoxels, each of
which either belong or not belong to the LGN, is through
image upsampling (increasing resolution). To date, there are
two methods of the image upsampling that have been shown
to be useful in MRI—non-local means (NLM) and recently
developed machine learning. The advent of machine learning
techniques has made possible super-resolution reconstruction of
the low-resolution images, guided by previously scanned high-
resolution datasets (Chun et al., 2019). The method requires
training of the neural network with reference high-resolution
images. Unfortunately, the reference high-resolution images are
not always available. In any case, high-resolution reconstruction
of disease-affected brain structures might be biased toward
the shape and size of healthy brain structures utilized in the
machine learning process. There are also numerous sophisticated
modifications of NLM based on the image self-similarity that
have proven to be extremely effective for high-resolution image
reconstruction (Protter et al., 2009; Manjon et al., 2010b;

Manjón et al., 2010a; Zhang K. et al., 2012; Coupé et al.,
2013; Jafari-Khouzani, 2014; Mahmoudzadeh and Kashou, 2014).
However, these NLM methods are mainly designed for large-
scale images with high redundancy and are highly unlikely to
be effective for small brain structures, such as the LGN, with
poor self-similarity and low CNR. While the upsampling is a
necessary step in reducing the partial volume uncertainty, the
methods that are effective for large scale images should also be
effective in improving the image quality of small heterogeneous
brain structures with high image noise levels. In addition,
for comparison purposes, the method should be applicable to
previously obtained images of patients using a routine clinical
protocol to assess the effect of any disease progression or
effectiveness of any intervention on the morphological changes
of the LGN over time.

Here, we propose a novel method of MR image processing
that greatly improves the visibility of the border between LGN
and non-LGN tissue by fitting a local edge to each voxel and its
immediate neighboring voxels, creating an improved upsampled
LGN image with enhanced contrast. The upsampling would
counteract the partial volume uncertainty and the edge fitting
process results in a higher CNR and images that are more reliable
for LGN volume measurements. However, the proposed method
is not designed for recovering the LGN’s fine internal details
that may be low resolution, and can be used only to trace the
outline of the LGN.

MATERIALS AND EQUIPMENT

Magnetic Resonance Imaging scans were conducted at the
Children’s Hospital of Philadelphia (CHOP) on a research-
dedicated 3T Siemens Verio system equipped with a 32-
channel head coil.

METHODS

Study Participants
The demographic characteristics of the subjects are presented in
Table 1. All subjects were healthy volunteers, recruited through
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FIGURE 2 | Examples of the one, two, and three plane units. (A) 1-plane units made of 6 × 6 × 6 voxel cube crossed by a horizontal plane. (B) 2-plane units
constructed by the products of two 1-plane units. (C) 3-plane units made of the products of 1 and 2-plane units. The far column demonstrates the corresponding
downsampled 1, 2, and 3 plane units.

advertisements and fliers distributed in libraries, doctors’ offices,
and community centers by a research coordinator. Exclusion
criteria for all subjects included a documented history of
developmental delay, a history of substance abuse/dependence,
and any history of neurological disorder. The Institutional
Review Board at the Children’s Hospital of Philadelphia and the
University of Pennsylvania granted approval for this study. After
the study was explained to subjects and their parents, written
assent and informed consent were obtained.

In total, 19 subjects took part in the study, of which ten were
males and nine females. The mean age of the participants was
14.3 ± 7.8 years (mean ± SD), the median age was 11 years,

and the age range was between 8 and 32 years. Two participants
were non-Caucasian, and 17 were Caucasian. Sixteen of the
participants were dextral and 3 were non-dextral.

Magnetic Resonance Imaging
All MRI scans were carried out by a single operator and
monitored to be free of artifacts at the time of acquisition.
Each subject’s head was secured in the head coil using foam
padding to reduce motion. All subjects underwent MRI and
a T1 weighted 3D magnetization prepared rapid acquisition
gradient echo sequence was obtained with inversion preparation
pulse, repetition time of 2080 ms, echo time of 2.54 ms, matrix
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TABLE 1 | Demographic characteristics of the study participants.

The number of subjects 19

Male/Female 10/9

Age, median (years) 11

Age, range (years) 8–32

Age, mean ± SD (years) 14.3 ± 7.8

Caucasian/Non-Caucasian 17/2

Dextral/Non-Dextral 16/3

size of 320 × 320, field of view of 256 × 256 mm2, number
of slices of 192, slice thickness of 0.8 mm, inversion time
of 1200 ms with flip angle of 8◦, number of excitations of
1, integrated parallel acquisition techniques factor of 2, and
acquisition time of 7:04 min.

Image Processing
The LGN was visually identified on T1-weighted 3D- MPRAGE
images in the sagittal and coronal projections using anatomical
landmarks (Korsholm et al., 2007; Li et al., 2012; Aldusary et al.,
2019), and its approximate central coordinates were determined
using the ITK-SNAP software.1 Then, a region of interest (ROI)
of a size of 22 × 22 × 22 voxels (with a spatial resolution of
0.8 mm), containing the LGN in its entirety, was extracted with
the help of the built-in c3d software. The extracted ROI was
transferred to the IgorPro software (WaveMetrics, Oregon2) in
order to improve the visibility of the LGN using the custom
made 3D-edge enhancement algorithm that is the subject of this
report. The shape of the LGN in the edge-enhanced image was
approximated as a polyhedron. Local features of the polyhedron,
such as the face, edge, and vertex, were represented by one
plane, the intersection of two planes, and the intersection of
three planes, respectively. The edge enhancement was based on
finding the local feature out of a set of predefined units of a size
of 3 × 3 × 3 voxels that fits an image voxel and its immediate
neighbors. To represent the edge-enhanced image with double
of the native spatial resolution (0.4 mm), a set of 6 × 6 × 6
voxel units was used.

