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Abstract

The evolution of circulating viruses is shaped by their need to evade antibody response,

which mainly targets the viral spike. Because of the high density of spikes on the viral sur-

face, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-

based approach to predict and rank the probability of surface residues of SARS spike (S

protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations

utilizing in-silico models of viral structure. We used coarse-grained MD simulations to esti-

mate the on-rate (targeting) of an antibody model to surface residues of the spike protein.

Analyzing publicly available sequences, we found that spike surface sequence diversity of

the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly corre-

lates with our model prediction of antibody targeting. In particular, we identified an antibody-

targeting gradient, which matches a mutability gradient along the main axis of the spike.

This identifies the role of viral surface geometry in shaping the evolution of circulating

viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the

main axis of the spike was not observed. Our model further allowed us to identify key resi-

dues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred.

Therefore, it can inform of the likely functional role of observed mutations and predict at

which residues antibody-escaping mutation might arise.

Author summary

The immune system responds to viruses by making neutralizing antibodies to regions of

the viral spike protein, which mutates to escape. To inform vaccine design and understand

how the fitness landscape of the viral spike changes over time, it is necessary to identify

and quantify the factors directing its evolution. Based on the 3D structure of the viral sur-

face and spike as captured with Cryo-EM and crystallography, we aimed to create a

coarse-grained model for the effect of antibodies in forcing surface residues of the spike to
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mutate. We found that for pre-pandemic influenza (hemagglutinin) and the corona sarbe-

covirus subgenus (S protein), the location of a residue on the spike protein, which modu-

lates its accessibility to antibodies, highly correlates with its propensity to mutate. Hence,

a mechanistic approach can be used to identify aspects of viral spike sequence diversity

related to antibody escape.

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, is one of the most chal-

lenging global health crises of the century [1]. The virus emerged as a result of a zoonotic shift

[2,3]. It is a member of the betacoronaviruses family [4], related to coronaviruses found in bats

[5], and to SARS CoV which causes severe respiratory syndrome [6].

Coronaviruses (CoVs) have the largest genomes among RNA viruses [7]. Nonstructural

protein 14 (nsp14), a subunit of the replicase polyprotein encoded by CoVs is thought to pro-

vide a form of proofreading activity, which could support the expansion of large CoVs

genomes to their current size. One result of such proofreading activity is that CoVs genomes

are less mutable compared to other RNA viruses [8], and thus the sequence diversity of SARS-

CoV-2 is quite low [9].

In response to the SARS-CoV-2 pandemic, many approaches for antibody (Ab) therapies,

and vaccines have been explored [10]. Almost all vaccination approaches aimed to use the gly-

coproteins or spike protein (S) of the virus in its trimeric form [11] or vaccinate with the full

(inactivated) virus [12]. The spike, a class I fusion glycoprotein, mediates entry to the host cell

by binding to the angiotensin-converting enzyme 2 (ACE2) receptor [4] and is the main target

of Ab response [13]. These therapeutic approaches have been successful in eliciting strong Ab

and T cell response against the virus [14] and in particular, Abs against the receptor-binding

domain (RBD) of the spike, which have been shown to have neutralization and protective

capabilities [13, 15].

Since its zoonotic shift, SARS-CoV-2 acquired several key mutations. One mutation at the

spike (D614G) is now widespread and is thought to support a high viral growth rate [16]. Oth-

ers, such as N501Y and E484K are associated with escape from Ab response [17]. Ab escape is

common in other RNA viruses such as the influenza virus, which causes seasonal epidemics

and occasional pandemics. A major pandemic event occurred in 2009 when the H1N1 influ-

enza A virus performed a zoonotic shift from swine to humans [18]. To evade immune mem-

ory, influenza spike, hemagglutinin (HA), rapidly acquires mutations from one year to the

next [19,20].

Given the prevalence of these viruses, to inform vaccine design and understand how the fit-

ness landscape of the viral spike evolves, it is important to recognize residues where mutations

would permit the virus to escape Ab pressure and evade immune protection, secondary to nat-

ural infection or vaccination efforts.

Here we sought to understand and predict the extent to which the mutations at the spikes

of influenza and the sub-family of SARS-CoV-2 could be attributed to Ab pressure. The mag-

nitude (titers) of Ab response against a given epitope is a direct consequence of the B immuno-

dominance hierarchy patterns of an immunogen, which are the result of various aspects of the

humoral response to antigen [21–23]. Amongst them is the B cell repertoire–the number of B

cell clones targeting different epitopes [24–29], their germline affinity [24,30], and T cell help

to B cell [31]. In this study, we concentrate on the geometric presentation of the spike to Abs.

We have previously shown, using coarse-grained molecular dynamics simulations, that the

PLOS COMPUTATIONAL BIOLOGY Geometry shapes viral spike evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009664 December 13, 2021 2 / 22

https://doi.org/10.1371/journal.pcbi.1009664


geometry of the immunogen spike presentation on the virus recapitulates the known immuno-

dominance of the HA head compared to its stem [24].

We developed an in-silico approach to estimate the IgG Ab targeting—a proxy for B cell

immunogenicity [24] of residues on the spike surface, and the differential accessibility to anti-

genic epitopes due to the geometrical presentation of spikes on the surface of the virus. To this

end, we computed the on-rates of a coarse-grained Ab model to surface residues on the spike

(Fig 1A and 1B). Superimposing these on-rates on the spike surface gives the Ab on-rate maps
of influenza and corona spikes, which we applied to predict how the antigenic space is

explored unevenly by Abs across the spike surface. We then used sequences from public repos-

itories (www.ncbi.nlm.nih.gov, www.gisaid.org) to compute the sequence diversity of the same

surface residues, utilizing Shannon’s entropy. Superimposing the entropy on the spike surface

gives its mutability map. Next, we compared the on-rate and mutability maps and found a

high degree of correlation between them. We found that about 50% of the mutability map vari-

ability of the S protein of the severe acute respiratory syndrome-related betacoronavirus (sar-

becovirus), and 67% of the variability in the mutability map of the seasonal influenza spike

(HA) can be attributed to the uneven accessibility of surface residues by Abs (antibody pres-

sure). This high degree of correlation suggests that average, polyclonal Ab pressure modulated

by spike presentation geometry on the viral surface was consequential in the diversification of

the coronavirus sarbecovirus spike and the seasonal flu spike.

