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Abstract

A common G risk allele in the melatonin receptor 1B (MTNR1B, rs10830963) gene

has been associated with altered melatonin signaling and secretion. Given that mela-

tonin possesses anticancerogenic properties, we hypothesized that breast and pros-

tate cancer risks vary by rs10830963 genotype. A total of 216 702 participants from

the UK Biobank without cancer at baseline (aged 56.4 ± 8.0 years, 50.79% female)

were included. Multivariable Cox regression adjusting for known risk factors for

breast or prostate cancer was used to estimate the independent effects of the

rs10830963 SNP and chronotype on cancer risk. Over a median follow-up of 8 years,

2367 (2.15% of women) incidences of breast cancer and 2866 (2.69% of men) inci-

dences of prostate cancer were documented in females and males, respectively.

rs10830963 genotype is not associated with cancer risk independently (female

Ptrend = .103, male Ptrend = .281). A late chronotype is associated with breast cancer

risk in females (Ptrend = .014), but not prostate cancer risk in males (Ptrend = .915).

Further stratification analysis revealed that the rs10830963 genotype is associated

with a breast cancer risk in females with moderate evening chronotype (Ptrend = .001)

and late chronotype is associated with breast cancer risk in females who carry

rs10830963 G risk allele (Ptrend = .015). Our study suggests that having a late chro-

notype might increase the risk of breast cancer among females, while the effect of

MTNR1B rs10830963 genotype on breast cancer risk is mediated by chronotype.
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What's new?

Circadian misalignment is closely related to the onset of hormone-dependent cancers, while

melatonin exerts anticancerogenic properties. This is the first study to examine the potential

interaction between a common G risk allele in the melatonin receptor 1B (MTNR1B,

rs10830963) gene and an individual's chronotype on cancer risk. The findings suggest an effect
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of late chronotype on breast cancer risk that is stronger in rs10830963 G allele carriers. The

rs10830963 G allele may only increase breast cancer risk among females with a late chronotype.

These findings could help inform breast cancer risk estimation and direct new lifestyle

interventions.