The set of 6 × 6 × 6 voxel units was composed of one,
two, and three-plane edges. A series of one plane edges were
constructed with 6× 6× 6 voxel cubes crossed by a single plane,
which formed a continuous edge with values of 0 or 1, at all
possible angles and locations. The voxel intensity was assigned
a value of 0 when the mean value of the edge within the voxel
was less than 0.5, and a value of 1 otherwise. An example of
such single plane unit is shown in the top panel of Figure 2.
Though the number of all possible angles and locations of a
plane is infinite, the number of unique single plane edges turned
out to be limited to 109 due to the limited number of voxels in
the 6 × 6 × 6 voxel cube (216 voxels). Two-plane units were
constructed with all possible products of one-plane units. An
example of a two-plane unit is presented in the middle panel of
Figure 2. In practice, the number of all possible two-plane units is

1http://www.itksnap.org
2www.wavemetrics.com

extremely large, more than ten thousand. To reduce the number
of two-plane units, the units with a variance less than 0.19, which
represent the edges at the very periphery, were excluded, arriving
at 768 two-plane units. The number of two-plane units was
reduced to decrease the processing time. The three-plane units
were made of all possible combinations obtained from products
of one and two-plane units. An example of a three-plane unit
is presented in the bottom panel of Figure 2. Using the above-
mentioned elimination process we arrived at 34048 number for
three-plane units.

As mentioned earlier, the voxel resolution of the 6 × 6 × 6
cube (0.4 mm isotropic) was twice that of the original LGN
containing ROI (0.8 mm isotropic). As such, to utilize the
constructed one, two or three-plane units for the LGN edge
enhancement process, the 6 × 6 × 6 cube was downsampled to
3 × 3 × 3 cube with a 0.8 mm isotropic resolution to match
the LGN containing image resolution. Examples of downsampled
one, two, and three-plane units are presented in Figure 2.

The employed edge enhancement process was performed
on a voxel-by-voxel basis over the entire LGN-containing ROI
(extracted 22 × 22 × 22 cube) which consisted of 10,648 voxels.
Each one of these voxels and their neighboring 3 × 3 × 3 voxels
were fitted with one, two and three-plane downsampled units
using the linear least squares regression (Larson et al., 2002)
model shown in Eq. 1:

I ∼ K · E+ B (1)

where I is defined as a 3× 3× 3 array formed by an image voxel
and its immediate neighboring voxels, E is a 3 × 3 × 3 array
representing the predefined downsampled units, K and B are the
scalar fitting coefficients that are calculated to minimize the sum
of the squared residuals (SSR) as depicted in Eq. 2.

SSR =
3∑

i,j,k=1

(
Iijk − K · Eijk − B

)2 (2)

The SSR is minimized when its derivative with respect to the
fitting K and B parameters reach zero, shown below by Eqs 3, 4:

∂ SSR
∂ K

= 0 (3)

∂ SSR
∂ B

= 0 (4)

Substituting the SSR from Eq. 2 into Eqs 3, 4, values for the fitting
parameters of K and B were then calculated from the Eqs 5, 6
below:

K =

∑3
i,j,k=1 Eijk ·

(
Iijk − 〈I〉

)∑3
i,j,k=1 Eijk ·

(
Eijk − 〈E〉

) (5)

B = 〈I〉 − K · 〈E〉 (6)

Thus, by setting the derivatives of SSR to zero, for each unit E
(downsampled planes) corresponding fitting parameters for K
and B are calculated. Then, the best fitted downsampled unit E
is identified according to the minimum SSR (Eq. 2). We chose the
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minimum SSR as a criterion for the best fit and selection of the
unit E representing the local feature of the image. The method
of least squares is a standard approach in regression analysis to
find the best approximation by minimizing the sum of squared
deviations from the mean value. Using other criteria, e.g., the
minimum of the sum of the absolute deviations from the median,
doesn’t provide an analytical solution, and oftentimes leads to an
ambiguous results. For example, for a selected center voxel (red
box) and its three neighboring voxels (yellow box) in a fragment
of an image (5× 5 voxel box) shown in Figure 3A, the best fit was
a two-plane unit that is shown in Figure 3B. The acquired K and
B parameters for this plane is then applied to the corresponding
6× 6× 6 high resolution voxel unit which is shown in Figure 3C
to acquire the best fitted high resolution plane as depicted in the
red box of Figure 3C. It is important to note that the final edge
enhanced processed voxel shown in Figure 3C (red box) now
contains a 2× 2× 2 voxel cube which is twice the original native
resolution (red box in Figure 3A).

To further enhance the visibility of the extracted edge, we
applied voxelwise signal intensity averaging with resampling to
reduce the image noise without affecting the edge location. An
example of the averaging process is shown in Figures 3D–F.
The box shown in Figure 3D depicts a fragment of an image
(5 × 5 × 5 voxel box) that has already undergone edge detection
process, resulting in a fitted two-plane unit with high resolution
0.4 mm isotropic voxels. Signal intensity was then averaged and
substituted for each of the green voxels to construct a new
representation of Figure 3D that contained new averaged signal
intensity values (Figure 3E). Subsequent to signal averaging,
the image underwent the edge-enhancement with upsampling
(shown in Figure 3F). While the new resampled image, shown
in Figure 3F, preserves the fitted planes and resolution created by
the edge detection process, it contains averaged signal intensity in
each voxel that dramatically improves image signal by reducing
the voxel noise level. This two-step process of edge detection
and signal averaging was repeated multiple times (e.g., ten times)
in order to obtain an optimal edge with the least amount
of image distortion and highest visibility for reliable LGN
delineation. Our final iterative process, however, showed that
three time repetition of the two-step process generated optimal
edge enhanced LGN images.