We further studied the time evolution of SARS-CoV-2 spike mutability up to May 31st,

2021. We found that the correlation between the spike mutability and our model gradually

increased, suggesting diversification at residues that are highly targeted by Abs, before rapidly

falling between January and May 2021. Finally, we found that several residues predicted by our

model to be highly targeted by Abs have now acquired key mutations that are associated with

Ab escape, validating our approach. Overall, our approach allows us to recognize, based on the

3D structure of glycoprotein and cryo-EM images of the viral surface, whether their muta-

tional landscape has features suggesting Ab evasion, and rank surface residues according to

their likelihood to acquire Ab-escaping mutations in the future. Importantly, this approach

can detect signs of SARS-CoV-2 and influenza adaptation to evade immune pressure by mem-

ory B cells.

Results

Geometry-dependent on-rate of Abs to HA epitopes

The high-density presentation of spikes on the viral surface shelters, through steric impedi-

ments, immunologically recessive and conserved residues from Ab targeting–for example, res-

idues belonging to the stem of HA [20,28,29]. To study the relative accessibility of residues on

the spike surface, we employed coarse-grained MD simulations to define how the on-rate of

an IgG Ab model could be modulated by the presentation of the spike. We first studied two

geometrically distinct HA-presenting immunogens: 1) Presentation as soluble full-length HA

trimer in its closed form [A/New Caledonia/20/1999 (NC99)] [25, 32–34] (Fig 1A-i); 2) HA

presentation within H1N1 influenza A (NC99) virus model (Fig 1B-i) (See Materials and

Methods). For each presentation form, we computed the on-rates for Abs engaging different

surface epitopes. The on-rate is the inverse of the mean first passage time of a single Ab arm to

its target epitope (See Materials and Methods).

We superimposed the on-rates of the first Ab arm on the HA structure to represent its on-
rate map (Fig 1A-ii and 1B-ii) [data from [24]]. In the context of the free HA trimer presenta-

tion, we found that residues at convex sections on the spike surface were more accessible

to Abs, resulting in a higher on-rates (Fig 1A-ii). In the context of virus HA presentation
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Fig 1. Antibody targeting and mutability of the hemagglutinin protein for the seasonal flu. (A-B) Coarse-grain model of the hemagglutinin trimer of A/New

Caledonia/20/1999 (NC99) H1N1 influenza protein in its closed form (A). The virus model has 40 HA molecules at a spacing of 14.8 nm. [Measured spike spacing on

influenza is 14 nm [78]] (B). For each immunogen geometry (trimer—A or full virus—B), a detailed atomistic structure of the immunogen is coarse-grained and

presented in rainbow colors (panel i). Here every colored bead on the immunogen is a residue, representing a different HA epitope (228 different possible sites on

trimeric HA). The antibody structure is presented as the Fc (blue bead), two arm (magenta beads) and antigen binding fragment (Fab) (yellow beads). Panels ii within

A-B depict coarse-grained simulations for the on-rate of the Ab first arm binding (see Eq (S4)) to these residues [data from [24]]. The on-rates estimated from the

simulation are superimposed on the HA structure. Top view (left), side view (right). The on-rate to cyan residues is high, intermediate to white residues, low for purple

residues, and was the average of multiple simulations. (C) Panel i depicts the entropy (see Eq (1)) of HA epitopes computed for the seasonal flu (pre-pandemic influenza
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(Fig 1B-ii), similar behavior followed, and the density of spikes on the viral surface reduced the

ability of Abs to penetrate and interact with epitopes on the lower part of the spike, resulting in

an on-rate gradient of the Abs targeting residues along the main axis (Fig 1B-ii right). Hence,

presentation on the virus surface, as occurs in vivo, leads to an immunodominance or Ab pres-

sure (targeting) gradient along the main axis of HA.

Antibody pressure directs the evolution of the seasonal flu

Viral infection elicits a humoral response and the production of Abs that target residues on the

surface of spikes. For circulating viruses to propagate in a population, they have to evade neu-

tralization and recognition by Abs [35,36]. To do so, they accumulate mutations on their sur-

face proteins [37,38]. Because sterically hidden residues are less accessible to Abs, we

hypothesized their need to mutate is smaller compared to more accessible ones. Hence, we

expected spike evolution and the mutational landscape to follow Ab pressure.

The influenza virus mutates from one year to the next, where most of the mutations are

concentrated in five antigenic sites (Sa, Sb, Ca1, Ca2, and Cb) located at the head of HA [39].

Escape from neutralization by Abs is one of the main factors contributing to HA mutability

[19,20]. To examine the relationship between Ab pressure and HA surface mutability, we stud-

ied the evolution of the pre-pandemic seasonal influenza virus H1N1 using sequences dating

back to 1918 (see Materials and Methods). Following sequence alignment, we computed the

entropy of each surface residue identified as an epitope (see Materials and Methods). The

entropy of residue j is given by

Hj ¼
X

i2½Amino acids�

pj;ilogðpj;iÞ; ð1Þ

where pj,i is the probability of amino acid i to appear at residue j across the viral population

(Fig 1C-i). By superimposing the residues entropy on the surface of HA, we created its muta-
bility map (Fig 1C-ii). Interestingly, the mutability map is comparable to the on-rate map for

the virus presentation (Fig 1B-ii), showing a pronounced pattern of diminishing mutability

gradient along the main axis of the spike. This is corroborated by previous studies showing

that the HA head acquires more mutations and evolves faster than its lower part–the stem

[40].

