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Abstract: Using smart nanopesticide formulations based on nanomaterials can offer promising
potential applications for decreasing pesticide residues and their effects on human health and the
environment. In this study, a novel nanoformulation (NF) of thiamethoxam (TMX) was fabricated
using the solvent evaporation method through loading TMX on cellulose nanocrystals (CNCs) as the
carrier. The synthesized TMX-CNCs was investigated through different techniques, such as Fourier
transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), transmission electron microscopy
(TEM), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The results revealed
that the loading efficiency and entrapment efficiency were 18.7% and 83.7± 1.8% for TMX, respectively.
The prepared nanoformulation (TMX-CNCs) had a width of 7–14 nm and a length of 85–214 nm with
a zeta potential of −23.6 ± 0.3 mV. The drug release behavior study exhibited that the release of TMX
from TMX-loaded CNCs was good and sustained. Furthermore, bioassay results showed that the
insecticidal activity of TMX-CNCs against Phenacoccus solenopsis was significantly superior to that of
the technical and commercial formulation, as indicated by the lower LC50 value. The results indicate
that the TMX nanoformulation has great potential for application in agriculture for pest control.
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1. Introduction

Pesticides play an indispensable role in agriculture and are needed for crop protection against
insect pests, weeds, and plant pathogens [1]. According to the data from the United Nations Food
and Agriculture Organization (FAO), pesticides can save 30% of the total crop production losses
worldwide [2,3]. However, they also cause several adverse impacts on our life and ecosystems because
of their toxicity to humans and non-target organisms [4]. Unfortunately, depending on the modes of
application and environmental conditions, over 90% of the traditional pesticide formulations are lost or
decomposed owing to degradation, evaporation, leaching, and runoff during field application, and only
~0.1% of the pesticide can ultimately affect harmful target pests [1,5–7]. In order to compensate for these
losses and to maintain effective control of pests, conventional pesticide formulations are often applied
at concentrations that are much higher than that desired to reach the required effect [8,9]. Consequently,
the intensive and irrational usage of chemical pesticides not only increases agrochemicals’ economic

Nanomaterials 2020, 10, 788; doi:10.3390/nano10040788 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-5928-2394
http://www.mdpi.com/2079-4991/10/4/788?type=check_update&version=1
http://dx.doi.org/10.3390/nano10040788
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 788 2 of 13

costs, but also adversely affects the environment and non-target organisms [10]. Therefore, it is a
crucial need to develop new pesticide formulation technologies to enhance the efficacy of pesticide use,
and thereby decrease environmental risk [11].

The substantial advancement of nanotechnology and nanomaterials has paved the way in
recent years for the creation of new pesticide formulations that are less environmentally damaging,
cost-effective, and more efficient as compared to traditional formulations [12]. Nano-based pesticide
formulations might bring useful enhancements in the characteristics and behavior of pesticides
like solubility, dispersion, stability, and targeting delivery. Moreover, it can improve the pesticide
utilization efficiency, prolong the effective duration, minimize pesticide loss by decreasing runoff

into the environment, protect active ingredients against premature degradation, reducing the dosage
needed, and avoid the use of harmful organic solvents [1,13]. Additionally, nanopesticide delivery
systems have better adhesion to crop leaf surfaces, and allow the delivery and release of active
ingredients to target sites [14–16]. In this direction, many kinds of nanomaterials are developed
and used in agricultural systems, such as silica, metal, metal oxides, lipids, carbon, and polymeric
nanoparticles [17–19], to carry numerous variety of agrichemicals, involving insecticides, herbicides,
fungicides, and fertilizers, because they are low cost, non-toxic, eco-friendly, and effective at lower
doses [20,21]. Among these, cellulose nanocrystals (CNCs) have received significant attention in recent
years, due to their unique physical properties, high surface area, biodegradability, biocompatibility,
favorable chemical modification, and low cytotoxicity [22]. These remarkable features make CNCs a
promising candidate for many applications in different fields, such as biomedical engineering [23], drug
carriers [24], electronics, catalysis, and Pickering emulsifier [25–27]. However, there are limited studies
about using CNCs as nano-carrier in the field of pesticide. Tang et al. [28] developed a new approach to
the preparation of templated polydopamine (PDA) microcapsules using stabilized Pickering emulsions
through cinnamoyl chloride modified cellulose nanocrystals for essential oil and the encapsulation
of pesticides.