Application of the Edge Enhancement
Algorithm to 3D MPRAGE Images
The above-mentioned two-step iterative process of the edge
detection algorithm was pictorially depicted for simulated image
fragments on a voxel-by-voxel bases. This process was then
applied to the MPRAGE T1 images to improve LGN visibility.
As mentioned earlier, to shorten the processing time, the edge
enhancement algorithm was applied only to a small segment
(ROI) of the whole brain MPRAGE scan that contained the LGN.
This step was performed by locating the center of the LGN on
axial, coronal, and sagittal images as depicted in the top row
of Figure 4 (LGN containing ROI is shown in the green box).
A zoomed representation of the T1 weighted image containing
the extracted ROI in all three orientations (green box), is shown

in the middle panel of Figure 4. The zoomed images clearly
depict that the LGN is barely visible and difficult to delineate.
The procedure is described in detail in the Supplementary
Information section. Each voxel of this LGN-containing ROI
(green box) then underwent the edge-enhancement procedure
following Eqs 1–6. An example of the edge-enhanced LGN-
containing ROI is shown in the bottom row of Figure 4. The
comparison between the middle and bottom row clearly shows
the increased visibility of the LGN and the efficacy of the edge
enhancement algorithm employed that considerably increases the
reliability of LGN delineation.

RESULTS

To validate the accuracy of the proposed algorithm in
determining LGN volume while enhancing its visibility, we used
a known geometric shape such as a cube and simulated it in
an environment with various amounts of noise. The validation
was designed to assess: (i) whether the algorithm of the edge-
enhancement counteracts partial volume effects; (ii) the accuracy
of volumetric measurements at various image noise levels; (iii)
the accuracy of a delineated shape at various noise levels; (iv)
whether the algorithm of the edge-enhancement distorts the
shape of an object.

The cube shape was chosen since it can be represented as a
set of 1-plane (cube’s faces), 2-plane (cube’s edges), and 3-plane
(cube’s vertices) units as defined in the section “Methods” (see
Figure 2). The cube dimension was set to 5.6 mm (7 voxels) to
get a volume of 175.6 mm3 lying in the midrange of the human
LGN volume (Bürgel et al., 1999). To evaluate how well the
algorithm offsets the partial volume effects, we chose the setting
where all faces of a cube contained partial volume voxels (see
Figure 1B). The cube contrast was set to 1. The additive Gaussian
noise (Hansen and Kellman, 2015) was used to introduce various
levels of noise. The standard deviation of the Gaussian noise (σ)
was set to 1/16, 1/8, 1/4, 1/2, or 1 which corresponded to the
contrast to noise ratio (CNR) of 16, 8, 4, 2, or 1, respectively. Dice
similarity coefficient (DSC) was used to assess the accuracy for
shape delineation:

DSC =
2 · Vshared

Vcube + Vdelineation
(7)

where Vshared is the shared volume between the cube and
delineated edge-enhanced image, Vcube is the volume of the cube,
Vdelineation is the edge-enhanced cube delineated volume.

Figure 5 shows the results for edge-enhanced cube images
with various noise levels and 0–6 iterations. The top row, 0th
order iteration, represents the unprocessed noisy images of the
cube with partial volume at various noise levels (left-right). As
depicted in the second row, subsequent to the application of only
one edge enhancement iteration, at lower noise levels (σ ≤ 1/8),
the partial volume effects were resolved. To attain an image
quality that is sufficient for a reliable delineation, particularly
at higher noise levels, up to six consecutive edge-enhancement
iterations are required, as seen for the bottom row images of
Figure 5A (σ ≥ 1/4). The mean volume of the delineations
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FIGURE 3 | Voxelwise edge-enhancement process. (A) An example image containing 5 × 5 × 5 voxels. The red box denotes a single voxel and its immediate
3 × 3 × 3 neighboring voxels shown by the orange box. (B) The best fit two-plane edge 3 × 3 × 3 voxel unit for the fragment of the image in panel (A) enclosed in
the orange box. (C) The two-plane edge 6 × 6 × 6 voxel unit corresponding to the best fit 3 × 3 × 3 voxel unit shown in panel (B). The red box contains 2 × 2 × 2
voxels that represent the high-resolution version of the low-resolution voxel shown in red box in panel (A). (D) The high-resolution version of the image shown in
panel (A) resulted from the substitution of the low-resolution voxels by their high-resolution counterparts as shown in panels (A–C). Each cell of the red grid contains
2 × 2 × 2 voxels taken from the centers of the best fit 6 × 6 × 6 voxel unit as shown in panel (C). The signal averaging was performed in voxels constructing the
green grid (example shown in blue box) to reduce the image noise (noise is not depicted). (E) The low-resolution image resulted from the signal averaging inside the
cells of green grid. (F) The edge-enhanced high-resolution image obtained from the low-resolution image (E) by voxelwise edge-detection process shown in panels
(A–C). Thus, signal averaging step shown here reduces noise while preserving the integrity of the image, which is evident as an identity of images shown in panels
(D,F).

made by the two raters was almost identical to the actual cube
volume of 175.6 mm3 at noise levels σ ≤ 1/4, and differed by
5.5± 0.1 mm3 (3.1%) and 7.9± 7.4 mm3 (4.5%) at σ = 1/2 and 1,
respectively. The mean DSC, which assesses the degree of shape
matching between the true cube shape and the delineated shapes,
showed a 100% matching at σ ≤ 1/4, 95.0 ± 0.2% at σ = 1/2,
and 82.5 ± 4.4% at σ = 1. Thus, assuming an acceptable error
of 5%, the edge-enhancement algorithm provided an accurate
volumetric measurement at noise levels σ ≤ 1, and accurate
delineation of a shape at noise levels σ ≤ 1/2.

