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Abstract

We present an approach for answering similarity queries about gene expression time series that is motivated by the task of
characterizing the potential toxicity of various chemicals. Our approach involves two key aspects. First, our method employs
a novel alignment algorithm based on time warping. Our time warping algorithm has several advantages over previous
approaches. It allows the user to impose fairly strong biases on the form that the alignments can take, and it permits a type
of local alignment in which the entirety of only one series has to be aligned. Second, our method employs a relaxed spline
interpolation to predict expression responses for unmeasured time points, such that the spline does not necessarily exactly
fit every observed point. We evaluate our approach using expression time series from the EDGE toxicology database. Our
experiments show the value of using spline representations for sparse time series. More significantly, they show that our
time warping method provides more accurate alignments and classifications than previous standard alignment methods for
time series.
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Introduction

Characterizing and comparing temporal gene expression re-

sponses is an important computational task for answering a variety

of questions in biological studies. We present an approach for

answering similarity queries about gene expression time series that is

motivated by the task of characterizing the potential toxicity of

various chemicals. Our approach is designed to handle the plethora

of problems that arise in comparing gene expression time series,

including sparsity, high-dimensionality, noise in the measurements,

and the local distortions that can occur in similar time series.

The task that we consider is motivated by the need for faster,

more cost-efficient protocols for characterizing the potential toxicity

of industrial chemicals. More than 80,000 chemicals are used

commercially, and approximately 2,000 new ones are added each

year. This number makes it impossible to properly assess the toxicity

of each compound in a timely manner using conventional methods.

However, the effects of toxic chemicals may often be predicted by

how they influence global gene expression over time. By using

microarrays, it is possible to measure the expression of thousands of

genes simultaneously. It is likely that transcriptional profiles will

soon become a standard component of toxicology assessment and

government regulation of drugs and other chemicals.

One resource for toxicology-related gene expression informa-

tion is the EDGE (Environment, Drugs, and Gene Expression)

database [1]. EDGE contains expression profiles from mouse liver

tissue following exposure to a variety of chemicals and physiolog-

ical changes, which we refer to as treatments. Some of the treatments

in EDGE have been assayed as time series. Figure 1A provides a

simplified illustration of the type of data with which we are

concerned. The small database in this figure contains time series

data for four different treatments, each of which includes

measurements for three genes. The true, underlying expression

response is not known, but instead the database contains sampled

observations which may be noisy. We use the term observation to

refer to the expression measurements made at a single time point

in a treatment.

The computational task that we consider is illustrated in

Figure 1B. Given an expression profile as a query, we want to

identify the treatment in the database that has the expression

profile most similar to the query. In the general case, the query

and/or some of the database treatments are time series. In this

case, we want to also determine the temporal correspondence

between queries and putatively similar treatments in the database.

In the toxicology domain, we are interested in answering this type

of query in order to characterize poorly understood chemicals.

There are several properties of the expression time series at

hand that are important considerations for our work.

N Sparsity: As is the case with most time series characterizing gene

expression [2], the time series available from toxicological

studies typically contain measurements from only a handful of

time points. The longest time series in the EDGE database has

observations at only 9 times, and several of the series include

only two points.

N High-dimensionality: Because the expression data we consider is

measured via microarrays, each time ‘‘point’’ in our series lies in

a high-dimensional space. For the experiments reported here,

each time point represents expression levels for 1,600 genes.

(Technically, the expression measurements correspond to clones
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selected from liver-derived EST and full-length cDNAs. These

clones represent products for 1,600 unique genes.)

N Non-uniform and irregular sampling: Given the sparsity of the time

series, it is typically the case that they have been sampled at

non-uniform time intervals. Moreover, the sampling times may

vary for different time series.

N Noise: As is the case with all microarray data, the measurements

involve a fair amount of noise due to technical issues in the

process.

N Biological variability: Because a mouse model is used for the

toxicology experiments we consider, there is also a component

of biological variation that affects the data measured. Each

microarray assays a sample from a different animal.

These properties of the data result in several additional

challenges for the task we consider.

N The time points present in a given query may not correspond to

measured points in some or any of the time series in the database.

N Queries may be of variable size. Some queries may consist of

only a single observation, whereas others may contain multiple

time points. Additionally, queries may vary in their extent:

some may span only a few hours whereas others include

measurements taken over days.

N A given query and its best match in the database may differ in

the amplitude, temporal offset, or temporal extent of their

responses. For example, the expression profile represented by a

query treatment may be similar to a database treatment except

that the gene expression responses are attenuated, or occur

later, or take place more slowly.

N A given query and its best match in the database may differ in

that one of them shows more of the temporal evolution of the

treatment responses. In other words, the query may be similar

to a truncated version of the database series, or vice versa.

To address these challenges, we have developed a generative

model that approaches the problem from a probabilistic

perspective. In order to temporally align gene-expression time

series using our model, we employ a novel method for dynamic time

warping. Dynamic time warping [3,4] is an approach for aligning

pairs of time series that was originally developed for speech

recognition problems. It employs dynamic programming to find

an optimal alignment with respect to a given scoring function. We

also use spline interpolation as a preprocessing step to predict

expression responses for unmeasured time points, in order to

reconstruct a more complete time series.