1 | INTRODUCTION

A growing body of evidence has shown that circadian misalignment,

resulting from sleep deprivation, social jet lag or night shiftwork, is closely

related to the onset of cancer,1,2 especially hormone-dependent cancers

such as breast cancer and prostate cancer.3-6 Melatonin (N-acetyl-

5-methoxytryptamine) is the primary endocrine signal that conveys the

information of circadian rhythm from the brain to the peripheral tissues

and cells.7 The primary function of melatonin is to control the sleep-wake

pattern and seasonality, and the dysregulation of circulating melatonin

levels are usually associated with altered sleep behaviors.8 Melatonin may

also be involved in the regulation of many other physiological processes,

including immune modulation, antioxidation, neuroprotection, antiaging,

antiinflammation and endocrine regulation.9 Thus, it has been gradually

recognized that melatonin can also affect the initiation, development and

treatment of cancer.10 Epidemiological studies have observed that levels

of circulating melatonin and its urinary metabolites are negatively associ-

ated with the risk of breast cancer.11 Experiments in cell lines and animals

have demonstrated the multidimensional anticancer effects of melatonin,

including apoptosis induction, cell cycle arrest, metastasis inhibition and

antiangiogenesis.12,13 When being used in adjuvant settings of chemo-

therapy or radiation, melatonin has shown its potential to enhance the

treatment efficacy, improve disease stability and ameliorate the

radiochemotherapy-related side effects.14,15

The downstream effects of melatonin are mainly mediated by two

high-affinity membrane receptors, melatonin receptor 1 (MT1, encoded

by MTNR1A) and melatonin receptor 2 (MT2, encoded by MTNR1B).16

rs10830963 single nucleotide polymorphism (SNP) is a common noncod-

ing variation located in MTNR1B.17 Studies have revealed that individuals

who carry the G risk allele of rs10830963 exhibit an enhanced expression

of MT2, as well as an altered melatonin secretion period per day.18,19

Increased MT2 expression has been shown to lead to alterations in intra-

cellular melatonin pathway in different cell types,18,20 which may possibly

serve as the driving force behind circadian rhythm disturbances and the

pathogenesis of various diseases, including type 2 diabetes and myocar-

dial infarction.18,20,21 In addition, genome-wide association studies

(GWAS) have identified the association between the rs10830963 G allele

and the risk of diseases including polycystic ovary syndrome (PCOS)22

and type 2 diabetes (T2D).23 Despite a wealth of research on the com-

mon melatonin receptor SNP and cardiometabolic diseases, studies on

the relationship between rs10830963 and cancer are scarce.

Usually determined by sleep timing, chronotype is the primary

external manifestation of endogenous circadian rhythms. Having a

late chronotype is known as a risk factor for cancer.24,25 Moreover,

the strength of the association between circadian-related genetic vari-

ants and diseases seems to be affected by a person's chronotype.26

Given the crucial role of melatonin and its receptors in cancer devel-

opment, as well as the important interplay between chronotype and

altered melatonin profile on disease risks, it is necessary to investigate

the association between the rs10830963 SNP, chronotype and the

risks of prevalent circadian rhythm-related cancer in large cohorts.

In our study, we utilized data from UK Biobank, one of the largest

population-based cohorts worldwide, and assessed the effect of

rs10830963 SNP and chronotype on cancer risks separately. Given that

prostate cancer and breast cancer are the most common type of cancer

among men and women, respectively, and have the most evidence to

date for their association with altered circulating melatonin rhythms and

intracellular melatonin signaling pathways, we focused the present study

on these two types of cancer, aimed to understand the role of

rs10830963 SNP and chronotype in cancer, and elucidate whether and

to what extent their effects might be mediated by each other.

2 | RESEARCH DESIGN AND METHODS

2.1 | Study population

The UK Biobank is a large population-based prospective cohort that

involves over 500 000 adults who were aged between 40 and

69 years and recruited from 22 assessment centers in the

United Kingdom between 2006 and 2010.27 At the baseline recruit-

ment, participants completed a self-administered touchscreen ques-

tionnaire that included questions on sociodemographic information,

medical history, family history of disease, lifestyle and environmental

factors, employment status and sex-specific factors. Physical measure-

ments including height, body weight, body composition and waist cir-

cumference were performed by trained personnel. Blood samples are

collected and stored for genotype and biomarker assessment. Long-

term follow-up was conducted through repeated measurement and

the linkage to the electronic health record systems in the hospitals.

2.2 | Exclusion criteria

Data from the Initial UK Biobank Cohort including 502 466 participants

whose genetic data passed quality control were utilized in the present

study. The exclusion criteria were: (a) without MTNR1B rs10830963 SNP

genotype data (n = 15 209); (b) were not used in genetic principal com-

ponents (UK Biobank field ID 22020), to minimize the effect of related-

ness (n = 80 162); (c) were not White British (n = 69 643), identified by

self-reported ethnic background (ID 21000) and genetic ancestry based

on the principal components analysis of the genotypes (ID 22006);
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(d) had missing value in any of the covariates used in the analysis

(n = 96 504). After these exclusions, a total of 240 948 White British

individuals with variables of interest were available for further analysis.

Additional exclusions were made based on cancer diagnosis. The

exclusion criteria were: (a) Participants with prevalent cancer at base-

line (n = 22 691); (b) Subjects who had a breast or prostate cancer

diagnosis as their secondary cancer (n = 308). The final analysis

included 217 949 participants in total. The flow chart for the exclu-

sions was presented in Figure S1.