In order to test whether the edge-enhancing algorithm distorts
the shape of an object, we performed a number of consecutive
edge-enhancements iterations. We assumed if the algorithm
indeed distorts the shape of an object, the distortion would
be accumulated with each additional iteration and the object
distortion would be revealed at the large number of edge-
enhanced iterations. If the algorithm does not distort the image,
then the image along with its volume and DSC of the delineations,
would converge. The testing was performed for the worst possible
cases with the highest image noise levels of σ = 1/2 (left column)
and 1 (right column) of Figure 6A. As depicted in Figure 6A,

the top row shows the unprocessed noisy images of the cube
and all processed images using 6, 12, 18, and 24 iterations are
shown from top to bottom, respectively. As seen in the second
row of Figure 6A, the image processed with six iterations is
already of a good quality, and the additional iteration steps do not
considerably add to the image quality, particularly considering
the increase in computing time. The observations on the image
quality are further supported by the quantitative volumetric
and DSC measurements presented in Figures 6B,C. The mean
volume of delineations performed by the two raters was rather
independent of the number of iterations and differed from the
true volume of 175.6 mm3 by 7.9 ± 1.6 mm3 (4.5%) at σ = 1/2,
and by 6.5± 2.4 mm3 (3.7%) at σ = 1. The mean DSC between the
true shape of the cube and the delineated processed shapes, made
by the two raters, did not depend on the number of iterations, and
differed from the unity (perfect match) by 4.37± 0.34% at σ = 1/2,
and by 17.92± 0.50% at σ = 1. Thus, the proposed algorithm does
not distort the shape, and both volume and shape converge at the
large number of iterations.

The CNR of the real LGN in MRI images is impossible to
measure due to the variability of the voxel intensities both within
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FIGURE 4 | LGN edge enhancement process: (A) Using the 3D MPRAGE T1 weighted images the center coordinates of the LGN are identified on the axial, coronal,
and sagittal scans (red crosshairs) and a 22 × 22 × 22 voxel ROI (green box) containing the LGN in its entirety is extracted. (B) The zoomed presentation of the LGN
containing extracted ROI in the native space. (C) The edge enhanced ROI using the 3D-edge enhancement algorithm. For an improved visibility, the image inside the
green box underwent contrast adjustment around intensity at the image center. Comparison of panels (B,C) clearly depicts the superior visibility of the LGN and the
feasibility and immense advantage of the edge enhancement algorithm in improving LGN conspicuousness.

and the surrounding areas of the LGN tissue. However, we believe
that the typical LGN MRI images used in the study qualitatively
contained similar noise levels as the simulated cube images with
σ = 0.5. In order to estimate the degree of improvement the
edge-enhancement algorithm may contribute to the validity of
an object’s volume, the two raters (MA and ML) performed
delineation of the 0th order cube at σ = 0.5 noise level (shown
on left in the top of Figure 6A) and with six number of edge
enhancement iterations at the same noise level. The 0th order
delineation volumes were 277.5 mm3 (rater #1) and 287.2 mm3

(rater #2), whereas the DSC for shape analyses were 0.746 (rater
#1) and 0.752 (rater #2). The averaged volumes measured on
unprocessed images, by both raters, were significantly larger
than those measured, by the same raters, for the edge-enhanced
cubes using six iterations (282.4 ± 6.9 vs. 170.1 ± 0.1 mm3,
p = 0.028), whereas the corresponding DSCs were significantly
lower (0.749 ± 0.004 vs. 0.950 ± 0.002, p = 0.015). These results
demonstrate the application of the edge enhancement algorithm

to images with high noise and partial volume uncertainty with
significantly increasing the visibility while preserving the shape
and volume of the object.

A second method of validation was also performed using
the volumes of LGNs from a population-based template as the
gold standard (see Supplementary Figure 1). The left and right
LGN volumes were obtained using the template and the ITK-
SNAP software (see Supplementary Figure 2) and the volumes
were used as the gold standard (184.8 and 181.8 mm3 for the
right and left LGN, respectively). To test the edge enhancement
algorithm performance, synthetic LGN images were created
by adding Gaussian noise to the population-based atlas and
then improving the LGN contrast using the proposed edge
enhancement method (see Supplementary Figure 3). The LGN
volumes were then delineated using the post-processed synthetic
images and the left and right LGN volumes measured to be 188
and 180.6 mm3, respectively. These volumes were within 2%
of the LGN volumes measured directly on the template as the
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FIGURE 5 | Performance of the edge-enhancement method at various image noise levels. (A) A cube’s central slice image with contrast of 1 and edge enhanced
images at 0, 1, 3, and 6 iterations (top-bottom) of the cube’s center image with added noise levels of 0–1 standard deviation (σ) (left-right). The zeroth-order iteration
corresponds to the cube’s unprocessed images at various noise levels (top row). Note that the higher the image noise the larger number of iterations needed to
arrive at an image quality suitable for delineation. (B) Comparison of the volume measures of a simulated cube, post-processed at six consecutive edge
enhancement iterations, between two raters and as compared to the ground truth (actual cube volume) at various noise levels. (C) The Dice similarity coefficient
(DCS) between the true shape of the cube and delineations made by rater #1 (green) and rater #2 (red) on the images with various noise levels.

gold standards providing further proof for the validity of the
proposed edge enhancement methodology (for more details see
the Supplementary Information).