Our time warping approach differs in several substantial ways

from the standard dynamic programming method. Unlike the

standard approach, our method does not force the two series to be

globally aligned. Instead, it permits a type of local alignment in

which the end of one series is unaligned. We refer to this case as

Figure 1. An example of the similarity-query task for four different treatments with three genes. (A) The curves show the actual hidden
expression profile for each treatment, even though we must rely on the noisy sampled observations (the dots). (B) We have reconstructed the profiles
at unobserved times, and used them to perform a similarity query. The highlighted areas represent possible good matches.
doi:10.1371/journal.pcbi.1000116.g001

Author Summary

We are developing an approach to characterize chemicals
and environmental conditions by comparing their effects
on gene expression with those of well characterized
treatments. We evaluate our approach in the context of
the EDGE (Environment, Drugs, and Gene Expression)
database, which contains microarray observations collect-
ed from mouse liver tissue over the days following
exposure to a variety of treatments. Our approach takes
as input an unknown query series, consisting of several
gene-expression measurements over time. It then picks
out treatments from a database of known treatments that
exhibit the most similar expression responses. This task is
difficult because the data tends to be noisy, sparse in time,
and measured at irregular intervals. We start by recon-
structing the unobserved parts of the series using splines.
We then align the given query to each database series so
that the similarities in their expression responses are
maximized. Our approach uses dynamic programming to
find the best alignment of each pair of series. Unlike other
methods, our approach allows alignments in which the
end of one of the two series remains unaligned, if it
appears that one series shows more of the expression
response than the other. We finally return the best
match(es) and alignment(s), in the hope that they will
help with the query’s eventual characterization and
addition to the database.

Similarity Queries for Expression Profiles
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shorting the alignment. This aspect of the approach is motivated by

the consideration that one of the series may show more of the

temporal response than the other. For example, one series may not

have been measured for as long as the other. Another significant

way in which our approach differs from standard time warping is

that it is based on an explicit, generative model. This model allows

the user to explicitly encode costs/probabilities that characterize

the likelihood of various types of differences in closely related time

series. The most significant way in which our approach differs

from standard time warping is that it enables the user to impose

fairly strong biases on the form that the alignments can take. In

particular, it allows alignments that partition the given time series

into a small number of segments in which the changes from one

time series to the other (e.g., in terms of amplitude) are fairly

uniform. This is important given the sparsity, high-dimensionality,

and noisiness of the time series being aligned.

We also investigate variations on spline interpolation in order to

find an approach that results in accurate reconstructions of

sparsely sampled time series. We find that we achieve more

accurate interpolations when using higher order splines. Further,

our experiments indicate that it is helpful to relax the splines’ fit to

the observed data, rather than potentially overfitting by exactly

intercepting each observed data point.

In earlier work, our group [5] and others [6] have developed

systems for classifying chemicals according to the expression

profiles they induce. The approach that we present here differs in

that it takes into account the temporal aspects of expression

profiles, and it is able to answer similarity queries. The latter

property is important because some classes may be very sparsely

populated in the database, and class labels may not be available or

readily defined for some treatments.

Lamb et al. [7] consider the task of finding expression profiles

that are similar to a given query profile, such as one induced by a

particular drug. Their approach does not represent time series,

however. Moreover, it assumes that the query includes a specified

set of genes which are known to be correlated with some state of

interest, such as the expression activity induced by the drug. Our

approach does not require that such a gene set be provided.

Aach and Church [8] were the first to apply the method of

dynamic time warping [3] to gene expression profiles, and other

groups have followed [9,10]. The method we present differs in

several key respects. First, our method is able to not only align a

pair of time series, but it is also able to pick out the known time

series most similar to an unknown one for purposes of

classification. Second, we use nonlinear spline models in

conjunction with time warping in order to interpolate to unseen

time points. Third, we consider local alignments of time series in

which one of the series is shorted.

Bar-Joseph et al. [11] have investigated splines and warping in

the context of clustering and aligning time series. Our work differs

primarily in the task being considered and the use of a more

expressive warping model. They restrict their attention to linear

warping, whereas we use a ‘‘multisegment’’ model that warps

different regions of the series by different amounts.

Listgarten et al. [12] have developed a method for multiple

alignment of time series data that has some similarities to our

approach. The task they consider—multiple alignment—is

different than ours, and their method does not employ splines.

A related approach to aligning time series is proposed by

Gaffney and Smyth [13]. They use an expectation-maximization

method in concert with a mixture model in order to simulta-

neously align and cluster time series. Our work, however, is not

concerned with clustering known time series. Rather our aim is to

use a database of previously seen time series to answer similarity

queries about a new one. Further the biases they allow are not

appropriate to our task. They allow only linear scaling in time and

measurement space whereas we need more complicated warpings,

and they allow translation in both these dimensions as well which

is unnecessary for us.

Another similar approach is correlation optimized warping (COW),

devised by Nielsen et al. [14]. They compare time series by

dividing them into several roughly equal segments and summing

the Pearson’s correlations of corresponding segments. The

segments may vary in length by up to a slack factor provided by

the user, and dynamic programming is used to find the segments

with the maximum sum of correlations. Unlike our approach, their

method assumes that the series will be globally aligned, without

any shorting. Further, the use of correlation can be limiting as

COW is unable to distinguish between two series that are

proportional to one another.

Our approach is also related to various probabilistic sequence

models, such as generalized hidden Markov models, that directly

evaluate the likelihood of segments of a sequence, instead of

incrementally computing these likelihoods one sequence element

at a time. Models of this type have been used for tasks such as gene

finding [15] and secondary structure prediction [16].

Methods

In this section we detail our generative model for classifying and

aligning time series, and present a dynamic programming

algorithm that is able to find optimal alignments under this

model. We also present a review of B-spline interpolation and

discuss some useful variations of the method. We use spline

interpolation to reconstruct unobserved microarray observations.

Our approach to answering similarity queries involves three basic

steps: (i) we use interpolation methods as a preprocessing step to

reconstruct unobserved expression values from our sparse time series;

(ii) we use our alignment method to find the highest scoring alignment

of the query series to each treatment series in the database; (iii) we

return the treatment from the database that is most similar to the

query, and the calculated alignment between the two series.

We have implemented all our algorithms in Java. The source

code is available for download at http://www.biostat.wisc.edu/

˜aasmith/catcode/.

Interpolating Expression Profiles with B-Splines
One challenge that arises when aligning a pair of expression

time series is that the series may have been sampled at different

time points. Moreover, the sampling may be sparse and occur at

irregular intervals. To address these issues, we first use an

interpolation method to reconstruct the unobserved parts of the

time series before trying to align them. This interpolation step

allows us to represent each time series by regularly spaced

observations. We refer to the ‘‘observations’’ which come from the

interpolation, as opposed to measurement, as pseudo-observations.