Thiamethoxam (TMX) (3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-
ylidene(nitro)amine, Figure 1) is a fast-acting systemic insecticide being used extensively around the
world, belonging to the neonicotinoids group. TMX is a highly effective insecticide with a broad
spectrum against sucking pests like whiteflies, aphids, and mealybugs. It acts as an agonist through
binding to insect nicotinic acetylcholine receptors in the central nervous system [29–31]. Currently, the
formulations of TMX available in the market are WG, SC, FS, and WS. Gupta et al. [32] studied the
leaching and dissipation behavior of conventional TMX formulations, and found that these commercial
formulations can leach under heavy rainfall conditions. Moreover, the main problem associated with
TMX is its high aqueous solubility [32], which allows it to reach the natural water resources and causes
adverse effects on the environment. Developing novel formulations to minimize the harmful effects, as
mentioned above, and reduce the associated risk through controlled release formulation technology is
therefore urgently needed.
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In the present study, CNCs were used to fabricate TMX nanoformulation by using the emulsion
solvent evaporation method. The synthesized nanoformulation containing TMX was characterized
by Fourier transform infrared spectrometer (FT-IR), X-ray Diffraction (XRD), transmission electron
microscopy (TEM), dynamic light scattering technique (DLS), thermogravimetric analysis (TGA), and
UV-vis spectrophotometry. The entrapment efficiency (EE), loading capacity, and controlled release
were also investigated. Moreover, bioassays against the cotton mealybug, Phenacoccus solenopsis Tinsley
were conducted to assess the insecticidal activity of nanoformulation and compared with technical
grade and commercial formulation. CNCs are employed as carrier systems for pharmaceuticals [33].
Our aim of this work was to develop a novel formulation for TMX using CNCs as a carrier, because
its biodegradability can not only help to reduce environmental influences, but also contribute to the
controlled release of the pesticides.

2. Materials and Methods

2.1. Materials

The model pesticide, TMX (97%) was purchased from Shanghai Bosman Industrial Co., Ltd.
(Shanghai, China). The commercial thiamethoxam water dispersible granule (TMX-WDG, 25%) was
obtained from Syngenta Crop Protection Co., Ltd. (Jiangmen, China). Microcrystalline cellulose (MCC,
36 µm) and sulfuric acid (H2SO4) were purchased from Sangon Biotech Co., Ltd., (Shanghai, China).
Poly(vinyl alcohol) (PVA) with the hydrolysis of 87–90% and an average molecular weight of 30–70 kDa
was obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Acetonitrile and
methylene chloride were procured from Sigma-Aldrich (St. Louis, MO, USA). Distilled water used in
this study was obtained from the Milli-Q water purification system (18.2 MΩ cm, TOC ≤ 4 ppb).

Insect Culture

Cotton mealybug, P. solenopsis was collected from ornamental plants in the eastern suburbs of
Hangzhou, China, in June 2017. The cotton mealybug population was reared on tomato plants in cages
and was maintained at 27 ± 2 ◦C and 65 ± 5% R.H. with a 14:10 (L:D) photoperiod in the laboratory of
Insect Ecology and IPM, Institute of Insect Sciences, Zhejiang University (Hangzhou, China).