To quantify the similarity of the on-rate and mutability maps, we aggregated close-by resi-

dues on the spike surface into clusters of size k (Fig 2A) (See Materials and Methods, and S2

Fig), and computed for each epitope cluster k its entropy and on-rate as follows:

CEnt;k ¼
1

Nk

X

j2½Resiudes in cluster k�

Hj; ð2Þ

COn� rate;k ¼
1

Nk

X

j2½Resiudes in cluster k�

oj; ð3Þ

where CEnt,k and COn−rate,k are the epitope cluster entropy and epitope cluster on-rate respec-

tively, Nk is the number of residues in cluster k, ωj is the on-rate of the first Ab arm to residue

j, and the entropy Hj of residue j is given by Eq (1).

H1N1 (1918–1957 and 1977–2009) (sequences from [40]). Panel ii shows the entropy of the residues superimposed on HA structure, where highly mutable residues are in

cyan, intermediate in white and conserved residues in purple.

https://doi.org/10.1371/journal.pcbi.1009664.g001
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To assess the predictive strength of the on-rate map in explaining the observed mutability,

we computed the correlation between COn−rate,k and CEnt,k as a function of the cluster number

(Fig 2B). We find that the correlation values for HA virus presentation are high, with a maxi-

mum of 0.92 for 10 clusters. Intriguingly, the correlation value, regardless of cluster number, is

always larger for the virus presentation than for the trimer (Fig 2B), highlighting that spike

evolution and escape due to Ab pressure occurs in the context of the virus—as a result, both

mutability and Ab on-rate vary most along the main axis of the spike. We determined the opti-

mal number of clusters to be k = 60 (See Materials and Methods). For k = 60, we found a corre-

lation of 0.82 between CEnt,k and COn−rate,k, suggesting that epitope cluster on-rate map, at this

resolution, could explain 67% of the variability in the mutability map of HA.

Surprisingly, most epitope clusters that contain residues belonging to the five antigenic sites

show a linear relation between their entropy and on-rate, suggesting that the mutability of

these sites follows from their position on HA, the geometry of its presentation on the viral sur-

face, and is due to Ab pressure (Fig 2C). Epitope clusters containing conserved residues at the

HA stem belonging to the HA Group 1 broadly neutralizing epitope [20,28,29] similarly align.

Taken together, these results suggest that the mutability of surface spike epitopes of circulat-

ing viruses can be roughly described using a diagram (Fig 2D). The mutability of epitope clus-

ters that lay on a linear line of epitope cluster entropy vs. epitope cluster on-rate is related to

the average Ab pressure acting on these residues (Fig 2D). Epitope clusters below the line are

more conserved than would be expected based on their accessibility to Ab pressure and this

could be due to the presence of functionally important sites. Epitope clusters above that line

are more mutable than would be expected due to Ab pressure and may result from allosteric

immune escape [41], escapes from CD8+ T cells [42,43], glycosylation [44], or other factors.

The mutability map of the sarbecovirus spike follows geometry-dependent

antibody pressure

To understand whether the geometrical principles controlling the distribution of mutation on

the spike surface are general across species, we applied our computational model to study the

mutability of the spike protein of close relatives of SARS-CoV-2 –the sarbecovirus subgenus.

We considered two presentations of the corona spike (S protein) to Abs: 1) Presentation as sol-

uble full-length S trimer in its closed form [45] (Fig 3A-i); 2) S presentation on the coronavirus

surface (Fig 3B-i) [based on the cryo-EM structure of SARS that has 65 spikes on its surface

[46] and SARS-CoV2 spike [45] (See Materials and Methods)].

We first computed the Ab on-rate to surface residues of S, when presented as a trimer or

the surface of the virus model (Fig 3A-i and 3B-i, and Materials and Methods). Similar to our

observation for the Abs on-rate against HA, we found an increased on-rate to convex regions,

an on-rate gradient along the main axis of S for the virus presentation (Fig 3B-ii), but not for

the trimer presentation (Fig 3A-ii). Next, we analyzed sequences of close relatives of the

SARS-CoV-2 spike within the sarbecovirus subgenus (Table 1). Following alignment and con-

struction of the phylogenetic tree (S3 Fig), we computed the mutational entropy of each

Fig 2. Antibody pressure guided the mutability of the hemagglutinin. (A) Panel i. HA protein. Each circle corresponds to a surface residue (epitope)

and was colored differently for illustration. Panel ii. Surface residues (epitopes) were clustered (see Materials and Methods). Each epitope cluster is was

colored differently for illustration. (B) The correlation coefficient between epitope cluster entropy (Eq (2)) and the epitope cluster on-rate (Eq (3)), as a

function of cluster number, computed for HA in the virus presentation depicted in Fig 1B (blue), and at the trimer presentation depicted in Fig 1A

(red). (C) Scatter plot of the epitope clusters entropy computed for the seasonal influenza H1N1 vs. the epitope clusters on-rate (the number of clusters

is 60). The correlation coefficient between them is 0.82. Marked are clusters containing residues belonging to the five known antigenic sites of flu (Cb—

green, Sa—yellow, Sb—blue, Ca1—cyan, Ca2—red). Also marked is the group 1 conserved broadly neutralizing antibodies epitope (purple). (D)

Schematic of the relationship between entropy and computed Ab on-rate for circulating viruses evolving under Ab pressure.

https://doi.org/10.1371/journal.pcbi.1009664.g002
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surface residue identified as an epitope using Eq (1) (Fig 3C-i) and superimposed it on the

spike surface to create its mutability map (Fig 3C-ii). We observed that the most significant

change in mutability is along the main axis of S. To compare the on-rate and mutability maps,

we applied the diffusion map transformation on (S2B Fig) and clustered the epitopes (Fig 3D).

Studying the correlation value as a function of cluster size (Fig 3E), we found that the correla-

tion between the on-rate and the mutability maps is always higher for the virus spike presenta-

tion compared to the trimer, highlighting that the geometrical context in which Abs interact

with the spike determines its mutability. We found a high degree of correlation (R = 0.69)

between CEnt,k and COn−rate,k, suggesting that on-rate as computed by our model, at this resolu-

tion, can explain 48% of the variability in the mutability map of S (Fig 3F). The high degree of

correlation between the maps suggests that average Ab pressure shaped, to the first order, the

mutability of the sarbecovirus subgenus spike. While for seasonal influenza, the HA entropy

(Fig 1C) was the result of a gradual accumulation of mutations over time, S protein entropy

(Fig 3C) analyzed here is the result of a horizontal mutational process occurring simulta-

neously in different hosts, suggesting the virus evolves under similar geometrical immuno-

globulin pressure.