Although linear interpolation is a natural first approximation,

other work has explored the use of B-splines to better reconstruct

missing expression data [11]. A B-spline is a piecewise polynomial

function that is a generalization of a Bézier curve. We present a brief

review here, although for depth we refer the reader elsewhere [17].

As shown in Figure 2, a B-spline is the weighted sum of a set of

basis splines. The basis splines are determined by the desired order

k of the splines, and the points of discontinuity~tt which are called

knots. There are n bases, where:

n~~ttj jzk{2 ð1Þ

Similarity Queries for Expression Profiles
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and they are defined via the Cox-de Boor regression formulas:

bi,1 tð Þ~
1 if tiƒtƒtiz1

0 otherwise

�
ð2Þ

bi,k tð Þ~ t{ti

tizk{1{ti

bi,k{1 tð Þz tizk{t

tizk{tiz1
biz1,k{1 tð Þ ð3Þ

where bi,k is the ith base of order k.

It follows that the segments of the kth-order basis splines have

degree of k21, so a second-order B-spline consists of line segments,

a third-order spline consists of quadratic segments, etc. The splines

are also continuous down to the (k22)th derivative. The actual

interpolating B-spline e inherits these properties. It is formally

defined as:

s tð Þ~
Xn

i~1

Cibi,k tð Þ ð4Þ

The weights Ci are known as control points, and solving for

them is a simple matter of solving linear equations. With n points

(ti,xi) to interpolate:

b1,k t1ð Þ � � � bn,k t1ð Þ
..
.

P

b1,k tnð Þ bn,k tnð Þ

2
664

3
775

C1

..

.

Cn

2
664

3
775~

x1

..

.

xn

2
664

3
775 ð5Þ

With fewer than n points, the problem is underconstrained and

cannot be solved with such a large k. With more than n points, the

problem is overconstrained and can only be solved in a least-

squares sense. This is easy to do with standard linear algebra

techniques. However, one must make sure that every base overlaps

with at least one observation, or the matrix will be rank-deficient

and the equations unsolvable.

Unfortunately, B-splines have a tendency to overfit curves in

data-impoverished conditions. Such reconstructions can show

large oscillations in an attempt to exactly intercept every observed

data point. This can be especially problematic with microarray

data, which are already inherently noisy. The solution we use is to

solve for the control points of a low-order spline, and then use

those control points for a higher-order one. Such a spline will tend

to fall within the convex hull created by the lower-order spline

[17]. We refer to such splines as smoothing splines, and refer to B-

splines solved with conventional methods as intercepting splines.

A Generative Model for Time Series Alignment
Each possible alignment we consider for two given time series

(the query and the database series) partitions the series into m

segments, where the ith segments of the series correspond to one

another. Our dynamic programming method tries to find a

partitioning of the series that reveals the maximal similarity

between them. As discussed earlier, we want to take into account

that the nature of the relationship between the two series may vary

in different segments. For example, it may be the case that the first

part of the expression response occurs more slowly in one

treatment than in a similar treatment. Recall also that the

segments do not have to cover the entirety of both series—one of

the series may be ‘‘shorted.’’

Figure 3 illustrates the type of alignment we want to consider.

This figure shows the optimal alignment between a query

treatment and a given treatment in the database. (For simplicity,

the figure shows each treatment as consisting of only a single gene.)

This alignment involves three different segments, and in each

segment the amplitude and stretching relationships between the

two series are somewhat different. We use the term stretching to

refer to distortions in the rate of some response, and the term

amplitude to refer to distortions in the magnitude of the response. In

addition, the alignment has shorted so that the full query is aligned

with only a partial database series.

To determine the similarity between a query time series q and a

particular database series d, we can calculate how likely it is that q

is a somewhat distorted exemplar of the same process that resulted

in d. In particular, we can think of a generative process that uses d

to generate similar expression profiles. We can then ask how

probable q looks under this generative process.

Given this generative process idea, we calculate the probability

of a particular alignment of query q given a database series d as

follows:

P q d,s,ajð Þ~Pm mð Þ P
m

i~1
Ps sið ÞPa aið ÞPe qi di,si,aijð Þ ð6Þ

where m is the number of segments in the alignment, qi and di refer

to the expression measurements for the ith query and database

segments respectively, and si is the stretching value and ai is the

amplitude value for the ith segment. The location of each segment

pair is assumed to be given here.

Pm represents a probability distribution over the number of

segments in an alignment, up to some maximum number M of

allowed segments. Ps represents a probability distribution over

possible stretching values for a pair of segments, Pa represents a

probability distribution over possible amplitude values, and Pe

represents a probability distribution over expression observations

in the query series, given the database series and the stretching and

amplitude parameters.

Figure 2. A quadratic B-spline (k = 3). The main spline which fits the
observed points is a weighted sum of the basis splines shown at the
bottom of the figure. These are defined by the Cox-de Boor regression
formulas (Equations 2 and 3) in conjunction with pre-defined points of
discontinuity (the vertical lines). The weights, called control points, are
easily obtained by solving a set of linear equations.
doi:10.1371/journal.pcbi.1000116.g002

Similarity Queries for Expression Profiles
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To represent Ps, we use a discretized version of the following

distribution:

P xð Þ~ e
{s2

2

s
ffiffiffiffiffiffi
2p
p |e

{log2x

2s2 ð7Þ

We choose this distributional form because it is a variation of

the log normal distribution that is symmetric around one, such

that P(x) = P(1/x). Thus for example, stretching some expression

response by a factor of two is equiprobable to compressing it by a

factor of two. This symmetry property means that it does not

matter which series we consider to be the query and which we

consider to be from the database. As we discuss in the next section,

our dynamic programming algorithm only allows segments to

begin and end at a limited number of points. Thus, our

distribution is actually discretized so that probability mass is

allocated only to possible stretching values, and then renormalized.

We use a similar distribution to represent Pa, the distribution of

amplitude values, since we also want to have P(x) = P(1/x)

symmetry with these values. Thus a twofold increase in an

expression response is treated as equiprobable to a twofold

decrease.