2.3 | Genotype

Genome-wide genotyping was performed on all participants using the

Affymetrix UK Biobank Lung Exome Evaluation (UK BiLEVE) Axiom array

or the Applied Biosystems UK Biobank Axiom array.28 Quality control

was conducted, and over 96 million variants were imputed using the Hap-

lotype Reference Consortium and the 1000 Genomes phase 3 dataset as

reference panels. The Hardy-Weinberg equilibrium (HWE) testing was

performed as previously reported and confirmed that the MTNR1B

rs10830963 SNP did not deviate from the expected genotype

proportion.26

2.4 | Chronotype

Chronotype (ID 1180) was self-reported based on the touchscreen

questionnaire. The question was asked as “Do you consider your-

self to be?” with six possible response options: “Definitely a

‘morning’ person,” “More a ‘morning’ than ‘evening’ person,”
“More an ‘evening’ than a ‘morning’ person,” “Definitely an ‘eve-
ning’ person,” “Do not know” or “Prefer not to answer.” Response
of “Do not know” or “Prefer not to answer” were treated as a

missing value. Response of “Definitely a ‘morning’ person,” “More

a ‘morning’ than ‘evening’ person,” “More an ‘evening’ than a

‘morning’ person” and “Definitely an ‘evening’ person” were

coded as “Extreme morning,” “Moderate morning,” “Moderate

evening” and “Extreme evening,” respectively. Responses to this

question were consistent with the sleep timing objectively mea-

sured by the activity monitor.29

2.5 | Assessment of outcome

The cancer diagnosis was identified through linkage to national cancer

registries and coded using the 10th Revision of International Classifi-

cation of Diseases (ICD-10; ID 40006) or ICD-9 (ID 40013). Breast

cancer was defined as registration in ICD-10:C50 Malignant neoplasm

of breast or ICD-9:174 Malignant neoplasm of female breast. Prostate

cancer was defined as registration in ICD-10:C61 Malignant neoplasm

of prostate or ICD-9:185 Malignant neoplasm of prostate. Death

record was identified through linkage to national death registries and

defined by an empty record in date of death (ID 40000).

2.6 | Potential confounders

Important known risk factors for breast or prostate cancer were included

as covariates in our analysis (Figure 1), including age at recruitment

(ID 21022), body mass index (BMI) (ID 21001), smoking status (ID 20116,

never/previous/current), alcohol intake frequency (ID 1558, daily or

almost daily/three or four times a week/once or twice a week/one to

three times a month/special occasions only/never), red meat intake (serv-

ings per week), physical activity (ID 22032, International Physical Activity

Questionnaire activity group, low/moderate/high), family history of breast

cancer or prostate cancer, respectively, and type 2 diabetes. Socioeco-

nomic status (ID 189, Townsend deprivation index) and region of UK Bio-

bank assessment center (ID 54, recoded into England, Scotland and

Wales) was also adjusted. Genetic principal components of ancestry

(ID 22009, first 10 columns) was adjusted when using rs10830963 geno-

type as an independent variable.

Red meat intake was derived from four variables, including

processed meat intake (ID 1349), beef intake (ID 1369), lamb/mutton

intake (ID 1379), pork intake (ID 1389). Frequency categories (never/

less than once a week/once a week/times a week/five to six times a

week/once or more daily) were recalculated into a continuous mea-

sure of red meat consumption per week. Family history of cancer was

derived from three variables, including illnesses of father (ID 20107),

illnesses of mother (ID 20110) and illnesses of siblings (ID 20111).