Subsequently, the edge enhancement algorithm was applied to
the left and right LGN containing ROIs of all 19 participants.
As demonstrated in Figure 4, instead of the whole brain, the
enhancement process was performed only on a small extracted
ROI containing the LGNs to shorten the processing time. As
mentioned earlier, the resulted number of slices from a post-
processed ROI was twice of those in the original acquisition
(native space) with double in plane resolution (0.4 mm isotropic
from 0.8 mm). Subsequent to the enhancement process, two

raters (MA and ML) arrived at a consensus on demarcating
the LGN borders visible on all MRI slices within the extracted
ROI. Each rater then independently manually delineated the
left and right LGN for all participants, using the ITK-SNAP
software. Examples of the original unenhanced, edge enhanced,
and delineated left and right LGNs for three participants are
presented in Figure 7.

The dramatic improvement in visibility of the LGNs on
edge enhanced images as compared to their corresponding
unenhanced images is clearly demonstrated in Figure 7. The
LGN volumes were calculated using the volume/statistic option
of the ITK-SNAP segmentation menu. The mean and standard
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FIGURE 6 | Convergence of the edge-enhancement method at high image noise levels. (A) A cube’s center slice image with contrast of 1 and edge enhanced
images at various iterations (top-bottom) and added noise levels with standard deviation (σ) of 1/2 and 1 (left-right). The 0th order iteration corresponds to the
unprocessed images of the cube’s central slice (top row). Note that the quality of the processed image at six iterations is acceptable for a reliable delineation.
Although, using additional iterations incrementally improves image quality, the increase in processing time outweighs the moderate increase in image quality.
(B) Comparison of the volume measures of a simulated cube, post-processed at various edge enhancements between 0 and 24 iterations at two different noise
levels of 1 and 0.5. (C) The Dice similarity coefficient (DCS) between the true shape of the cube and delineations made by rater #1 (green) and rater #2 (red) on the
images with σ = 1/2 and 1 that were processed with 6–24 consecutive edge-enhancements.

deviation of the right and left LGN measurements for both
raters are presented in Table 2. The individual subject’s left and
right LGN volume measures by both raters are presented in the
Supplementary Table 1.

The inter-rater reliability was assessed by calculating the mean
difference, standard deviation (SD), and 95% limits of agreement
(calculated as mean difference ±1.96∗SD), supplemented with
Bland-Altman plots (Figure 8). In addition, the intra-class
correlation and its 95% confidence interval (95% CI) were
calculated to assess agreement of measurements between the two
raters. Results of the inter-rater reliability statistical assessment
are presented in Table 2. As presented in Table 2, the intraclass
correlations between the two raters for the left and right
LGN were 0.74 and 0.81, respectively. The Bland-Altman plots
shown in Figure 8 demonstrates the LGN volume differences
between the two raters for the left and right LGN for all
study participants. As shown in Figure 8, the difference in

the LGN volumes between the two raters for all subjects were
primarily ±10 mm3, except for the right LGN measurement of
one participant.

We also assessed and compared the similarity of the
measurements between the two raters using the Box and
Whiskers plot (Figure 9). As shown in Figure 9, the center, spread
of group, the median, and the whiskers that represent the ranges
from the bottom 25% and the top 25% of the left and right LGN
volumes measured by the two raters are very similar.

As an additional test for the validity of the edge enhancement
process, we also examined the effect of sex on the LGN volumes
among study participants and, consistent with previous reports
(Bürgel et al., 1999; Li et al., 2012; Kelly et al., 2014; Papadopoulou
et al., 2019b), we found no significant differences in the volumes
of the LGN between male and female participants. The study
subjects consisted of 10 males and 9 females with mean ages of
16.2 and 12.1 years, respectively. The results for sex differences
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FIGURE 7 | Examples of the unenhanced and edge enhanced lateral geniculate nucleus (LGN). As seen along the first column for both the left and right LGN, the
LGN is hardly visualized for all unenhanced images. Subsequent to applying the edge enhancement algorithm, as seen along the second column of both the left and
right LGN, the LGN can be clearly demarcated from the surrounding structures and can easily be manually outlined. An example of delineated left and right LGN
(outlined in red) for three study participants are shown along the last columns for both left and right LGNs.

FIGURE 8 | The inter-rater Bland-Altman plots for the left and right LGN volume measurements. As shown here the difference in the LGN volumes between the two
raters for all subjects were mostly less than ±10 mm3.

TABLE 2 | Statistical evaluation of the inter-rater reliability for two raters on measurements of the left and right LGNs in 19 healthy participants.

N Rater 1 mean (SD)
(mm3)

Rater 2 mean (SD)
(mm3)

Difference mean (SD)
(mm3)

95% Limits of
agreement

Intraclass correlation
(95% CI)

Left LGN 19 176 (7.9) 174 (8.1) 2.0 (5.4) −8.6, 12.6 0.74

Right LGN 19 175 (8.9) 173 (8.9) 2.4 (5.0) −7.4, 12.2 0.81

in LGN volume is presented in Table 3. Although the male
population was slightly older than females, there were no
significant differences between the two populations (p = 0.27).

There were no significant differences for the left and right LGNs
volume measures reported by both raters (p-values 0.59–0.81), as
shown in Table 3 and the Box Whisker plot in Figure 10.
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FIGURE 9 | Box Whisker plot of the left and right LGNs for by both raters. Comparison of the center, spread of group and the median for the left and right LGN
volumes shows great similarity between two raters.

TABLE 3 | Sex differences in LGN volume measured in 10 males and 9 females.