To calculate Pe(qi|di,si,ai), we transform our representation of di

using the given stretching and amplitude values, and then ask how

probable qi appears when we use this transformed di series as a

model. Let us first consider a simple case in which our time series

have only one gene, and we are mapping only one point from the

query segment qi to the database segment di. Let t represent a time

coordinate in the segment qi, and let qil and qir denote the leftmost

and rightmost time coordinates in the ith query segment. Let dil

and dir denote the corresponding bounding time coordinates for

the ith database segment. Then we can map a time coordinate

from segment qi into the corresponding coordinate in di as follows:

t0~di:lz t{qi:lð Þ|si ð8Þ

where the stretching value si is defined by:

si~
di:r{di:l

qi:r{qi:l
ð9Þ

Our model for ‘‘generating’’ points in the query series from a

point in the database series is a Gaussian centered at the database

point. Let p(x,m,se) represent the probability density function of this

Gaussian, where m is the mean and se is the standard deviation of

the Gaussian. We can then compute the probability of generating

a query point qi(t) located at time t as:

p qi tð Þ; ai|di t0ð Þ,seð Þ ð10Þ

In other words, we center a Gaussian on the expression level at

the mapped time coordinate in the database series, and ask how

probable the scaled expression value from the query looks at that

time coordinate.

To generalize this calculation to multiple observations in the

query series, we make the simplifying assumption that the

observations are independent, and we have:

Pe qi di,si,aijð Þ! P
ni

j~1
p qi tj

� �
; ai|di tj0

� �
,se

� �
ð11Þ

where ni is the number of query observations in segment i.

Each of our observations represents measurements for hundreds

of genes. We therefore generalize the description above by having

p(x,m,se) be a multidimensional Gaussian, with one dimension for

each gene measured. In our current work, we treat the genes as

independent of one another given the time point. Thus the

covariance matrix for this Gaussian is zero on all of the off-

diagonal terms.

We assume that se represents variation in expression measure-

ments that are due to technical and biological variability. Thus, we

estimate the standard deviation for each gene by considering the

variance in a sample that consists of all the replicated experiments

in the database.

In addition to considering the likelihood of the query series

under the assumption that it exhibits a similar response to the

given database series, we also consider its likelihood under a null

model. The notion of a null model here is one that generates

alignments by randomly picking observations from the database to

align with the query sequence. The rationale for using such a null

model is analogous to the use of a model of unrelated sequences in

the derivation of substitution matrices for protein sequence

alignment [18,19]. In the case of protein sequence alignment,

we want to know the relative likelihood of two cases: one case in

which the correspondence between the sequences is explained by

their relatedness through evolution, and the alternative in which

the sequences are unrelated. In our task, we similarly want to

compare the probability of an alignment given a model of

relatedness (described above), and an alternative that asks how

probable the query would look if we aligned it to an unrelated

series.

Figure 3. An example of an alignment with local effects. The
best alignment between the query treatment and the database
treatment being considered involves three segments. The first two
segments of the database treatment have increased amplitude, the first
segment is contracted (or stretched in), and the third segment is
stretched out in order to approximate the observed query treatment.
Also the alignment shorts before the database treatment has ended, as
there is no evidence that the query treatment expression has begun to
increase again at the end.
doi:10.1371/journal.pcbi.1000116.g003

Similarity Queries for Expression Profiles
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The value of a null model for our application is that it enables

alignments of differing lengths, including shorted alignments, to be

compared on an equal footing. Under our scoring function which

incorporates the null model, segments have a positive score only if

the database series in that segment explains the corresponding

segment from the query series better than the null model does.

Let p(x,mDB,se) represent the probability density function of a

multidimensional Gaussian whose mean mDB is the average

expression level of the observations in the database, and whose

standard deviation is se as before.

We then estimate the probability of the ith segment of the query

series under the null model as:

Pnull qið Þ! P
ni

j~1
p qi tj

� �
; mDB,se

� �
ð12Þ

Since our null model assumes that there is only a single segment

with no amplitude change or stretching, we can compute the

probability of the entire query series q as follows:

Pnull qð Þ! P
m

i~1
P
ni

j~1
p qi tj

� �
; mDB,se

� �
ð13Þ

Putting together the terms above, we can score a given

alignment based on the log of the likelihood ratio of the query

series under the ‘‘database series’’ model versus the query series

under the null model as:

score q,dð Þ~
log Pm mð Þz

Pm
i~1 log Ps sið Þzlog Pa aið Þ½

zlog Pe qi di,si,aijð Þ{log Pnull qið Þ�
ð14Þ

Up to now we have described this process in terms of using a

database series to generate the query series. However, we want our

alignment method to be symmetric so that it does not matter

which series we consider to be the query and which we consider to

be from the database. Due to the last two terms, this will not

necessarily be the case using the scoring function defined above.

Therefore, we modify the scoring function so that it also considers

using the query series to generate the database series:

score q,dð Þ~

log Pm mð Þz
Pm

i~1 log Ps sið Þzlog Pa aið Þ½
zlog Pe qi di,si,aijð Þ{log Pnull qið Þ

zlog Pe di qi,1=si
,1=ai

���� �
{log Pnull dið Þ

i ð15Þ

Here Pe(di|qi,1/si,1/ai) is calculated in an analogous manner to

Pe(qi|di,si,ai) but the inverses of si and ai are used to generate

observations in the database series.

A Dynamic Program for Alignment
Given a pair of time series, we do not know a priori which

alignment (i.e., placement of corresponding segments) is optimal.

However we can find the optimal alignment using dynamic

programming. The following algorithm takes as input two time

series, termed q and d, both of which are represented by regularly

spaced observations (or interpolated pseudo-observations) of the

gene expression values.