Type 2 diabetes was identified if either of the two criteria was met:

(a) T2D defined by a validated algorithm based on diagnosis, medica-

tion and self-reporting30; (b) HbA1c level ≥47 mmol/mol and was not

defined as type 1 diabetes or gestational diabetes by the algorithm

mentioned above. For the female population, we further controlled

their menopausal status, the usage of hormone replacement therapy

(HRT) and the usage of oral contraceptive pill (OCP). Menopausal

MTNR1B
rs10830963

Chronotype

Breast/prostate
cancer

Age, BMI, smoking, alcohol,

red meat intake, physical activity, 

type 2 diabetes, 

family history of cancer

(Female only)

Menopausal status

HRT and OCP usage

Mediator

Confounders

F IGURE 1 Simplified directed acyclic graph depicting the possible
relationship between MTNR1B rs10830963 genotype, chronotype,
breast and prostate cancer risks and confounders. BMI, body mass
index; HRT, hormone replacement therapy; OCP, oral contraceptive pill
[Color figure can be viewed at wileyonlinelibrary.com]
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status was classified into premenopausal, postmenopausal and had

conducted bilateral oophorectomy or hysterectomy based on self-

reported menopausal status (ID 2724, yes/no/not sure—had a

hysterectomy), bilateral oophorectomy history (ID 2834, yes/no) and

hysterectomy history (ID 3591, yes/no). HRT (ID 2814, yes/no) and

OCP (ID 2784, yes/no) usage were defined by self-reported history.

TABLE 1 Baseline characteristics of females in the UK Biobank population, stratified by gender

Total Female Male

N = 216 702 N = 110 070 N = 106 632 P-value

Age, years 56.4 (8.0) 56.3 (8.0) 56.6 (8.1) <.001

BMI, kg/m2 27.3 (4.6) 26.8 (5.0) 27.8 (4.2) <.001

Smoking status, n (%) <.001

Never 118 643 (54.7%) 65 806 (59.8%) 52 837 (49.6%)

Previous 76 711 (35.4%) 35 326 (32.1%) 41 385 (38.8%)

Current 21 348 (9.9%) 8938 (8.1%) 12 410 (11.6%)

Alcohol intake frequency, n (%) <.001

Daily or almost daily 48 553 (22.4%) 19 577 (17.8%) 28 976 (27.2%)

Three or four times a week 54 216 (25.0%) 24 728 (22.5%) 29 488 (27.7%)

Once or twice a week 56 815 (26.2%) 29 198 (26.5%) 27 617 (25.9%)

One to three times a month 23 379 (10.8%) 14 167 (12.9%) 9212 (8.6%)

Special occasions only 20 762 (9.6%) 14 268 (13.0%) 6494 (6.1%)

Never 12 977 (6.0%) 8132 (7.4%) 4845 (4.5%)

Townsend index �1.6 (2.9) �1.7 (2.8) �1.6 (2.9) <.001

Region of test center, n (%) <.001

England 191 088 (88.2%) 96 791 (87.9%) 94 297 (88.4%)

Scotland 16 113 (7.4%) 8491 (7.7%) 7622 (7.1%)

Wales 9501 (4.4%) 4788 (4.3%) 4713 (4.4%)

IPAQ activity group, n (%) <.001

Low 39 540 (18.2%) 19 774 (18.0%) 19 766 (18.5%)

Moderate 88 938 (41.0%) 47 527 (43.2%) 41 411 (38.8%)

High 88 224 (40.7%) 42 769 (38.9%) 45 455 (42.6%)

Red meat consumption, servings/week 3.6 (2.2) 3.1 (1.9) 4.2 (2.3) <.001

Menopausal status, n (%)

Premenopausal 28 731 (26.1%) 28 731 (26.1%)

Postmenopausal 61 540 (55.9%) 61 540 (55.9%)

Had hysterectomy or bilateral oophorectomy 19 799 (18.0%) 19 799 (18.0%)

Ever used hormone replacement therapy (HRT), n (%) 42 696 (38.8%) 42 696 (38.8%)

Ever used oral contraceptive pill (OCP), n (%) 91 958 (83.5%) 91 958 (83.5%)

Have family history of breast cancer, n (%) 23 222 (10.7%) 12 192 (11.1%) 11 030 (10.3%) <.001

Have family history of prostate cancer, n (%) 17 391 (8.0%) 8830 (8.0%) 8561 (8.0%) .96