Subject gender (n) Rater 1 Rater 2 Age (years)

Left LGN mean ± SD
(mm3)

Right LGN
mean ± SD (mm3)

Left LGN me an ± SD
(mm3)

Right LGN
mean ± SD (mm3)

Male (10) 176.59 ± 9.01 175.76 ± 11.89 174.49 ± 9.10 174.54 ± 10.71 16.2 ± 9.9

Female (9) 174.58 ± 7.49 174.72 ± 5.85 172.789 ± 7.73 172.81 ± 10.46 12.11 ± 4.62

Two-tailed p-value 0.59 0.81 0.66 0.72 0.27

FIGURE 10 | Box Whisker plot of the left and right LGNs for males and females reported by both raters. As depicted here, the left and right LGN volume measures
reported by both raters did not show any sex differences.

DISCUSSION

The lateral geniculate nucleus (LGN) is a small multilayered
and inhomogeneous structure that receives major sensory inputs
from the retina and plays a critical role in the transfer of

visual information to the visual cortex. Although there has
been great interest in the morphometry of the LGN, with
respect to various retinal conditions, currently available methods
have not met the complexity and challenges involved in LGN
imagery. Using a routine T1-weighted 3D-MPRAGE imaging
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sequence acquired on a 3T MRI system, we performed a
morphometric evaluation of the LGN on a group of normal
subjects by overcoming image noise and volume uncertainty
caused by the partial volume artifacts. The increase in contrast
and signal to noise ratio of the LGN containing images resulted
in a higher reliability and accuracy for LGN delineation.
This improvement in LGN visibility was possible through the
development of a post-processing algorithm utilizing a novel
method of edge enhancement with upsampling. The method is
based on modeling a small brain structure, such as the LGN,
as a polyhedron with faces, edges, and vertices fitted with a
local plane, the intersection of two planes, and the intersection
of three planes, respectively. Representation of 3D-biomedical
shapes as polyhedrons has shown to be accurate and allows for
precise analytical calculations in closed form Fourier transform
expressions (Ngo et al., 2016). Any polyhedron’s face or edge can
be accurately fitted with one-two-plane units (such as shown in
Figure 2), respectively. However, the number of crossing planes
that form a vertex can vary from three (e.g., vertices in a cube and
triangular pyramid) to four (e.g., apex of a square pyramid), or
even more. Here, to reduce the computational time, we limited
the number of planes crossing at a vertex to three. A polyhedron
with such limited numbers of plane crossings (three planes)
to form vertices would accurately represent many 3D- shapes,
such as a cube or triangular-based pyramid. Application of this
post-processing algorithm on the native images acquired on a
typical MRI system (3T Magnet) using a routine clinical protocol
(e.g., 3D T1 weighted) dramatically improved the visualization
of the LGN (see Figures 4, 7). To achieve a similar contrast,
previous studies have employed MR sequences not routinely
used in a clinical setting, which required over one hour of
acquisition time (Kelly et al., 2014; McKetton et al., 2014,
2015; Moro et al., 2015; Grigorian et al., 2016; Giraldo-Chica
and Schneider, 2018; DeSimone and Schneider, 2019), focusing
only on improving LGN visualization, as compared to a short
7-min sequence used as part of a routine clinical protocol
(e.g., 3D MPRAGE).

The validation of the method demonstrated that the algorithm
of the edge-enhancement does counteract partial volume effects
while not distorting an object’s shape at contrast to noise ratio
as low as 2 (see Figures 5, 6). Though the image quality
was good enough for delineating after six edge-enhancement
iterations, the delineations were more consistent between raters
when the number of iterations reached 18–24 (Figures 6B,C).
Here we demonstrate the performance of the edge enhancement
algorithm on a small structure, on the order of the LGN volume,
with similar noise levels and show increased object visibility.
Thus, we expect similar performance for the algorithm on
the real LGN-containing MRI images that would enhance the
visibility of LGN increase its morphometric accuracy. It is worth
noting that the image of the test cube with added noise may
not mimic the image quality of the LGN dataset, as the real
LGN images consist of multiple objects with various contrasts
(inhomogeneous object). The selected test cube image was used to
demonstrate that the proposed algorithm counteracts the partial
volume effects, increase object visibility at typical MRI image
noise level, and preserves the shape of an object to provide an

accurate volumetric measurement for typical MRI images with
low contrast and high noise levels.

The LGN volume measurements in our study were highly
consistent between the raters, with the inter class correlation
coefficients (ICCs) of 0.74 and 0.81, which are above the
minimum value of ICC of 0.70 for reliable measurements
(Cohen, 2001). As mentioned earlier, such high reproducibility
rates among two raters for the LGN volume measurements
from a low contrast and noisy 3D images, as part of routine
imaging protocol, is comparable to images acquired on a 3T
systems with multiple signal averaging of up to 30–40 using a
proton density weighted sequence with a long acquisition time
(Kelly et al., 2014; McKetton et al., 2014, 2015; Moro et al.,
2015; Grigorian et al., 2016; Giraldo-Chica and Schneider, 2018;
DeSimone and Schneider, 2019). However, the LGN volumes
are hardly consistent between the previously reported studies
(Table 4), ranging from 76 mm3 (Li et al., 2012) to 267 mm3