In particular, given a segment pair (qi,di), we can calculate its

score as follows:

score qi:l,qi:r,di:l,di:rð Þ~

log Ps sið Þ
zlog Pa aið Þ
zlog Pe qi di,si,aijð Þ

zlog Pe di qi,1=si
,1=ai

���� �
{log Pnull qið Þ
{log Pnull dið Þ

ð16Þ

The arguments to this scoring function define the leftmost and

rightmost time coordinates of the segments being aligned from the

query series and the database series. These points are selected

from the set of regularly spaced observations mentioned above.

The stretching parameter, si is defined by the relative lengths of the

two segments. We find the amplitude coefficient ai via a least-

squares method. Although this least-squares method is not

guaranteed to find the optimal value of ai, we have found that,

in practice, it provides solutions comparable to a dense grid search

of the parameter, and it is much faster than the latter.

The core of the dynamic program involves filling in a three-

dimensional matrix G in which each element c(i,x,y) represents the

best score found with i segments that align the query subseries

from time 0 to x with the database subseries from time 0 to y. As

above, x and y must be selected from the given observations in the

two series. The basic idea is that in order to determine c(i,x,y), we

look through all c(i21,a,b) where a,x and b,y. We then add the

score of the segment from (a,b) to (x,y) to the value c(i21,a,b),

assigning the best such sum to c(i,x,y).

We define c(i,x,y) with the following recurrence relation:

c i,x,yð Þ~maxavx,bvy

log Pm ið Þzc i{1,a,bð Þ
zscore a,x,b,yð Þ
if x~q:r or y~d:r

c i{1,a,bð Þ
zscore a,x,b,yð Þ
otherwise

8>>>>>>>><
>>>>>>>>:

ð17Þ

where the base case is:

c 1,x,yð Þ~
log Pm 1ð Þzscore 0,x,0,yð Þ
if x~q:r or y~d:r

score 0,x,0,yð Þ otherwise

8><
>: ð18Þ

Here, q.r and d.r refer to the rightmost (last) time coordinates in

the query series and the database series, respectively. The first

condition in each recurrence relation ensures that the distribution

over the number of segments Pm is taken into account when we

consider the last pair of segments in a candidate alignment.

Recall that we are interested in possibly shorting the alignment,

thus finding a local alignment rather than a global one. Allowed

alignments are those that explain the entire extent of at least one of

the two given time series. In order to recover the optimal

alignment, we use a traceback procedure that involves scanning

the elements of G that represent alignments that include the

entirety of the query series, the entirety of the database series, or

both. The procedure returns the alignment corresponding to the

Similarity Queries for Expression Profiles
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highest-scoring entry among these. More formally, we find the

score of the best alignment as follows, and start the traceback from

the identified element:

bestscore~maxi,aƒq:r,bƒd:r c i,a,d:rð Þ,c i,q:r,bð Þf g ð19Þ

This dynamic program can be thought of as having three key

‘‘penalty terms’’ that determine the relative scores of alignments.

These penalty terms correspond to the probability distributions

that govern (i) the number of segments, (ii) the stretching values,

and (iii) the amplitude values used in an alignment.

Preferences for the number of segments to be used in alignments

are expressed by providing a distribution for Pm. In our work to

date, we have assumed a uniform distribution up to the allowed

number of segment pairs. It might be valuable to use a distribution

that favors fewer segment pairs, however. Preferences for

stretching and amplitude values are controlled via the standard

deviation s parameter in the distributions over these values. For

example, as sa for the amplitude distribution is made smaller, a

difference in amplitude between the series is penalized more in the

scoring scheme.

Results

In this section we present experiments that evaluate the utility of

our novel time warping method and spline models for the task of

answering similarity queries with expression profiles.

Data
The data we use in our experiments comes from the Edge

toxicology database [1], and can be downloaded from http://

edge.oncology.wisc.edu/. Our data set consists of 216 unique

observations of microarray data, each of which represents the

expression values for 1,600 different genes. Each of these

expression values is calculated by taking the average expression

level from four treated animals, divided by the average level

measured in four control animals. The data are then converted to

a logarithmic scale, so that an expression of 0.0 corresponds to the

average basal level observed in the control animals.

Each observation is associated with a treatment and a time point.

The treatment refers to the chemical to which the animals were

exposed and its dosage. The time point indicates the number of

hours elapsed since exposure occurred. Times range from 6 hours

up to 96 hours. The data used in our computational experiments

span 11 different treatments, and for each treatment there are

observations taken from at least three different time points.

We can assume that for all treatments there exists an implicit

observation at time zero. This is the time at which the treatment

was applied, so all expression values are assumed to be at base

level. Therefore every query automatically includes at least two

observations: the actual query time(s) and the zero point. Thus

earlier points in time can be interpolated, even when there seems

to be only a single query observation.

Figure 4 illustrates the evolution of four genes over time for

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for four different

dosages.

Interpolating Missing Times
Before we evaluate our generative alignment method, we wish

to determine which type of spline (including simple linear

interpolation) is the best to use in our preprocessing step. We do

this by running a leave-one-out experiment in which we classify

each observation in our data set in turn, using the remaining

observations as the database. However, we exclude from the

database any observation with the same treatment (i.e., chemical

and dosage) and time as the query observation. We exclude from

the queries observations from the last observed time of each

treatment because we cannot interpolate pseudo-observations at

these times when they are removed from the database series. We

reconstruct hourly pseudo-observations for every treatment, using

the different methods of interpolation. We search the reconstruct-

Figure 4. Expression levels of four of the genes most active for
TCDD. Linear interpolation is used between these observations of
2,3,7,8-tetrachlorodibenzo-p-dioxin, which are represented as points.
doi:10.1371/journal.pcbi.1000116.g004
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ed database for the pseudo-observation that is most like the query.

We predict the query’s treatment and time to be the same as this

nearest neighbor. Notice that by excluding replicates of the query

from the database, we are forcing our classifier to use interpolation

in order to find the correct answer. We wish to know how

accurately we are able to (i) identify the treatment from which each

point was extracted, and (ii) align each query point to its actual

time in the time series for the treatment. We refer to the former as

treatment accuracy and the latter as alignment accuracy.

We note that this task is only a surrogate for the actual task with

which we are concerned—classifying uncharacterized chemicals

and aligning them with the most similar treatment in the database.