The receptor-binding domain (RBD) is involved in the spike binding to ACE-2 [47,48]. It

has been shown that neutralizing Abs targeting the RBD can offer protection [15]. Within the

Fig 3. Antibody targeting and mutability of the sarbecovirus subgenus spike. (A-B) Coarse-grain model of the

SARS-CoV-2 spike (S protein) in its closed form (A) [45]. (B) The virus model has 65 S molecules at a density of 0.27

spikes per 100nm2 [46]. A detailed atomistic structure of the spike is coarse-grained and presented in rainbow colors

(panels i). Every colored bead on the spike is a residue, representing a different S epitope (255 different possible sites

on trimeric S). Panels ii depict coarse-grained simulations for the Ab on-rate to these residues (see Fig 1A-ii for

definition and color-coding). (C) Panel i depicts the entropy (see Eq (1)) of each spike residue computed for the

sarbecovirus subgenus spike (see Table 1). Panel ii shows the entropy of the residues superimposed on the spike

structure. Same color-coding as in Fig 1C-ii. (D) Panel i. The spike protein of the coronavirus. Each circle corresponds

to a surface residue (epitope) and was colored differently for illustration. Panel ii. Surface residues (epitopes) were

clustered (see Materials and Methods). Each epitope cluster is was colored differently for illustration. The number of

clusters is 60. (E) The correlation coefficient between epitope cluster entropy (Eq (2)) and the epitope cluster on-rate

(Eq (3)), as a function of cluster number, computed for the corona spike in the virus presentation (blue), and at the

trimer presentation (red). (F) Scatter plot of the epitope clusters entropy, computed for the sarbecovirus spike vs. the

epitope cluster on-rate estimated from the simulations. The correlation coefficient between them is 0.69. Clusters that

contain residues belonging to the RBD are in green and those containing residues belonging to the RBM are in red.

(The number of clusters is 60).

https://doi.org/10.1371/journal.pcbi.1009664.g003

Table 1. Sarbecovirus. Species used for the analysis detailed in Fig 3C.

Coronavirus Species Collection date Reference Isolation origin

SARS-CoV-2 consensus 2019–2020 Computed in this manuscript Human

Bat coronavirus RaTG13 2013 https://www.ncbi.nlm.nih.gov/protein/QHR63300.2 Rhinolophus affinis

Bat coronavirus Urbani May 2003 https://www.ncbi.nlm.nih.gov/protein/AAP13441 Human

Bat coronavirus CUHK-W1 2003 https://www.ncbi.nlm.nih.gov/protein/AAP13567.1 Human

Bat coronavirus GZ02 2003 https://www.ncbi.nlm.nih.gov/protein/AAS00003 Human

Bat coronavirus A031 2004 https://www.ncbi.nlm.nih.gov/protein/AAV97988.1 Raccoon dogs

Bat coronavirus A022 2004 https://www.ncbi.nlm.nih.gov/protein/AAV98003.1 Raccoon dogs

Bat SARS-like ZXC21 2015 https://www.ncbi.nlm.nih.gov/protein/AVP78042.1 Rhinolophus sinicus

Bat SARS-like ZC45 2017 https://www.ncbi.nlm.nih.gov/protein/AVP78031.1 Rhinolophus sinicus

Bat SARS-like CoV Rp3/2004 2004 https://www.ncbi.nlm.nih.gov/protein/AAZ67052.1 Rhinolophus ferrumequinum

SARS coronavirus Rs 672/2006 2006 https://www.ncbi.nlm.nih.gov/protein/ACU31032.1 Rhinolophus sinicus

Bat SARS-like coronavirus WIV1 2012 https://www.ncbi.nlm.nih.gov/protein/AGZ48828.1 Rhinolophus sinicus

SARS-like coronavirus WIV16 2013 https://www.ncbi.nlm.nih.gov/protein/ALK02457.1 Rhinolophus sinicus

https://doi.org/10.1371/journal.pcbi.1009664.t001
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RBD, residues belonging to the receptor-binding motif (RBM) are most important in binding

to ACE-2. We recognized epitope clusters to which residues part of the RBD and RBM belong

(Fig 3F). Many of the epitope clusters have both high entropy and high on-rate, which could

suggest mutations acquired at these key domains across the spike are due to evasion from Abs,

as well as adaptation to the host-specific receptor. Several of the highly targeted and mutable

epitope clusters are not part of the RBD. Hence, Abs targeting these residues will not necessar-

ily offer neutralization activity. However, Abs targeting these clusters can control viral infec-

tion through non-neutralizing pathways [49], thereby motivating the virus to mutate these

highly targeted parts.

SARS-CoV2 and the 2009 influenza pandemic spikes mutability is not

predominantly due to antibody-pressure

Our analysis suggested that Ab pressure imposed by spike presentation geometry highly corre-

lated with the mutational entropy of viruses circulating either over long periods (influenza) or

across species (sarbecoviruses). To determine whether this observation can be generalized to

pandemics, we computed the sequence entropy of HA for the 2009 flu pandemic H1N1

(sequences from [40], GISAID) (Fig 4A-i). Superimposing the entropy on the HA structure

(Fig 4A-ii), we did not observe immunodominance gradient along the main axis of HA

observed in the computational model (Fig 1B-ii). Unlike for the mutability of seasonal flu, the

correlation coefficient between epitope cluster pandemic entropy and epitope cluster on-rate

was low (0.18) (Fig 4A-iii).