(Korsholm et al., 2007), with the average of the left and right LGN
volumes of 149.6 ± 45.8 mm3 (mean ± SD, n = 27). While the
imaging protocol, particular sequence parameters, strength of the
magnetic fields, head coils used, and the delineation methodology
play a major role in the outcome of this discrepancy, one can
hypothesize that such a wide range between the low and high
values reported for the LGN volumes might be primarily caused
by volume uncertainty due to partial volume artifacts. As a
result, the LGN volume is underestimated in some studies and
overestimated in others. Interestingly, the LGN volume reported
using a 7T system is substantially lower in volume as compared to
the volumes reported by others and those presented in the current
study. This discrepancy is not caused by an overestimation by
the proposed algorithm and is clearly depicted in the validity
section where a known cube volume is accurately assessed by the
algorithm at various noise levels. Moreover, as shown in Table 4,
the LGN volumes measured on the 7T systems were consistently
and considerably lower than those measured using 3T MRI units
(see Table 4, except for Giraldo-Chica and Schneider, 2018). The
reason for this discrepancy is not clear, but one factor could be
the iron content of the LGN. As reported by Müller-Axt et al.
(2020), the magno- and parvo- cell layers of LGN both contain
ferric ion and minute amount of any ferromagnetic substance
would cause reduction in MR signal intensity and this effect
is much higher at higher magnetic fields. Also, according to
Ramos et al. (2014), there is an age-related increase in brain iron
concentration levels and this could play an important role in
calculating the LGN volume as well. It is important to note that
the average age of our subjects was 14 years, and the average age of
subjects reported by Schmidt et al. (2018) was 47 years. Another
factor could be due to large variations in LGN volumes among
subjects, even up to twofold as reported in a post-mortem study
(Andrews et al., 1997).

Whereas the measurements of the absolute volume of the
LGN are subject to volume underestimations or overestimations
due to the partial volume effect, the relative volumes of the
LGN in the right and left hemispheres and in male vs. female
brains should not be. Therefore, we expected higher consistency
between studies on comparisons of the LGN laterality, and gender
dependence across studies as well as what is presented here.
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TABLE 4 | Previously reported LGN volumes.

Left LGN (mm3) Right LGN (mm3) Average (mm3) Method References

76.5 ± 14.3 86.2 ± 11.1 81.3 ± 12.7 1.5T Signa, GE, T1-weighted, 3D fast-spoiled gradient sequence,
1 × 1 × 1 mm3, in vivo, automatic segmentation.

Li et al., 2012

87.7 ± 10 88.8 ± 11 88.3 ± 10 7T Magnetom Terra, Siemens, 3D MP2RAGE, 0.8 × 0.8 × 0.8 mm3,
in vivo, manual segmentation.

Schmidt et al., 2018

NA 95.9 ± 13.5 NA Nissl-stained brain sections, manual point counting. Gupta et al., 2006

92.7 ± 24.4 106.1 ± 24.3 99.4 ± 24.4 7T Magnetom, Siemens, in vivo PD-weighted imaging, manual
segmentation.

Lee et al., 2014

116 ± 18 100 ± 26 108 ± 22 1.5T Magnetom, Siemens, in vivo, T1-weighted 1 mm isotropic MPRAGE,
1 × 1 × 1 mm3, semi-automatic segmentation.

Renauld et al., 2016

120.7 ± 6.2 112.3 ± 7.0 116.5 ± 6.6 3T MRI scanner, proton density images, manual segmentation. Giraldo-Chica and
Schneider, 2018

113.5 ± 13.3 120.9 ± 14.0 117.2 ± 13.7 7T Magnetom, Siemens, 3D- MP2RAGE, 0.5 × 0.5 × 0.5 mm3, in vivo,
manual segmentation.

Müller-Axt et al., 2020

115 121 118 Nissl-stained brain sections, manual point counting. Andrews et al., 1997

119 ± 22 NA NA 7T Magnetom, Siemens, 3D- MP2RAGE, 0.7 × 0.7 × 0.7 mm3, in vivo,
manual segmentation.

Müller-Axt et al., 2017

127.6 ± 32.0 111.9 ± 26.1 119.8 ± 29.1 T1-weighted MRI scans, automatic segmentation. Wang et al., 2015

NA NA 124 ± 21 7T, Philips, segmented MPRAGE, 0.4 × 0.4 × 0.4 mm3, in vivo, manual
segmentation.

Aldusary et al., 2019

144.1 ± 32.6 116.8 ± 29.8 130.5 ± 31.4 3T, GE, T1-weighted, 1 × 1 × 1 mm3, in vivo, automatic segmentation. Wang et al., 2016

143.1 ± 19.7 143.5 ± 22.3 143.3 ± 21.0 3T, Signa HDxt, GE, 3D BRAVO sequence, 1 × 1 × 1 mm3, in vivo, manual
segmentation.

Dai et al., 2011

146.4 ± 18.4 145.2 ± 21.4 145.8 ± 19.9 3T, GE, 3D BRAVO sequence, 1 × 1 × 1 mm3, in vivo, manual
segmentation.

Chen et al., 2013

147.0 ± 23.9 151.7 ± 15.7 149.4 ± 20.2 3T, Philips Intera, T1-weighted, 1 × 1 × 1 mm3, in vivo, automatic
segmentation.

Hernowo et al., 2011

NA NA 154.2 ± 16.5 1.5T, GE, 3D T1 SPGR sequence, 1 × 1 × 1 mm3, in vivo, manual
segmentation.

Zhang Y.Q. et al., 2012

160 ± 18 157 ± 18 159 ± 18 3T Magnetom Trio, Siemens, PD-weighted, 0.8 × 0.8 × 0.8 mm3, in vivo,
automatic segmentation.

Kelly et al., 2014

157.9 ± 9.8 165.2 ± 9.6 161.6 ± 9.7 3T Magnetom Trio, Siemens, PD-weighted, 0.75 × 0.75 × 0.75 mm3,
in vivo, manual segmentation.