It is a useful surrogate, however, because it is a task in which we

know the most similar treatment and the correct alignment of the

query to this treatment.

The metric we use to measure distance between the query

observation and the database pseudo-observation being consid-

ered is a scale-independent Euclidean distance. The expression

values of each database observation are all multiplied by a scalar,

which is chosen via a least-squares method in order to minimize its

distance to the query observation.

We consider seven different interpolation methods in all. We

look at both intercepting and smoothing splines as explained in the

Methods section, with orders three, four, and five. The control

points for the smoothing splines are based on those for second-

order interpolation. We also perform linear interpolation as a

control. We use the observed times themselves as our knots (points

of discontinuity). If there are too few observation times for a

particular order, we use the highest possible order. (For example, if

there is only a single observation, we interpolate linearly between it

and the implicit zero point, regardless of the overall order used.)

To allow for smoothing splines, we must keep the number of bases

n constant. By Equation 1, the number of knots ~ttj j must decrease

when the order k increases. We do this by resampling them down

to the proper number.

There are several advantages to using the observed times as the

knots for our interpolating splines. First, it allows easy comparison

to the basic linear interpolation control. Second, we assume that

the data was taken at those times because interesting behavior was

anticipated. Using them as knots allows our splines more flexibility

there. Third, it keeps the linear equations from being rank-

deficient as explained earlier. With uniformly spaced knots (as used

by Bar-Joseph et al. [11]) it is possible to be unable to solve for

some control points.

The results of this experiment are shown in Figure 5. The top line

shows classification accuracy, while the lower lines show alignment

accuracy—where a case is considered ‘‘correct’’ if in addition to the

proper treatment, the predicted time is correct to within 24 or

12 hours respectively. We test the significance of the differences in

accuracy (from the linear interpolation control) using McNemar’s x2

test. Highlighted points are those deemed significant, with p,0.05.

For all three accuracy measures we see improvement when using

smoothing splines, while intercepting splines perform similarly or

worse than the linear interpolation control. The fifth-order

smoothing spline has a significantly higher classification accuracy

(p<0.025), and also appears to have better alignment accuracy

(p<0.132 for Dt#24 and p<0.180 for Dt#12). By contrast the more

traditional intercepting spline is likely overfitting its interpolation to

the limited number of observed times. Although the fifth-order

intercepting spline is not significantly different from the linear one

for classification accuracy (p<0.739) and alignment accuracy to

within 24 hours (p<0.705), there is a noticeable hit in the stricter

alignment accuracy (p<0.021). The p-values for the lower-ordered

splines are qualitatively similar.

Based on these results, we restrict our attention to smoothing

splines in subsequent experiments.

Aligning Time Series
We now turn our attention to evaluating our multisegment time

series alignment algorithm. For all of the experiments reported in

this section, we set the parameters of this method as follows. We

set the probability that the model has one, two, or three segments

at 1=3 each, and 0 beyond that. We estimate se (the deviation of the

expression Gaussian) to be the standard deviation of the known

observations as described previously. We set both ss (the stretching

deviation) and sa (the amplitude deviation) to be 106(# genes)21.

Thus the three main components of the model have roughly

similar influence.

We assemble queries by randomly subsampling time series in

our data set. We assemble ten such queries from each treatment.

We build each query by first selecting the number of observations

in it, then choosing which time points will be represented, and

finally picking an observation for each of these time points. The

query sizes are chosen from a uniform distribution that ranges

from one up to the number of observed times in the given

treatment. The maximum size of a query is eight, although most

consist of four or fewer observations. The time points are chosen

uniformly as are the observations for each chosen time.

We then classify and align the query using all the other

observations as the database. We preprocess both the query and

the eleven database treatments using smoothing splines to

reconstruct pseudo-observations at every four hours (starting at

time zero, when all expression values are at the basal level). As

before, we use the highest interpolation order possible in cases

where there are too few observations for the prescribed one. We

then align the query against all eleven treatments using our

method. We return the database treatment with the highest

scoring alignment, as defined by Equation 14. Because the

alignment also maps each query time to a database treatment

Figure 5. Classification and alignment accuracies resulting
from using different B-splines for interpolation. All replicates of
the observation tested are purged from the database. The top line
shows classification accuracy, in which the correct treatment is chosen.
The bottom lines show alignment accuracy, where the predicted time is
within 24 and 12 hours respectively of the actual time. Highlighted
points are significantly different from the linear case (p#0.05 via
McNemar’s x2 test).
doi:10.1371/journal.pcbi.1000116.g005
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time, we can find the temporal error for any query time point. We

thus calculate the average temporal error for the times in the

original query in order to assess alignment error.

We consider several other alignment methods as baselines. We

term the first baseline one-segment generative. This method is

essentially the same as our multisegment generative alignment

method, except that its alignments consist of only a single segment.

It allows amplitude scaling and stretching, but only within its one

segment pair.

The second control is traditional Euclidean dynamic time

warping [3,4]. Briefly, this method computes alignments by

creating a matrix G with elements defined recursively as

c i,jð Þ~D di,qj

� �
zmin predecessors c i,jð Þð Þ½ � ð20Þ

where D(di,qj) is the Euclidean distance between points di and qj in

the two series and predecesssors(c,(i,j)) refers to the matrix elements

adjacent to c(i,j) with both indices less than or equal to i and j

respectively. The first element c(0,0) is just the Euclidean distance

at time 0, and each other element c(i,j) is the score of warping d

from times 0 to i and q from 0 to j. We then create a normalized

score matrix C̄ where

�cc i,jð Þ~c i,jð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ij j2z jj j2
q

ð21Þ

This makes it easy to compare warpings to different treatments,

where one or the other dimension has been shorted.

Another control we consider is linear parametric warping. This is

similar to the method explored by Bar-Joseph et al. [11], except that

we make the assumption that the series are aligned at time zero. To

find an alignment, we search possible slopes of the alignment line,

and return the slope that results in the least average Euclidean

distance between the query and the given database treatment.