2.2. Preparation of TMX-NF

2.2.1. Preparation of CNCs

CNCs were synthesized by acid hydrolysis method, as described by Beck-Candanedo et al. [34].
Ten grams of MCC was added into 100 mL 64% sulfuric acid (H2SO4) solution (w:w) and hydrolyzed
at 45 ◦C for 1 h under vigorous magnetic stirring. The acid hydrolysis was stopped by diluting the
reaction 10-fold with chilled distilled water. The hydrolysis solution was centrifuged at (Centrifuge
5810 R; Eppendorf, Hamburg, Germany) 11,000 rpm (12,851× g) for 15 min. The precipitates were
washed four times with distilled water to decrease acid concentration, and then resuspended in distilled
water and dialyzed until the pH reached 7.0. The sample was sonicated at 30% amplitude in an ice bath
for 10 min to avoid overheating and then freeze-dried using a machine (Alpha 1-2 LD plus; Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) to get CNCs powder.

2.2.2. Preparation of TMX-Loaded CNCs

TMX-loaded CNCs were synthesized using an oil-in-water (O/W) emulsion solvent evaporation
method, according to Zhang et al. [35] and Elabasy et al. [36]. Briefly, the aqueous phase was prepared
by dissolving PVA (2% w/v) in water as an aqueous solution, whereas the organic phase was obtained by
mixing 0.3 g of TMX and 0.6 g of CNCs in methylene chloride (10 mL) in an ice-water bath. Afterwards,
the organic phase was added to the aqueous phase dropwise while stirring by a homogenizer (T18
digital Ultra-Turrax, IKA, Staufen, Germany) at 10,000 rpm for 10 min to generate a stabilized O/W
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emulsion. The residual organic solvent in the water solution of the O/W emulsion was evaporated
with constant stirring at 700 rpm and 30 ◦C overnight. The prepared TMX-CNCs were collected by
centrifugation (Centrifuge 5417 R; Eppendorf, Hamburg, Germany) at 10,000 rpm (10,621× g) for
10 min at 4 ◦C, washed thrice with distilled water, and then lyophilized to obtain a free-flowing powder.
The synthetic route of TMX-loaded CNCs is schematically illustrated in Figure 2.
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Figure 2. Schematic description of the preparation of the thiamethoxam (TMX)-loaded cellulose
nanocrystals (CNCs).

2.3. Characterization of CNCs and TMX-CNCs

In order to identify the different functional groups present in the samples, a Fourier transform
infrared spectrometer (FT-IR) (Vector 22, Bruker, Ettlingen, Germany) was used. The FT-IR spectra of
CNCs and TMX were recorded at a resolution of 4 cm−1 in the range of 400–4000 cm−1. X-ray
diffraction (XRD) was used to describe the structure of the prepared nanoparticles using the
X’PERT-PRO-PANalytical apparatus (PANalytical, Almelo, The Netherlands) with Cu-Kα radiation
(λ = 0.15406 nm). The diffraction results were recorded at the 2θ angle with a resolution of 0.02◦ in
the range of 5–80◦. The crystallinity index (CI) of dried CNCs was calculated based on the ratio of
the crystalline peak (200) to the total area under the amorphous curve. A JEM-1230 transmission
electron microscopy (TEM, JEOL, Akishima, Japan) was used to study and characterize the samples’
structure and particle size. The samples were prepared in distilled water via dispersion, and a drop
of the diluted solution was placed onto a carbon-coated copper grid, and then allowed to dry at
room temperature. The length was determined through a straight line between the two ends of the
crystal. The width at the midpoint was measured unless a particle was asymmetric, in which case the
widest point was measured. Such measurements were made for CNCs and TMX-CNCs by software
named Image-Pro Plus (version 6.0) from the TEM images of more than 50 nanocrystals. A Zetasizer
Nano ZS90 Analyzer (Malvern Instruments Ltd., Malvern, UK) was used to measure the particle
size, polydispersity index, and zeta potential. The average value was reported, and each sample was
measured three times. The data were processed using the cumulants analysis method in the Malvern
software. Thermogravimetric analysis (TGA) was carried out to determine the loading efficiency of
TMX by using an SDT Q600 (TA Instruments-Waters LLC, New Castle, DE, USA) apparatus from 25 to
800 ◦C with a heating rate of 10 ◦C/ min under nitrogen atmospheres.