SARS-CoV-2 zoonotically shifted to humans in 2019 [5], probably from bats via pangolins,

although its precise evolutionary path is still unclear. Since then, it has spread in the human

population, infecting more than 181 million people as of June 2020. To analyze its total muta-

tional entropy up to May 31st, 2021, we downloaded publicly available SARS-CoV-2 sequences

from GISAID (www.gisaid.org) [50] (sequences choice is discussed in Materials and Methods),

computed the sequence entropy (Fig 4B-i) and the mutability map (Fig 4B-ii). Interestingly,

the mutability map does not show the same gradient pattern as observed for the sarbecovirus

subgenus spike entropy (Fig 3C-ii). We applied the same clustering (k = 60) to compare the

epitope cluster entropy and on-rate and found a low value of the correlation coefficient (0.058)

(Fig 4B). Hence, we suggest that the total sequence entropy of SARS-CoV-2 thus far is not

dominated by escape from Ab mutations.

Time evolution of SARS-CoV-2 mutability map

To see if we could observe changes in the evolution trend of the virus of the time, indicative of

Ab escape mutations, we separated SARS-CoV-2 sequences into five groups based on the time

at which they were captured: 1] before 02/2020, 2] 02/2020-05/2020, 3] 06/2020-11/2020, 4]

12/2020, and 5] 1/2021-05/2021 (Fig 4C, 4D, 4E, 4F and 4G). Computing the correlation coef-

ficient between the on-rate and mutability maps, we found an increase over time (Fig 4H)

from a value of -0.16 before Feb 2020 to a peak of 0.39 for sequences sampled during 12/2020.

While the correlation value of 0.39 is still low, it suggests significant sequence diversity in cir-

culating strains at residues that are highly targeted by Abs residues, in accordance with other

reports [51]. Interestingly, between January and May 2021, the correlation value has been

dropping. This could be due to the fixation of some of the escape mutations at the S protein

RBD in dominant circulating strains. An increase over months and years in correlation value

between the on-rate map computed by our model and the evolving mutational landscape of

SARS-CoV-2 could indicate that its mutability patterns are being shaped by Ab pressure. (See

time dependence here https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html).
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Comparing model prediction with key mutations in SARS-CoV2

Finally, we directly compared the prediction of our model of the computed Ab on-rate as

proxy for escape mutation with emerging SARS-CoV-2 variants. We ranked all the residues

identified in our model according to the Ab on-rate toward them. According to the model, res-

idues for which the on-rate is high (high rank) are more likely to mutate due to Ab escape

compared to residues for which the on-rate is low (low rank), for which we predict mutations

are likely to have a different functioncal role. Based on current knowledge about the associa-

tion of key mutations with Ab escape (See S1 Data), we studied the predictive power of the

model (Fig 4I). We defined residues that are in the top 66th percentile on-rate rank as likely to

mutate to escape Abs. Hence, high rank residues in which escape mutations occurred are true

positive predictions of the model. Amongst them are residues 501 (73rd rank percentile)

where a dominant mutation (N501Y) is present in lineages (B.1.1.7, B.1.351, and P.1) and was

found to reduce neutralization by Ab [52,53] and increase in affinity to ACE2 [54]. Highly

ranked residues where mutations do not offer Ab escape are false positives–such as residue 69.

Indeed, Δ69 has emerged independently in multiple strains but it is not reported to confer

escape [55]. Low on-rate ranking residues in which mutations were found to offer fitness

advantages not related to escape are true negatives. Amongst them is residue 614, which has a

highly prevalent mutation (D614G) and is associated with increased infectivity and transmissi-

bility but not with Ab escape [16]. Finally, residues such as 453 received a low rank but muta-

tions in them (Y453F [54]) were found to offer escape are false negatives. Overall, the model

informs of the likely functional role of observed mutations and predicts at which residues Ab-

escape mutation might arise in the future.

Discussion

Humoral immunity is often characterized by dominant versus recessive responses to different

epitopes on the same antigen. This hierarchy of B cell immunodominance depends on many

factors, amongst them are the precursor frequency within the germline B cell repertoire, B cell

Fig 4. Spike evolution of the 2009 influenza pandemic and SARS-CoV-2. Comparison of the diversity of sequences

(mutability map) and the on-rate maps. For A-B, panel i depicts the residue entropy as a function at different positions.

For A-B, panel ii depicts the entropy of the residues is superimposed on the spike. Same color coding as in Fig 1C-ii. Panel

iii. Scatter plot of the entropy of epitope clusters, against the epitope cluster on-rate computed for the spike. (A) Sequence

entropy of HA for the pandemic flu H1N1 (2009–2017) (sequences taken from www.gisaid.org, and [40]). The correlation

coefficient between the epitope cluster entropy and on-rate is R = 0.18. (B) Sequence entropy of the S spike protein of

SARS-CoV-2 computed for all S protein sequences up to May 31st 2021 (sequences downloaded from www.gisaid.org).

The correlation coefficient between the epitope cluster entropy and epitope cluster on-rate is R = 0.058. Same legend as

Fig 3F. Time-dependence sequence entropy of SARS-CoV-2. The entropy of the S spike protein of SARS-CoV-2

computed for sequences collected at 5 time periods since the beginning of the pandemic (panel i) and correlation to the

on-rate map, following epitope clustering (panel ii) (same clusters as those shown and used in Fig 3D-ii and 3F). (C) up to

February 1st 2020, R = -0.16, (D) February-May 2020, R = -0.079 (E) June-November 2020, R = 0.3, (F) December 2020,

R = 0.39, (G) January-May 2021, R = 0.061. (H) The correlation coefficient as a function of time. (Find an interactive,

comparison of the time-dependent mutability map to the on-rate map here https://amitaiassaf.github.io/SpikeGeometry/

SARSCoV2EvoT.html). Functional role of SARS-CoV-2 spike mutations. (I) Residues where key mutations were

identified in SARS-CoV-2 variants are marked with colored beads. Residues were ranked based on their on-rate

(targeting) by Abs according to the model prediction. The upper 66th on-rate percentile rank is the threshold between

“high on-rate” (mutation due to escape) and “low on-rate” (mutation due to other factors) residues. Red residues have

high on-rate and mutations in them were found to confer Ab escape (true positives) [Residue positions: 136, 140, 141, 143,