Finally, we consider correlation optimized warping (COW) [14] as

another baseline. This method takes as input two parameters: the

number of warping segments m and a slack factor s. Both the query

series and the database series are split into m segments. However

while the segments of the query series are of equal length, the

segment lengths of the database series may be up to s longer or

shorter than an equal division would warrant. It is assumed that the

starting and ending points of both series are aligned. The Pearson’s

Figure 6. Classification and alignment accuracies for our generative method and others. The figure shows both when there is no
temporal distortion (A), and when there is (B). The top lines represent treatment classification accuracy, while the bottom two lines add the criterion
that the predicted times are within 24 and 12 hours respectively of the actual time, on average. Small highlights represent cases in which there is a
significant difference in accuracy from the corresponding one-segment generative case (p#0.05 with McNemar’s x2 test), while the larger highlights
show a significant difference from the three-segment model.
doi:10.1371/journal.pcbi.1000116.g006
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correlation of each segment pair is calculated, and these are

summed to score a given alignment. Dynamic programming is used

to find the exact lengths of the database segments that maximize this

value. We tried all values for m from one to ten together with all the

values for s from zero to five. We report results for those (m = 10 and

s = 5) that resulted in the highest accuracies.

The results of these experiments are shown in Figure 6A. For

each method the top line represents classification accuracy with

different orders of splines, the middle line represents alignment

accuracy by adding the criterion that the average time error in the

mapping is less than or equal to 24 hours, and the bottom line

shows alignment accuracy where this tolerance is decreased to

12 hours. Points highlighted with a small square are significantly

different from the corresponding point using our one-segment

generative model (p#0.05) according to McNemar’s x2 test.

Likewise, the large square indicates a significant difference from

the three-segment generative model.

The one-segment and three-segment models are only signifi-

cantly different from each other in a handful of cases. Because we

have added no distortion to the queries, the one-segment model

should be sufficient to explain them. We might expect to see some

degradation when using the three-segment model, as it is allowed

much more freedom in where it places its segments. However, it

seems that this is not the case; the three-segment model results in

slightly higher accuracies. One explanation for this result is that

the spline preprocessing does not create perfect reconstructions of

the missing data, and the more expressive three-segment model is

better at compensating for this error. Of the control methods, only

COW is competitive with our generative method. There is no

significant difference between its accuracy and that of our method.

Euclidean dynamic time warping classifies fewer queries correctly

than our method, although those it does tend to be aligned

correctly. This is probably because it has a strong bias toward

performing little warping.

To better test the utility of the multisegment model, we next

consider distorting the query time series temporally. We use three

different distortions. The first one doubles all times in the first

48 hours (i.e., it stretches the first part of the series), and then

halves all times (plus an offset for the doubling) for the next

24 hours. The second distortion halves for the first 36 hours and

then doubles for 60 hours. The third one triples for the first

60 hours and then thirds for another 20. It should be noted that

not all the treatment observations extend this long in time. The

short ones (e.g., those for which we only have measurements up to

24 or 48 hours) will thus not be distorted as much as the long

ones.

Aside from the distortion, we perform the same experiment as

before. We show the results in Figure 6B. In this experiment, the

three-segment model results in more accurate classifications and

alignments than the simpler one-segment model. Both DTW and

the linear method appear brittle when confronted with distortions.

Although our three-segment method significantly beats COW

only when the strictest correctness criteria are used, the results

shown are the best COW returned for a wide variety of

parameters. We did not perform a similar parameter search for

our own method.

One concern is that by adding distortion we could be changing

the best classification of a given treatment. For example, maybe we

would distort 10 mg/kg of TCDD in exactly the right way to make

it look like 64 mg/kg. To address this concern, we have performed

similar distortion experiments in which we align a distorted query

series only to the database series that was used to generate it. The

results of this experiment are qualitatively the same as those

reported in Figure 6.

Effect of Stretching and Amplitude Components
We conduct further experiments to evaluate the importance of the

stretching and amplitude components of our model. First, we conduct

an experiment in which we effectively remove the amplitude

component of our model by fixing the value of ai to 1.0 for all

segments. With all of the probability mass on this single value, the log

Pa(ai) term in Equation 14 becomes zero. In a separate experiment,

we set sa = ‘, which makes all amplitude changes equally likely.

Similarly, we perform experiments in which we force si to 1.0 and set

ss = ‘. The results of these experiments are shown in Figure 7.

Totally disallowing either stretching or amplitude changes has

an overall deleterious effect on the accuracy of the alignments.

However there seems to be little negative effect in allowing

stretching and amplitude changes but not penalizing for greater

values. These results imply that the stretching and amplitude

components of the model are valuable, but that the accuracy of the

alignments is relatively insensitive to the actual penalties selected.

Effect of Query Size and Number of Segments
We next consider a set of experiments in which we assess the

accuracy of computed alignments as a function of the amount of

data in the query. We restrict our experiments to a single

treatment (41 observations of 1 mg/kg TCDD at eight time

points), although other treatments yielded qualitatively similar

results. We randomly pick out n observations from different times

in the treatment to form each query. We use all the remaining

observations in the treatment as the database. We interpolate both

query and database series as before (every four hours), compute

the best alignment using the one-segment and three-segment

methods, and then assess alignment error. We do this 100 times for

each value of n, which we vary from one to eight. We also vary the

spline order from two to five, and repeat the experiment with the

query times distorted (as in the last section) and not distorted. We

perform paired, two-tailed t-tests on the alignment errors from the

two methods in order to determine significant differences.

We expect the alignment error to generally decrease as we

increase the query size. We also expect the one-segment method to

perform slightly better when there is no distortion, and the three-

segment method to be preferable when there is. However this

latter behavior could be confounded for small query sizes, where

the three-segment model may not have enough data to determine

the segment parameters.

The results when we interpolate with third-order splines are

shown in Figure 8. (The other orders of spline yield substantially

similar results.) For queries of size two or less, the one-segment

model performs slightly better. Its average error is less than that of

the three-segment model, by less than one hour. However as the

query size grows larger, the expected results become more apparent.