Type 2 Diabetes, n (%) 10 262 (4.7%) 3310 (3.0%) 6952 (6.5%) <.001

Chronotype, n (%) <.001

Extreme morning 57 508 (26.5%) 29 874 (27.1%) 27 634 (25.9%)

Moderate morning 79 443 (36.7%) 40 795 (37.1%) 38 648 (36.2%)

Moderate evening 60 895 (28.1%) 30 357 (27.6%) 30 538 (28.6%)

Extreme evening 18 856 (8.7%) 9044 (8.2%) 9812 (9.2%)

MTNR1B rs10830963 genotype, n (%) .069

C 114 029 (52.6%) 57 963 (52.7%) 56 066 (52.6%)

CG/GC 86 055 (39.7%) 43 808 (39.8%) 42 247 (39.6%)

GG 16 618 (7.7%) 8299 (7.5%) 8319 (7.8%)

Note: Quantitative data are presented as mean ± SD. Qualitative data are presented as number (percentage).
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2.7 | Statistical analysis

Cox proportional hazards regression was used to assess the associa-

tions of MTNR1B rs10830963 SNP and the risk of cancer, and the

associations of chronotype and the risk of cancer. An additive genetic

model was assumed for MTNR1B rs10830963 SNP. Analyses were

performed separately for male and female. Time of follow-up was cal-

culated from the date of attending UK Biobank assessment center

(ID 53) until the date of cancer diagnosis (ID 40005), date of death

(ID 40000) or the date of the last follow-up (14 December 2016),

whichever came first. Participants who had a diagnosis of any cancer

other than breast or prostate cancer, or had a death record during

follow-up were censored from the analysis. The primary model

(Model 1) for chronotype did not include any other covariates, while

the primary model (Model 1) for MTNR1B rs10830963 SNP was

adjusted for the first 10 genetic principal components of ancestry.

The fully adjusted model (Model 2) additionally incorporated region of

UK Biobank assessment center, Townsend deprivation index, age at

recruitment, BMI, smoking status, alcohol intake frequency, red meat

intake, physical activity, T2D, family history of breast cancer or pros-

tate cancer. For female, menopausal status, HRT usage and OCP

usage was also adjusted. The association between the interaction

term “rs10830963 genotype * chronotype” and cancer risk was exam-

ined in both the primary and the fully adjusted models. Further strati-

fication analysis for different genotype and chronotype groups was

performed based on the interaction. All statistical analyses were per-

formed using Stata software version 15.1 (StataCorp, College Station,

Texas). A two-tailed P < .05 was regarded as statistically significant.

3 | RESULTS

The final cohort consisted of 50.79% females (n = 110 070) and

49.21% males (n = 106 632), with an average age at recruitment of

56.4 ± 8.0 years. General characteristics of the population stratified

by gender are shown in Table 1. Genotype distribution of rs10830963

TABLE 2 Hazard ratios and 95%
confidence interval (CI) for breast cancer
among females and prostate cancer
among males, separated by rs10830963
genotype and chronotype

Exposure

Model 1 Model 2

HR (95% CI) P Ptrend HR (95% CI) P Ptrend

Breast cancer incidence amount females

rs10830963 genotype .107 .103

CC 1 1

CG 1.04 (0.96-1.14) .317 1.05 (0.96-1.14) .302

GG 1.12 (0.97-1.31) .130 1.12 (0.97-1.31) .131

Chronotype .012 .014

Extreme morning 1 1

Moderate morning 1.02 (0.91-1.13) .774 1.02 (0.92-1.13) .714

Moderate evening 1.13 (1.01-1.26) .029 1.13 (1.01-1.26) .027

Extreme evening 1.14 (0.98-1.34) .091 1.14 (0.97-1.33) .109

Prostate cancer incidence amount males

rs10830963 genotype .223 .281

CC 1 1

CG 0.95 (0.88-1.02) .179 0.95 (0.88-1.03) .187

GG 0.96 (0.83-1.10) .534 0.97 (0.84-1.12) .664

Chronotype <.001 .915

Extreme morning 1 1

Moderate morning 1.05 (0.96-1.15) .284 1.07 (0.98-1.18) .138

Moderate evening 0.88 (0.79-0.97) .011 1.01 (0.91-1.11) .905

Extreme evening 0.79 (0.68-0.92) .002 1.03 (0.89-1.20) .700

Note: Model 1: Adjusted for the first 10 columns of the genetic principal components of ancestry for