244, 345, 441, 444, 447, 449, 450, 452, 489, 490 493, 499, and 501]. Blue residues have a high on-rate and mutations in

them have not been shown as of yet to not confer Ab escape (false positives) [Residues: 69, 80, and 138]. Green residues

have a low on-rate and mutations in them do not confer Ab escape (true negatives) [Residues: 614, 655, and 701]. Orange

residues have a low on-rate and mutations in them confer Ab escape (false negatives) [Residues: 346, 439, and 453]. Yellow

residues have a high on-rate but it is unknown whether mutations in them confer Ab escape [Residues: 102, 367]. See S1

Data for a complete list.

https://doi.org/10.1371/journal.pcbi.1009664.g004
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receptor affinity, and the steric accessibility or antigen geometry. Pathogens take advantage of

antigen geometry to shield sites of vulnerability. Such is the case in the influenza spike hemag-

glutinin, where conserved sites are located in the sterically hidden stem [56–58], or on HIV

spike gp120, where the vulnerable and evolutionary conserved CD4 binding site position does

not allow Abs to form bivalent interactions, reducing Ab avidity [59]. While mature Abs are

nevertheless capable of approaching sterically restricted sites via somatic hypermutations that

could extend, for example, their CDR3 loops [60], immunogen shape and valency manipulates

B cell immunodominance patterns, their selection process in the germinal center, or the

expansion of memory B cell population [24,61,62]. Because viruses must evade Ab response to

survive, B cells immunodominance patterns could roughly recapitulate spike mutability pat-

terns. Immunogen shape that contributed to these patterns can be obtained directly from

structural data and does not require prior knowledge about the immune repertoire. Thus, we

studied whether spike presentation geometry to Abs is a good predictor of its mutability.

Using a coarse-grained model of an Ab, HA, and the S protein of SARS-CoV-2, in both trimer

and viral presentation model system, we computed the Ab on-rate maps as a proxy for Ab

pressure on the spike. We used the on-rate maps to assess whether the magnitude of the muta-

bility of surface residues is governed by geometrical considerations (Fig 2D).

We found that for the seasonal flu spike–HA, geometry through the presentation on the

virus could explain, to the first order, the mutability pattern at its surface. In particular, the

mutability of the five antigenic sites is ordered as would be expected by the geometric restric-

tion imposed by their position on the spike, as did the conserved group 1 epitope, which is

functionally important for HA conformation change (Fig 2C). Hence, we speculate that rather

than maintaining functionally important sites conserved by negatively selecting mutants at

such sites, the virus positions functional sites at a location, where their tolerable mutational

rate would be determined by their need to escape from targeting by the average polyclonal Ab

response.

To understand whether a similar principle governs the mutability of coronaviruses, we cre-

ated a similar coarse-grained model of the SARS CoV family. As coronaviruses do not mutate

much in comparison to other RNA viruses, we decided to analyze their mutability across the

virus sub-species, using sequences isolated from different hosts in the years 2003–2019. In

mammalians, these viruses have to evade immunoglobulin response which we hypothesized

would lead to geometrically similar escape patterns. We found that geometry, through Ab tar-

geting, shapes to the first order the mutability patterns on the sarbecovirus subgenus spike

map. Hence, these viruses evolve across various hosts under roughly geometrically similar Ab

pressure–at least the main axis of the virus seems to be the first principle axis of mutability,

resulting from the density of spikes on the viral surface.

The mutational probability distribution we sampled for the sarbecovirus subgenus is analo-

gous to sampling different “realizations” of the statistical ensemble of the sequence landscape

of the viruses [63], where each realization is a virus from a different host. For the seasonal flu,

we considered sequences over a long period—starting from 1918 and aggregated them to a sin-

gle probability distribution analyzed. In both cases, presentation geometry roughly explained

sequence entropy. Comparing both these approaches to describe mutability distribution is

conceptually similar to the ergodic theorem in statistical physics, where the averages of a sto-

chastic process sampled over time are equivalent to the averages computed over different sta-

tistical realizations. While evolution patterns of mutating viruses are not an ergodic system in

general–as many mutants are not viable and hence unreachable in the sequence space, the sim-

ilar geometry of immunoglobulins and spike presentations could be is the reason our model

works for both these different instances, with mutations distributed across time (for influenza),

or across species (for sarbecoviruses). Statistical physics models have been previously used [64]
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to analyze the sequence space to compute the fitness landscape space of viruses [65,66]. The

overall fitness of viruses is often split into its intrinsic fitness of the virus and a fitness compo-

nent related to evasion from the immune response (i.e. Abs) [67]. As our approach allows for a

rough estimation of the virus Ab-dependent element of the fitness, it can be used as a prior in

inference methods to extract the intrinsic fitness.

Because of its proofreading mechanism, SARS-CoV-2 is not expected to mutate much. Nev-

ertheless, since the SARS-CoV-2 pandemic has erupted, its sequences have been analyzed to

detect mutations that would increase its fitness, infection capabilities, or allow it to escape

from Abs [16,51,53,68]. To determine patterns of escape due to Ab pressure on the SARS-

CoV-2 spike, we compared its mutability map to the on-rate map over time and found an

increase in the correlation value since the beginning of the pandemic up to December 2020,

resulting from the larger sequence heterogeneity of S1 (Fig 4H). Between January and May

2021, we observed a drop in the correlation value. This could be due to the high prevalence of

specific mutation (N501Y, Δ69–70, E484K, Y453F) [17] reducing S1 entropy while contribut-

ing to viral fitness through escape and increased binding at ACE2. It is also plausible that the

vaccine, which was introduced around December 2020, where the spike is presented in a stable

pre-fusion trimeric form [14], resulted in different patterns of Ab pressure than those elicited

by infection. For the 2009 influenza pandemic, we similarly found a low correlation value of

0.18.