When there is no distortion, the one-segment model is adequate.

When there is distortion, a multisegment model is clearly preferable.

We next consider the sensitivity of the accuracy of the

multisegment method to the number of segments it is allowed to

use in its alignments. We would like to know to what extent the

alignment accuracy degrades as the method is allowed to use more

segments than the optimal alignment requires. We conduct an

experiment in which we vary the number of segments from one to

five, with query sizes of only one, four, and eight. The results of

this experiment are shown in Figure 9 for the third-order spline

case. Here each line represents one of the query sizes, from one at

the top to eight at the bottom. A highlighted part of a line shows a

significant change in alignment accuracy when going from an m-

segment model to an (m+1)-segment model.

Again, we see that in the data-rich situation, the best models are

those that closely approximate the number of segments needed to
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simulate the temporal distortion (or lack thereof) applied to the query.

In data-poor situations, the alignments of the one-segment method

are as accurate as multisegment alignments. Significantly, the

accuracy of the multisegment method is quite robust when it is

allowed to use more segments than necessary. This is important, as in

practice we will not generally know the correct number of segments in

order to find the best alignment of a query and its best matching series

in the database.

An Alignment Example
Finally, we consider calculating the alignments for four

treatments that we know are closely related. Figure 10 illustrates

the alignments computed by our method for a 10 mg/kg dose of

TCDD to itself and three other dosages of the same chemical.

These alignments illustrate several interesting phenomena. First,

they indicate that the overall amplitude of the response increases

along with the dose. This effect is illustrated by the boxed numbers on

the segments in Figure 10. Second, the 10 mg/kg and 64 mg/kg

dosages induce similar responses, both in their amplitude and

temporal evolution. Third, the alignment to the 100 mg/kg dosage

suggests that the response induced by this treatment initially

progresses more slowly than the responses caused by the lower

doses. This somewhat surprising result and the abovementioned

effects are consistent with the expression profiles for the highly

expressed genes shown in Figure 4.

Discussion

We have presented an approach for answering similarity queries

among gene expression time series, and aligning those queries in

time. Our approach employs spline models to interpolate sparse

time series, and a novel method for time warping. We have

investigated our approach in the context of a toxicogenomics

application in which we would like to know which treatments in a

database of well characterized chemicals are most similar to a

given query treatment.

The work we have presented features several novel aspects and

contributions.

N We have introduced a novel, multisegment alignment method for

time series. This method offers more flexibility than linear

alignment methods, yet is more constrained than the standard

dynamic time warping approach. Our multisegment method is

able to find accurate alignments in cases in which part, but not

all, of the expression response occurs more slowly (rapidly) or

has a smaller (greater) amplitude in one treatment than in a

similar treatment.

N To account for the fact that we have sparse time series, we

have investigated the use of a variant of B-splines we refer to as

smoothing splines. Smoothing splines determine their control

points from interpolations calculated with lower-order splines.

Figure 7. Classification and alignment accuracies when we have removed components of the model. The panels show distortion not
present (A) and present (B). The first model is the three-segment generative model as before. The second disallows any amplitude changes at all,
while the third allows any amplitude coefficient with no penalty to the score. Likewise, the fourth disallows stretching and the fifth allows any
stretching without penalty. Highlights indicate a significant difference from the unaltered three-segment model (p#0.05 with McNemar’s x2 test).
doi:10.1371/journal.pcbi.1000116.g007
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N We have empirically shown that our smoothing splines result

in more accurate alignments than both conventional intercepting

B-splines and a linear interpolation baseline.

N We have empirically demonstrated that our generative

alignment method generally produces more accurate align-

ments and treatment classifications than other commonly used

alignment methods, including conventional dynamic time

warping, linear parametric, and correlation optimized warping.

There are several avenues of future work we plan to pursue. One

is to address the time complexity of our multisegment algorithm,

which is O(n5), where n is the length of the series. Alignment to all

eleven database series and subsequent classification currently take

about a half hour to execute. By contrast, the time complexity of

ordinary dynamic time warping is only O(n2). When the calculations

are restricted to the so-called Sakoe-Chiba band, a narrow band

centered on the diagonal of the warping matrix, the time complexity

approaches O(n) [20]. We would like to devise heuristics to speed up

our multisegment method. For example, although shorting

complicates the use of a Sakoe-Chiba band, it might be possible

to restrict calculations in the warping space to some other shape,

such as a cone. Alternatively, we could perform a first pass with the

faster one-segment model, and then restrict the multisegment model

to an area near it in warping space.

In addition, we have made two independence assumptions that we

plan to revisit in future research. First, we have assumed that each

gene is independent of all the others given the model. We expect that

representing some gene dependencies would lead to more accurate

classifications and alignments. Second, we assume that the

measurements at each time point are independent of each other

time point. We plan to investigate a Markov-model like approach that

represents dependencies between neighboring time points.
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Figure 10. Alignments found by our multisegment method between four different dosages of TCDD. The boxed numbers on each
segment represent the amplitude coefficient by which the expression levels of the 10 mg/kg segment are best multiplied in order to obtain the
corresponding expression levels for the other treatment.
doi:10.1371/journal.pcbi.1000116.g010

Figure 9. Average alignment error versus number of segments
in the model. As before, the results in (A) have no temporal distortion
while those in (B) do. From top to bottom, the lines of each panel show
queries of size one, four, and eight, using third-order smoothing splines.
Lines are highlighted in cases where adding a segment to the model
makes a significant difference (p#0.05 with a two-tailed Student’s t-
test).
doi:10.1371/journal.pcbi.1000116.g009

Figure 8. Average alignment error versus query size. The results
shown in (A) have no temporal distortion, while those shown in (B) do.
The dotted line represents the one-segment model, and the solid line
represents the three-segment model, using third-order smoothing
splines. Cases in which the two have significantly different results
(p#0.05 with a two-tailed Student’s t-test) are highlighted.
doi:10.1371/journal.pcbi.1000116.g008
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