2.4. Determination of Entrapment Efficiency of TMX in the NF

The amount of TMX in nanoformulation was calculated through the difference between the total
quantity of TMX added and the amount of TMX, which was unloaded with CNCs. The centrifuge was
used to determine the entrapment efficiency (EE) of TMX in the nanoformulation. The TMX loaded
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with CNCs was centrifuged for 30 min at 15,000 rpm (23,897× g). The concentration of free TMX in
the supernatant was determined by UV–vis spectrophotometer (UV-2600, Shimadzu, Kyoto, Japan)
at 254 nm [37]. A blank sample was also prepared by the same method. The absorbance of samples
was converted to concentration by using the standard curve. The entrapment efficiency of TMX was
calculated as follow:

EE (%) =
Atotal − B f ree

Atotal
× 100 (1)

where Atotal is the total amount of TMX used to prepare nanoformulation and Bfree is the amount of free
TMX in the supernatant.

2.5. In Vitro Release of TMX

The extent of TMX release from nanoformulation was conducted according to the literature
method with some modification [38]. Briefly, an accurately weighed amount of the nanoformulation
(10 mg) was added to the glass vial containing 20 mL of phosphate buffer solution (PBS; pH 7.4) as the
release media and shaken at 100 rpm. At specific time intervals, 4 mL was withdrawn, replaced with
4 mL of fresh medium, and centrifuged at 10,000 rpm (10,621× g) for 20 min to obtain clear supernatant.
TMX concentration in the supernatant was analyzed by monitoring its absorbance at 254 nm using
UV–vis spectrophotometer.

2.6. Bioassay

Bioassays of the TMX-NF were carried out using the method of leaf dipping against second instar
nymphs of P. solenopsis [39]. Tomato leaves were immersed into different concentrations of TMX-NF,
technical grade, and commercial TMX 25% WDG for 20 s and left to dry for 1.5 h at room temperature.
A dried leaf was put into each petri dish (5 cm in diameter) with a piece of moist filter paper that was
utilized to prevent the dryness of the leaves. Ten P. solenopsis second-instar nymphs were introduced
into each petri dish, and each concentration was repeated thrice. For control, leaves were treated with
water only. All bioassay was performed under the same laboratory conditions as mentioned above.
The mortality was assessed 24, 48, and 72 h after exposure to various concentrations of TMX-CNCs,
technical grade, and commercial TMX 25% WDG. Cotton mealybug nymphs were deemed dead if they
did not show any movement of the leg when gently touched by camel’s hairbrush.

2.7. Statistical Analysis

Bioassay data were analyzed by using probit analysis [40] with POLO Plus software (version 2.0,
LeOra Software, Berkeley, CA, USA) [41] to estimate LC50 values, 95% confidence limits (CLs), slope,
and Chi-square (χ2).

3. Results and Discussion

3.1. Synthesis and Characterization of TMX-NF

There has recently been a great deal of effort to develop pesticide delivery systems by using
various materials. These materials include polymers, such as CNCs, which, because of their superior
properties and potential applications in smart delivery systems, have become popular and widely used
among nanomaterials. This study aims to develop CNCs as a carrier system for the TMX insecticide,
which offers an alternative technique for pest control. Here, we prepared novel TMX nanoformulation,
TMX-CNCs, based on the emulsion solvent evaporation technique. To generate a stabilized O/W
emulsion, we emulsified the organic phase into the water phase using a high-speed disperser, and
obtained the TMX-CNCs sample after evaporating the organic solvent. Such a method, besides the
capacity of encapsulating hydrophilic and hydrophobic molecules, has also been used to improve drug
loading and entrapment efficiency [12]. In our study reported here, the EE of TMX-CNCs formulation
reached 83.7 ± 1.8% (Table 1). Taking together the results of our previous study [36], we suggest that
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CNCs-based nanoformulation has great potential for achieving higher pest-control efficacy, thereby
decreasing costs, delaying insect-resistance development, and reducing side effects on the environment
and human health. Regarding TMX encapsulation, challenges exist as there are limited reports of
this procedure in literature [12]. Using beeswax as wrapping matrix (Thiamethoxam/beeswax-kaolin)
microcapsules, Huang et al. [4] developed two types of Thiamethoxam, which had an entrapment
efficiency of 82.0% and 72.1%, respectively.