McKetton et al., 2014

145.5 ± 11.0 179.1 ± 15.8 162.3 ± 21.7 3T, Philips Ingenia, T1-weighted 3D-TFE, 1 × 1 × 1 mm3, in vivo,
automatic segmentation.

Zhang et al., 2020

168.13 167.94 168 3T Magnetom Trio, Siemens, PD-weighted, 0.35 × 0.35 × 1 mm3, in vivo,
manual segmentation.

McKetton et al., 2015

190 ± 37.7 167 ± 37.4 178.5 ± 38.4 Nissl stained brain sections, manual point counting. Bürgel et al., 1999

NA NA 185 Nissl stained brain sections, manual point counting. Bush and Allman, 2004

NA NA 191.4 ± 47.7 3T Prisma, Siemens, T1-weighted MPRAGE, 1 × 1 × 1 mm3, in vivo,
manual segmentation.

Papadopoulou et al.,
2019a

199 ± 37.5 188.2 ± 50.1 193.6 ± 43.4 3T Magnetom Trio, Siemens, PD-weighted, 0.75 × 0.75 × 1 mm3, in vivo,
manual segmentation.

Grigorian et al., 2016

156.3 ± 20.6 240.3 ± 29.9 198.3 ± 49.4 3T Magnetom Trio, Siemens, T1-weighted MPRAGE, 1 × 1 × 1 mm3,
in vivo, automatic segmentation.

Papadopoulou et al.,
2019b

255 ± 14 251 ± 22 253 ± 18 3T Trio, Siemens, PD-weighted, 0.375 × 0.375 × 1 mm3, in vivo, manual
segmentation.

DeSimone and
Schneider, 2019

NA NA 267 ± 27 3T Magnetom Trio, Siemens, T1-weighted MPRAGE, 1 × 1 × 1 mm3,
in vivo, manual segmentation.

Korsholm et al., 2007

The volumes (mean ± SD mm3) are shown for left LGN (1st column), right LGN (2nd column), and average of left and right LGNs (3rd column).

Based on our results, we observed a lack of laterality in LGN
volume measures (left LGN volume = 175 ± 8 mm3; right LGN
volume = 174± 9 mm3), which was consistent with some reports
(Dai et al., 2011; Chen et al., 2013; Kelly et al., 2014; McKetton
et al., 2014, 2015; Grigorian et al., 2016; Giraldo-Chica and
Schneider, 2018; Schmidt et al., 2018; DeSimone and Schneider,
2019). However, our results did not corroborate studies reporting

asymmetric LGN volume measures, with reported left larger LGN
(Bürgel et al., 1999; Lee et al., 2014; Wang et al., 2015, 2016;
Renauld et al., 2016), or right larger LGN (Andrews et al., 1997; Li
et al., 2012; Papadopoulou et al., 2019a,b; Müller-Axt et al., 2020;
Zhang et al., 2020). Furthermore, we observed no LGN volume
differences between our male and female participants which again
is consistent with most previous reports (Bürgel et al., 1999;
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Li et al., 2012; Kelly et al., 2014; Papadopoulou et al., 2019b).
However, there are two studies that report a larger LGN volumes
for males as opposed to females (Wang et al., 2015; Papadopoulou
et al., 2019a). The reason for the observed inconsistency for
laterality and gender differences in LGN volumes among previous
reports remains unclear. Although, we believe the scanning,
clarity, visibility and delineation methodology may play an
important role for all studies targeting LGN morphometry.
Previous studies have established a 15% reduction in structural
volume between the ages of 20 and 70 years (Li et al., 2012).
And histologic analysis of post-mortem tissue assessing the
LGN volumes report an even higher percentage (30%) of
reduction in volume by age (Selemon and Begovic, 2007). It
is important to point out that our study participants, with a
median age of 11 and mean age 14, were much younger than
previously reported populations in studies concerning the LGN
volume measurements.

An important point regarding the current edge detection
algorithm is that the proposed method is not limited to the
enhancement and delineation of the LGN structures only. Indeed,
a modified version of the current program with an expanded
initial ROI size can be used to enhance and improve the visibility
of all deep gray matter structures such as caudate, putamen,
amygdala, hippocampus, internal/external capsule, substantia
nigra, and claustrum, to name a few, that are susceptible to
noise and partial volume artifacts. The usefulness of the proposed
algorithm in improving the contrast to noise of a segment of
claustrum (challenging structure to extract) in a typical subject
is presented in Supplementary Figure 4. This example clearly
demonstrates the applicability of the proposed edge enhancement
algorithm to other small gray matter structures.

The major shortcoming of the proposed method is a rather
long computational time (∼4 h/image on 4 GHz Quad-Core
Intel Core i7 with single-thread processing), though the post-
processing time occurs outside the imaging time and does not
affect patient care. Our initial attempt to shorten the processing
time was to restrict the number of predefined units by limiting
the maximum number of planes forming a vertex to only three
planes. However, this limitation would result in a less accurate
representation for the vertices that are composed of larger
number of crossing planes, such as the apex of the rectangular-
based pyramid that is formed by four planes. To reduce
processing times, our future goal is to develop an algorithm that
fits fewer parameters to a 3D- multiplane edge unit rather than
finding the best fit out of thousands of predefined units. The
computation time considerably reduces when using an analytical

approach and allows modeling of polyhedron vertices with up
to four crossing planes (instead of three) with an unlimited
spatial resolution (instead of only twofold). While reducing the
computation time, the proposed methodology has the potential
to further decrease the partial volume uncertainty, increase the
accuracy of the delineations, and potentially allow for automatic
segmentation of the structure of interest.
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