genotype; was not adjusted for any additional covariates for chronotype. Model 2 (breast cancer): Model

1 + adjusted for potential confounders including the region of UK Biobank assessment center, Townsend

deprivation index, age at recruitment, BMI, smoking status, alcohol intake frequency, red meat intake,

physical activity, type 2 diabetes, family history of breast cancer, menopausal status, usage of hormone

replacement therapy and usage of oral contraceptive pills. Model 2 (prostate cancer): Model 1 + adjusted

for potential confounders including the region of UK Biobank assessment center, Townsend deprivation

index, age at recruitment, BMI, smoking status, alcohol intake frequency, red meat intake, physical

activity, type 2 diabetes and family history of prostate cancer.

Abbreviations: CI, confidence interval; HR, hazard ratio.
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in the whole population was 52.6% for CC, 39.7% for CG or GC and

7.7% for GG. The minor allele frequency (MAF) of the rs10830963 G

allele was 27.5%.

Over a median follow-up of 8 years, 2367 (2.15%) incident cases

of breast cancer were observed among females, and 2866 (2.69%)

incident cases of prostate cancer were observed among males. Among

the females, the number of G risk alleles did not predict the breast

cancer risk during the observational period (1.05 [0.99-1.12],

Ptrend = .103; see Table 2 for pair-wise comparison using CC genotype

as reference). Likewise, no linear trend was seen in the number of G

risk alleles with prostate cancer among men (0.97 [0.91-1.03],

Ptrend = .281). Having a late chronotype significantly increased the risk

of breast cancer in females (1.06 [1.01-1.10], Ptrend = .014; see

Table 2 for pair-wise comparison using Extreme morning chronotype

as reference). For males, no association between chronotype and

prostate cancer risk was detected (1.00 [0.96-1.04], Ptrend = .915).

A significant interaction was found between rs10830963 geno-

type and chronotype regarding the risk of breast cancer (1.07

[1.00-1.15], P = .049). When we stratified the analysis in different

genotype groups (Figure 2), we found that chronotype is associated

with breast cancer risk only among females with genotype CG (1.09

[1.02-1.17], Ptrend = .015), Females of GG genotype showed a similar

trend (1.15 [0.99-1.34], Ptrend = .069), but chronotype did not affect

the risk of breast cancer among females with a CC (1.02 [0.96-1.08],

Ptrend = .595) genotype. Similarly, when we stratified the analysis in

different chronotype groups (Figure 3), we found that having a G risk

allele in MTNR1B rs10830963 is significantly associated with breast

cancer risk only among females with a moderate evening chronotype

(1.21 [1.08-1.36], Ptrend = .001). No genotype-chronotype interaction

regarding the risk of prostate cancer in males was found (1.01

[0.94-1.07], P = .875, stratification analysis see Figures S2 and S3).

4 | DISCUSSION

In the present study, we investigated the possible link between

MTNR1B rs10830963 SNP, chronotype and the risk of breast and

prostate cancers, and assessed the potential MTNR1B genotype-

chronotype interaction on the cancer risk. Our findings do not suggest

that MTNR1B rs10830963 is associated with an increased risk of

breast or prostate cancer. To date, limited studies have been carried

out regarding the association between MTNR1B rs10830963 SNP and

rs10830963 genotype

CC (N = 57 961)

Extreme morning

Moderate morning

Moderate evening

Extreme evening

CG (N = 43 807)