3.1.1. FT-IR Spectroscopy

The FT-IR spectra of technical TMX, CNCs, and TMX-CNCs are shown in Figure 3a–c. As shown in
Figure 3b, the peaks that were observed at 3387 cm−1 (O–H stretching vibration), 2892 cm−1 (symmetric
stretching vibration of C–H), 1645 cm−1 (originated from the absorbed water), 1418, 1373, and 1316 cm−1

(bending vibration of CH, CH2, OH, respectively), 1160 cm−1 (C–O–C asymmetric vibration), 1062 and
895 cm−1 (C–O stretching of the pyranose ring skeleton and the glycosidic linkages between glucose
units in cellulose) belong to CNCs, respectively [42–44]. In the case of TMX, the strong peaks appeared
at 1598 and 1521 cm−1 in the TMX spectrum (Figure 3a), which correspond to C=N and NO2 stretching
frequencies, respectively [4,45,46]. The TMX-loaded CNCs spectrum (Figure 3c) shows most of the
major characteristic bands corresponding to CNCs and TMX. The peak at 3419 cm−1 became broader
in TMX-CNCs, suggesting increased hydrogen bonds between CNCs and TMX. The presence of the
TMX in the CNCs was confirmed by a shift in peaks from 1598 to 1643 cm−1 and 1521 to 1573 cm−1,
corresponding to C=N and NO2 bonds of the TMX. Compared to (Figure 3b), a new peak has emerged
in the TMX-CNCs (Figure 3c) at 1735 cm−1, which can be ascribed to C=O group of the PVA. This
result suggests that the TMX was successfully loaded into CNCs.
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3.1.2. X-ray Diffraction Analysis

The crystalline structure nature of the synthesized CNCs was investigated based on the X-ray
diffraction analysis, which revealed that there were three emission peaks at around 2θ = 12.0◦, 20.1◦

and 22.1◦, which correspond to the crystal planes (110), (210), and (200), respectively (Figure 4). After
chemical treatments, the presence of crystalline peak as a doublet, as seen in Figure 4, which reflects
the transformation of native cellulose from cellulose I to cellulose II that confirms CNCs formation [47].
The crystallinity index (CI) was calculated and found to be 71%. This result agreed with the earlier
study [44].
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3.1.3. TEM Analysis

TEM was used to determine the structure and morphological shape of the synthesized CNCs and
TMX-loaded CNCs (Figure 5). As seen in Figure 5a,b, TEM micrographs of CNCs and TMX-loaded
CNCs represent the rod-like shape; however, there were some nanocrystals agglomerated. In addition,
the width of the CNCs and TMX-CNCs were between 4–9 ± 1.7 and 7–14 ± 2.2 nm, and length between
68–206 ± 31.5 and 85–214 ± 54.3 nm, respectively. The agglomeration is generally resulted from the Van
der Waals attraction forces between the nanoparticles, the water evaporation step and freeze-drying
process, and strong inter-particle hydrogen bonding. The results were in line with the data obtained
from many earlier reports [48–50].
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3.1.4. Particle Size and Zeta Potential

The dynamic light scattering technique (DLS) was conducted to examine the mean particle size,
polydispersity index, and zeta potential (ζ), and the results are summarized in Table 1. The average
diameter of the TMX-CNCs increased to 798.0 ± 149 nm, due to the loading TMX onto CNCs, while
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the polydispersity index (PdI) value of the CNCs was smaller than that of the TMX-CNCs (Table 1).
The DLS particle size was larger than that measured by TEM. The discrepancy in particle size between
DLS and TEM measurements may be explained through the fact that the DLS method measures the
hydrodynamic layers surrounding the hydrophilic particles, or the agglomeration of single particles
when dispersed in water, leading to an overestimation of particle size [51]. In contrast, TEM measures
the actual diameter in the dry state. Moreover, a particle size distribution was homogeneous and
monodispersed, as confirmed by the low PdI value except for TMX-CNCs. A PdI value (less than 0.5)
suggests that a narrow and suitable particle size distribution in colloidal suspension.