Pandemics are usually caused by a newly introduced pathogen to the human population

that is poorly matched by the predominant immune responses and hence do not elicit strong

immune memory. At the same time, a pandemic virus has not evolved to infect humans. Fit-

ness advantage from positive mutations, shortly after the zoonotic shift, would likely result

from increasing infectivity rather than allowing the virus to escape Abs. This would result in

an initial low correlation between the mutability of pandemic influenza and SARS-CoV2 and

the model. An example of such initial adaptation is the prevalent D614G mutation in the S

protein of SARS-CoV2, which is associated with increased infectivity and transmissibility and

not with escape [69].

Directly comparing our model for SARS-CoV2 with current knowledge on the effect of

mutations, we found that our model successfully predicted the position of Ab-escape-related

mutations in some of the widely circulating variants (B.1.1.298, B.1.1.7, B.1.351, and P.1) [17].

By computing the magnitude of Ab pressure acting on surface residues of the S protein, we

predict additional positions where escape might arise in the future (S1 Data). Because we esti-

mated here the pattern of Ab pressure on the spike in its close form, our model did not cor-

rectly predict the accessibility of residues, such as 453, which are vulnerable to Ab pressure in

the S protein open configuration.

We propose here a simple geometrical interpretation of the surface mutational landscape of

that spike that could inform, based on sequences and the 3D structure alone, whether a domi-

nant component of virus evolution is evasion from Abs. This technique could serve as an indi-

cator of the evolutionary stage in the infection trajectory of a virus and assess if it is on its way

to becoming a circulating virus such as the seasonal flu.

Materials and methods

The geometry of immunogens and epitope choice

The first input to our model was an atomistic description of the geometry of our immunogens,

which we generated from available structural information and pdb files [45,70]. For HA and S,

solvent-accessible residues were identified using pymol script “findSurfaceResidues” (https://

pymolwiki.org/index.php/FindSurfaceResidues), which identifies atoms with a solvent
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accessible area greater than or equal to 20 Ang2 (HA) and 15 Ang2 (S). We then found the resi-

dues to which those atoms belong. This selection criterion gives a uniformly distributed set of

residues on the face of HA and S (see S1A and S1B Fig). A total of 228 epitopes (residues) were

chosen for HA and 255 epitopes for S. Residues not defined as epitopes were either not present

in the pdb files, or not identified by the pymol script.

We constructed a simplified model of the influenza virus, in which 40 HA molecules are

arranged in a fixed conformation on a sphere of radius equal to 16nm (a value chosen for

computational tractability). The model recapitulates [24] the average spacing between adjacent

HAs on the influenza viral surface of ~ 14 nm (Harris et al., 2013 [78]). We also constructed a

simplified model of the coronavirus based on the cryo-EM images of the SARS virus, in which

65 S molecules in closed form [45] are arranged in a fixed conformation on a sphere of radius

equal to 87nm [46], resulting in a density of 0.27 spikes pre 100nm2.

Steric constraints affect the accessibility of Abs to epitopes, changing the on-rate, thus mod-

ulating the affinity. To compute the relative magnitude of this effect for different epitopes pre-

sented by immunogens with different geometries, we employed MD simulations. In these

simulations, a Lennard-Jones (LJ) potential describes the interactions of an IgG Ab model

with the immunogen, and a separate Morse-potential is used to model interactions of the anti-

gen binding region of the Ab to its specific cognate epitope (see S1 Table). To estimate the ste-

ric effects alone, we used MD simulations (Lammps software) [71] to compute the average

time for the Ab antigen-binding region (S1C and S1D Fig) to find the target epitope for the

first time, which is called a “first passage time.” By running simulations multiple times and

then averaging the results over many simulations, we estimated the mean first-passage time to

the epitope. The inverse of the mean first-passage time is the on-rate. The on-rate of the first

arm of the Ab model is a proxy for Ab geometry-dependent component of affinity to a residue.

Coarse-grained model of the antibody and the immunogen

We constructed a coarse-grained model of an IgG Ab using 8 beads, and of the immunogen

(see S1 Fig). In [72], a model of the Ab was suggested, built from ellipsoids and spheres. Here,

we built our Ab model using spheres of different sizes to approximate the same dimension and

flexibility of an IgG. The MD simulation system is composed of different beads (see S1 Table).

This size of the beads was chosen such that the distance between the two Fabs is approximately

15nm and the length of the Ab arm is 7nm [73]. The size of the Fc region is chosen to be 5nm

[74] (see S1 Table). To construct the 7nm arm we use 3 beads (types 4,5,6 –S1B and S1C Fig,

and S1 Table), where nearest-neighbor beads are connected with rigid bonds of length

1.75nm. Bead type 4 (arm hinge) is connected to bead 3 (Fc hinge) by a rigid bond of length

1.75nm. The epitope bead (type 7, S1 Table) was chosen to have the same size as the Fab beads

(1.75nm) (S1 Table). The beads along the arm (type 4,5,6) are on a straight line (no kink), and

the middle bead (type 6) is larger, to approximate the elongated ellipsoid shaped arm of the Ab

[72].

The average angle between the two arms of the Ab fluctuate with a mean of 120 degrees and

obeys the harmonic potential

UðyÞ ¼ kðy � y0Þ
2
; ðS1Þ

with θ0 = 0.66radian and κ = 10kbT/radian2, resulting in a relatively rigid model of the Ab (De

Michele et al., 2016 [72]).

The system is integrated using a Langevin thermostat under “fix nve” to perform performs

Brownian dynamics simulations (see https://lammps.sandia.gov/doc/fix_langevin.html).
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The Fab bead interacts with the respective epitope bead via the Morse potential

E ¼ D0½e
� 2aðr� r0Þ � 2e� 2aðr� r0Þ� for r < rc; ðS2Þ

where r0 = 1.75nm is the distance between the Fab bead and an epitope bead at which the LJ

energy between them is zero, and the cutoff radius rc = 2.2nm. D0 = 50 is the energy and the

bond fluctuation scale α = 1nm−1: the Morse potential only serves to anchor the 1st arm to the

epitope allowing the second arm to search for a second epitope.