Extreme morning

Moderate morning

Moderate evening

Extreme evening

GG (N = 8299)

Extreme morning

Moderate morning

Moderate evening

Extreme evening

HR (95% CI)

1.02 (0.96-1.08)

1.06 (0.92-1.22)

0.99 (0.85-1.16)

1.13 (0.91-1.41)

1.09 (1.02-1.17)

0.96 (0.81-1.13)

1.28 (1.08-1.51)

1.09 (0.84-1.40)

1.15 (0.99-1.34)

1.08 (0.73-1.57)

1.34 (0.91-1.98)

1.45 (0.85-2.46)

.433

.93

.264

.59

.005*

.52

.708

.132

.176

.595

.015*

.069

0.5 1 1.5 2
Hazard ratio (95% CI)

P-value P-trend

F IGURE 2 Fully adjusted hazard ratios and 95% confidence interval (CI) for the association between chronotype and breast cancer among
females, stratified by the MTNR1B rs10830963 genotype. Adjusted for potential confounders including the region of UK Biobank assessment
center, Townsend deprivation index, age at recruitment, BMI, smoking status, alcohol intake frequency, red meat intake, physical activity, type 2
diabetes, family history of breast cancer, menopausal status, usage of hormone replacement therapy and usage of oral contraceptive pills [Color
figure can be viewed at wileyonlinelibrary.com]
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breast cancer risk. A study among Chinese women in the Shanghai

Breast Cancer Study31 involving 2073 cases and 2083 controls

suggested that rs10830963 SNP did not play a role in breast cancer

risk, which is in line with our study. As for prostate cancer, a study

involving 2782 cases and 4458 controls suggested that although

MTNR1B rs10830963 SNP was nominally associated with the risk of

prostate cancer, the significance did not persist after the adjustment

for multiple comparisons.32 Our finding is consistent with most of the

existing evidence that the association between the MTNR1B

rs10830963 SNP and cancer risk is not significant in the general pop-

ulation, and also in accordance with the previous GWAS where

MTNR1B rs10830963 SNP has not been screened out as a risk factor

for either breast cancer33,34 or prostate cancer.35,36

Previous studies have consistently shown the association

between negative health outcomes and poor sleep behaviors, includ-

ing insomnia,37 snoring,38 inappropriate sleep duration39 and late

chronotype.40 The underlying mechanisms might include circadian

rhythm disruption, inflammation and associated behavioral risk factors

such as poor diet intake and smoking. Chronotype refers to the

activity-rest propensity of an individual during a 24-hour period.

Mendelian randomization study showed that genetically proxied

morning preference is protective for both breast cancer24 and pros-

tate cancer.25 Our study using self-reported chronotype confirmed

this association for the risk of breast cancer, but no significant results

were found regarding the risk of prostate cancer. One possible expla-

nation for this inconsistency could be the difference in the identifica-

tion of chronotype. Our single-time questionnaire-based chronotype

assessments could be subject to a certain degree of reporting bias.

Nevertheless, we could still see a relatively strong tendency that late

chronotype increases the risk of breast cancer in females.

To our knowledge, the present study is the first study that exam-

ines the potential interaction between MTNR1B rs10830963 geno-

type and chronotype on the risk of cancer. A significant association

between the genotype-chronotype interaction and breast cancer risk

in females was identified, and this further motivated us to stratify the

analysis in different genotype and chronotype subgroups among

females. We found that chronotype was associated with breast cancer

risk among females with a CG genotype, while among females with a

GG genotype, the significance level is marginal after adjusting all

potential confounders. Likewise, the MTNR1B rs10830963 G allele

Chronotype

Extreme morning (N = 29 872)

CC

CG

GG

Moderate morning (N = 40 795)

CC

CG

GG

Moderate evening (N = 30 357)

CC

CG

GG

Extreme evening (N = 9043)

CC

CG

GG

HR (95% CI)

1.01 (0.89-1.14)