Zeta potential is a valuable tool for predicting nanomaterials’ stability in aqueous media. The ζ

potentials values of CNCs and TMX-CNCs were −39.0 ± 1.8 and −23.6 ± 0.3 mV, as given in Table 1. The
results indicate that TMX loading had led to a reduction in ζ potential in the case of TMX-CNCs. The
negative ζ potential of the TMX-CNCs was because of the presence of OSO3 groups in the CNCs [50].
Based on the above results, the nanoformulation showed a good colloidal stability in aqueous solution
in the current study.

Table 1. Dynamic light scattering (DLS)/Zeta potential of CNCs and TMX-loaded CNCs (mean ± SD,
n = 3).

Sample
Nanoformulation

ζ (mV) a Size (nm) PdI b EE (%) c

CNCs −39.0 ± 1.8 124.5 ± 0.5 0.3 ± 0.0 -
TMX-CNCs −23.6 ± 0.3 798.0 ± 149 1.0 ± 0.0 83.7 ± 1.8

a Zeta potential, b Polydispersity Index, c Entrapment Efficiency.

3.1.5. Thermogravimetric Analysis (TGA)

TGA was used to investigate the drug loading efficiency and decomposition of materials. Figure 6
shows the TGA thermograms of CNCs, TMX-CNCs, and technical TMX. The TGA results displayed
that the decomposition of CNCs starts at 316 ◦C, and the TMX decomposition starts at 212 ◦C. The
weight loss before 200 ◦C might be resulted from evaporation in the samples. The weight loss between
212–285 ◦C could be assigned to the evaporation and decomposition of TMX, while the weight loss
over 285 ◦C was probably due to the decomposition of CNCs. Moreover, the total weight losses of the
TMX-CNCs and CNCs were about 88.2% and 69.5% in the range of 212–800 ◦C, indicating that about
18.7% of the TMX was loaded into the CNCs.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 13 
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3.2. In Vitro Release of TMX

The release profile of TMX from TMX-CNCs was performed in phosphate buffer saline solution
(pH 7.4), as the release media with shaking at a constant rate of 100 rpm at 25 ◦C. As shown in
Figure 7, the release rate of TMX from CNCs was relatively fast during the initial 6 h, and slowed down
afterwards with increasing time. The cumulative release amount of TMX-CNCs was 12.73 ± 0.02% after
72 h. The release data demonstrated that there were two stages of TMX release from TMX-CNCs, which
could be explained as below. First, the initial rapid release behavior may be due to the presence of
TMX close to the surface of CNCs. Second, the hydrogen bonding interaction between TMX molecules
and CNCs surface could also be the main parameter that prevents the release. The released TMX
concentrations have been not equal to the maximum quantity of TMX-loaded CNCs, because the
particles have not been destroyed in the PBS solution. The findings suggest that TMX-CNCs display
a slower and good sustained release, which can be expected to improve pesticide-controlled release
formulation, and decrease the effective dose via maintaining an adequate concentration against target
pests for longer times. Another benefit for CNCs as carrier systems is that they are simple to synthesize,
making them an attractive choice for agricultural applications.
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3.3. Bioassay