The beads interact with the LJ potential

E ¼ 4ε
si;j

r

� �12

�
si;j

r

� �6
� �

for r < rc; ðS3Þ

where ε = 1, σi,j is the interaction distance between beads i and j, and the cutoff radius is rc =

21/6σi,j. The values of σi,j are detailed in S2 Table. The LJ interaction distance σi,j between all

beads composing the Ab arm (types 4, 5, 6), and the epitope bead (type 7) is 1.75nm to con-

struct the 7nm long arm. The LJ self-interaction distance of the Ab arm bead (type 6) was

taken to be 4.2nm (S1 Table) to maintain an angle of approximately 120 degrees between the

arms. The interaction distance of other pairs of beads is the sum of their radii (S2 Table).

Estimating the on-rates to the epitopes

The on-rate to each of the residues is estimated using MD simulations. Each simulation runs

for a predetermined amount of time and we find the diffusion-limited first passage time of one

of the Fabs to the neighborhood of the target residue. The on-rate for the first arm to find an

epitope is given by

oEp ¼ fEp=
1

NSim

X

i
tEp;i

� �

ðS4Þ

where τEp,i is the time estimated from simulation i, for the Ab to find epitope Ep, to find epi-

tope Ep, fEp is the fraction of simulations where the arm finds the epitope, and NSim is the

number of independent simulations we perform. We performed independent MD simulations

to estimate ωEp for each epitope (7 independent simulations for the HA trimer, 12 for the influ-

enza virus model, 17 independent simulations for the S protein trimer, 9 for the coronavirus

model). See S5 Fig for simulation convergence.

Viral sequences

The sequences analyzed here of the seasonal influenza H1N1 and the 2009 influenza pandemic

are from [40], coming from www.gisaid.org. For the seasonal flu (pre-pandemic influenza

H1N1), 577 sequences from the years 1918–1957 and 1977–2009 were analyzed. For the pan-

demic flu, 431 sequences from the years 2009–2017 were analyzed. SARS-CoV-2 sequences

were downloaded on June 18th, 2020 from www.gisaid.org. Out of a total of 1,981,163, only

high-quality (complete) sequences of length 1274 amino acid (681391 sequences) were ana-

lyzed. The consensus sequence of SARS-CoV-2 was calculated using the BLOSUM50 scoring

matrix in Matlab. Sequences of the sarbecovirus subgenus were downloaded from www.ncbi.

nlm.nih.gov. (see Table 1). The alignment of those sequences was done using ‘GONNET’ scor-

ing matrix in Matlab. Find an interactive, time-dependent comparison of the mutability map

to the on-rate map model here https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.

html.

PLOS COMPUTATIONAL BIOLOGY Geometry shapes viral spike evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009664 December 13, 2021 16 / 22

http://www.gisaid.org/
http://www.gisaid.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html
https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html
https://doi.org/10.1371/journal.pcbi.1009664


Epitope clustering

As the surface features of the spike appeared to be an important factor in determining Ab on-

rate, we applied a non-linear mapping (manifold learning) algorithm—diffusion maps [75] on

the epitopes’ positions (S2A-i and S2B-i Fig) and used the first three components (S2A-ii and

S2B-ii Fig). We then applied the k-means clustering algorithm [76] (spectral clustering) to

aggregate residues in this space into epitope clusters (S2A-iii and S2B-iii Fig). To determine

the optimal number of clusters k for comparison between the two maps, we first estimated the

Total Within Sum of Squares for different cluster numbers (S4A Fig) and used the elbow

method to choose k = 60 [77].

Supporting information

S1 Table. Dimensions of the elements constructing the coarse-grained models. Description

of the elements constructing the coarse-grained antibody model (S1C and S1D Fig) and the

immunogens (Figs 1A-i, 1B-i, 3A-i, 3B-i, S1A and S1B).

(DOCX)

S2 Table. LJ interaction parameters. Values of σi,j in nm.

(DOCX)

S1 Data. Ab on-rate and residue entropy for influenza and SARS-CoV-2. Summary of data

presented in the paper: on-rate of the first arm Ab for both influenza and SARS-Cov-2 Spikes

against epitopes (resides) for the virus and trimer presentation, the entropy of epitopes. The

functional role of mutations in key residues for SARS-CoV-2.

(XLSX)

S1 Fig. S and HA antigen-antibody models and antibody. (A) Set of 255 distinct residues on

the surface of the S protein of SARS-CoV-2 were identified as epitopes. See also Materials and

Methods. (B) Set of 228 distinct residues on the surface of HA were identified as epitopes.

(C-D) Schematic representation of the antibody (Ab). The large blue bead represents the Fc

part of the Ab. The two magenta beads are the arms, and the yellow beads are the Fab section

of the arms. The model also contains hinge beads between the Fc and the arms. For full

description see “Coarse-grained model of the antibody”).

(TIF)

S2 Fig. Clustering of residue to epitope clusters. (A-B) Panels i. HA protein (A) and the S

protein (B). Each circle corresponds to a surface residue (epitope) and was colored differently

for illustration. Panels ii. 2d projections of the first four eigenvectors of the epitope positions

following diffusion map decompositions. Panels iii. Clustering of the surface residues of the

spike protein using k-means clustering algorithm applied to the spectral decomposition shown

in panel ii (k = 60).

(TIF)

S3 Fig. Sarbecovirus subgenus phylogenetic tree. The sequence origin is detailed in Table 1.

(TIF)

S4 Fig. Clustering of spike surface residues (epitopes). (A) The Total Within Sum of Squares

as a function of the number of clusters computed for seasonal influenza spike HA. Related to

Fig 2 (B) The Total Within Sum of Squares as a function of the number of clusters computed

for the sarbecovirus subgenus spike. Related to Fig 3.

(TIF)
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S5 Fig. MD simulations convergence. Histogram showing the fraction of simulations that fin-

ished with a successful binding event. For each immunogen we show the number of epitopes

for which a certain fraction of the simulation ended in a successful binding event of a single-

arm: (A) HA trimer; (B) influenza virus; (C) S protein timer; (D) SARS-CoV-2 Virus.
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