1.02 (0.86-1.20)

0.99 (0.73-1.36)

0.96 (0.86-1.06)

0.91 (0.79-1.05)

0.99 (0.77-1.29)

1.21 (1.08-1.36)

1.29 (1.11-1.51)

1.36 (1.04-1.78)

1.09 (0.88-1.34)

0.98 (0.73-1.31)

1.36 (0.84-2.19)

P-value

.824

.967

.182

.968

.001*

.025*

.884

.208

P-trend

.916

.410

.001*

.446

0.5 1 1.5 2
Hazard ratio (95% CI)

F IGURE 3 Fully adjusted hazard ratios and 95% confidence interval (CI) for the association between MTNR1B rs10830963 genotype and
breast cancer among females, stratified by the chronotype. Adjusted for potential confounders including the first 10 columns of the genetic
principal components of ancestry for genotype, region of UK Biobank assessment center, Townsend deprivation index, age at recruitment, BMI,
smoking status, alcohol intake frequency, red meat intake, physical activity, type 2 diabetes, family history of breast cancer, menopausal status,
usage of hormone replacement therapy and usage of oral contraceptive pills [Color figure can be viewed at wileyonlinelibrary.com]
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significantly increases the risk of females who report a moderate eve-

ning chronotype, while for females who report an extreme evening

chronotype, the association did not reach a significant level. This

could be because both people with a GG genotype in rs10830963

and people with an extreme evening chronotype are the minority

group that only account for approximately 8% of the population, anal-

ysis in the subgroup that meets both criteria did not have enough sta-

tistical power. Taken together, our stratification analysis suggested

that the effect of late chronotype on breast cancer risk is stronger in

rs10830963 G allele carriers, and rs10830963 G allele might only

increase the risk of breast cancer among females who have a later

chronotype.

Several potential pathological pathways may account for the

association between MTNR1B rs10830963 and breast cancer. For

example, the G risk allele in rs10830963 is associated with impaired

insulin secretion and increased fasting glucose levels,23 and hypergly-

cemia can promote breast cancer progression directly.41 Secondly, the

G allele may alter the MT2 expression in breast tissues, leading to a

change in the central circadian clock and peripheral oscillators, such as

the expression of the clock genes period 1 (Per1) and period 2 (Per2),

which are known tumor suppressor genes.42 Previous studies have

also demonstrated that the G risk allele in rs10830963 is associated

with a later dim-light melatonin offset and a longer melatonin duration

at night.19 Melatonin is a crucial modulator of the estrogen-estrogen

receptor α signaling pathway. Changes in the melatonin physiology

might lead to changes in the inhibitory effect of melatonin on the

estrogen-mediated proliferation of human breast cancer cells.43

Despite our extensive investigations conducted in a large cohort,

several limitations apply to the present study. Primarily, information

on the stage and grade of the tumor and the status of the hormone

receptor is currently unavailable in the dataset. Thus, we could not

investigate whether the associations we found would vary according

to these clinical cancer characteristics. Secondly, as an observational

epidemiological study, our results could not infer causality of MTNR1B

rs10830963 SNP on breast cancer. Further case-control studies with

prospectively collected confounding factors and more detailed mea-

surements on the exposures are needed to draw a definite conclusion.

With the prevalence of circadian rhythm-related cancer on the

rise, understanding the role of genetic factors such as the SNPs in the

melatonin pathway genes is critical for developing novel prevention

strategies. Our results in our study pointed out a potential interaction

between chronotype and MTNR1B rs10830963 SNP on the risk of

breast cancer, and supported a probable causal effect of rs10830963

GG genotype on breast cancer carcinogenesis among females with

late chronotype. These findings might help inform current efforts on

the risk estimation of breast cancer, and direct new avenues of tai-

lored lifestyle intervention on an individual basis. This could ultimately

help reduce the social and economic burden caused by circadian

rhythm related cancers.
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