In this study, the second instar nymphs of P. solenopsis were selected as the model insect to
assess the biological activity of TMX-CNCs in comparison to the commercial formulation (25% WDG)
and TMX technical (TC) by the leaf dipping method. For each formulation, the LC50 value was
calculated and expressed in terms of the concentration (µg/mL) for three days. The bioassay results of
insecticidal activity for TMX-CNCs, technical, and the conventional formulation against P. solenopsis
are summarized in Table 2. As calculated from bioassay results of insecticidal activity for TMX-CNCs,
technical, and the commercial formulation, their LC50 values were 0.25, 0.28, and 0.55 µg/mL after 72 h,
respectively. Compared with the LC50 values at 24, 48, and 72 h, LC50 was shown to be significantly
lower for TMX-CNCs than for the technical and commercial formulation at all periods of exposure.
Therefore, the toxicity of TMX-CNCs was 1.1 and 2.2 times that of the technical and commercial
formulation after 72 h of exposure, respectively, which suggested that the biological activity was
considerably improved through using CNCs as the carrier, and TMX-CNCs have significantly better
insecticidal toxicity than that of the technical and commercial formulation. Moreover, TMX NF can
save the energy and manpower through decreasing the number of pesticide applications needed,
pesticide dosage, and minimize the non-target effects compared to traditional pesticide. The high
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efficacy of TMX nanoformulation might be due to the small particle size and large specific surface
area, which can increase the penetration and absorption of the active ingredients by the pest [52,53].
These results agreed with the previous study by Saini et al., who reported that the bioavailability
of pyridalyl nanosuspension against H. armigera was more effective than the technical product and
commercial formulation, and the increased toxicity of nanosized formulation on larvae probably owed
to an increased penetration of pyridalyl in the larval body [54]. In another study, Wang et al. [55] stated
that the LCNS had a better insecticidal effect than conventional suspension formulations against the
Mustard aphid. We recently prepared emamectin benzoate (EMB)-loaded CNCs and found that the
biological activity of EMB + CNCs was 6.2-fold more efficient than the commercial EMB EC formulation
against P. solenopsis. [36]

Table 2. Toxicity of TMX formulations against the second instar nymphs of P. solenopsis.

Formulation Time (h) LC50 (95% CL, µg/mL) Slope ± SE χ2

TMX-CNCs
24 0.70 (0.60–0.85) 3.34 ± 0.60 2.63
48 0.37 (0.24–0.48) 1.88 ± 0.44 2.35
72 0.25 (0.11–0.35) 1.75 ± 0.44 2.96

TMX (TC)
24 0.91 (0.51–1.83) 0.89 ± 0.25 0.19
48 0.44 (0.15–0.78) 0.85 ± 0.25 0.12
72 0.28 (0.10–0.45) 1.09 ± 0.27 1.83

TMX 25% WDG
24 2.11 (1.60–3.71) 1.80 ± 0.47 1.45
48 1.02 (0.53–1.47) 1.34 ± 0.42 0.77
72 0.55 (0.15–0.83) 1.45 ± 0.44 1.12

4. Conclusions

In summary, the nanoformulation of TMX (TMX-CNCs) with biodegradable CNCs as a carrier
was successfully synthesized by an emulsion solvent evaporation technique. Loading efficiency and
entrapment efficiency of TMX were 18.7% and 83.7 ± 1.8%, respectively. The synthesized TMX-CNCs
had a length of 85–214 nm and a width of 7–14 nm with a zeta potential of −23.6 ± 0.3 mV. The FT-IR
and TGA analyzes confirmed that the TMX was loaded with CNCs. The TMX-loaded CNCs showed
good and sustained release behavior performance. Moreover, TMX-CNCs exhibited better insecticidal
activity against cotton mealybug (P. solenopsis) than the technical and commercial formulations. The
toxicity of TMX-CNCs was 1.1 and 2.2 times that of the technical and commercial formulations after
72 h of exposure. The results of this research demonstrated that the novel nanoformulation could have
promising potential for wide applications in agriculture. Therefore, using these smart nano-pesticide
formulations, we envision that pesticide losses may be significantly reduced, and that efficiency of use
may be improved, which could lead to decreased pesticide dose, number of application times, and
negative effects on the environment.
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