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Abstract

COVID-19 pandemic is an immediate major public health concern. The search for the under-

standing of the disease spreading made scientists around the world turn their attention to

epidemiological studies. An interesting approach in epidemiological modeling nowadays is

to use agent-based models, which allow to consider a heterogeneous population and to

evaluate the role of superspreaders in this population. In this work, we implemented an

agent-based model using probabilistic cellular automata to simulate SIR (Susceptible-

Infected-Recovered) dynamics using COVID-19 infection parameters. Differently to the

usual studies, we did not define the superspreaders individuals a priori, we only left the

agents to execute a random walk along the sites. When two or more agents share the same

site, there is a probability to spread the infection if one of them is infected. To evaluate the

spreading, we built the transmission network and measured the degree distribution,

betweenness, and closeness centrality. The results displayed for different levels of mobility

restriction show that the degree reduces as the mobility reduces, but there is an increase of

betweenness and closeness for some network nodes. We identified the superspreaders at

the end of the simulation, showing the emerging behavior of the model since these individu-

als were not initially defined. Simulations also showed that the superspreaders are responsi-

ble for most of the infection propagation and the impact of personal protective equipment in

the spreading of the infection. We believe that this study can bring important insights for the

analysis of the disease dynamics and the role of superspreaders, contributing to the under-

standing of how to manage mobility during a highly infectious pandemic as COVID-19.

Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has spread worldwild, being

an immediate major public health concern [1]. Governments and research centers around the
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world have joined efforts to help combat COVID-19, seeking alternative solutions to contain

the pandemic. Some countries, like China and New Zealand, have succeeded to control the

first wave of the disease with severe restrictions on travel and mobility, along with other

actions, as detecting and isolating cases [2–4].

In a scenario of searching for measures to contain disease spreading, epidemiological mod-

els can be of great help, becoming a useful tool to assist in decision making. One of the epide-

miological parameters frequently found in these models is the basic reproduction number

(R0), which is defined as the mean number of infections generated by an infected individual in

a susceptible population. Its value has been estimated between 1.4 and 6.49 for COVID-19 [5].

If we analyze only R0, values less than 1 indicate that the infection spreading is shrinking

and, on the other hand, when R0 is greater than 1, the infection tends to spread to the entire

population [6]. However, R0 is an average value, and may not be enough to indicate whether

the epidemic will continue to spread or not, especially if we consider the occurrence of super-

spreading events (SSEs): as a mean number, R0 can distort individual infectiousness [7] and it

may not be a good metric when population heterogeneity increases [8]. It may hide the fact

that few individuals are normally responsible for transmitting the disease [9].

SSEs are defined as outbreaks where a large number of cases are caused by a small number

of infected individuals, i.e., some individuals have high infection capacity [10]. Superspreaders

promote a wide spread of the disease [11] and a single case can be responsible for an explosive

epidemic when a disease has a high individual variation [7]. Other factors, as transmission

mode, contact frequency and duration, and public health interventions, can also impact the

occurrence of superspreading events [12]. SSEs can be modeled using a negative binomial dis-

tribution and a dispersion parameter k[7]. Smaller values of k can indicate an over-dispersion,

with few individuals being responsible for many infections [9].

Superspreading had special attention in SARS outbreaks in Singapore and China in 2003,

since they helped in understanding transmission dynamics [13]. In Singapore, five people

caused more than half of the 205 cases (and 163 cases led to zero secondary transmission)[14].

In 2015, in Korea, only 5 cases of MERS originated 154 secondary cases (166 cases led to zero

secondary infections)[13, 15]. For COVID-19, one of the most emblematic cases of super-

spreading at the beginning of the pandemic was the “Patient 31”, who was linked to a cluster

with more than 5.000 cases in Daegu, South Korea [16].

In this paper, we aim to use an agent-based model, which allows incorporating spatio-tem-

poral factors and heterogeneity in the population [15], to evaluate the presence of supersprea-

ders in COVID-19 infection scenarios with reduced human mobility. Our analysis was based

on measurements made on networks of infected individuals built from simulation models. To

model SSEs, some authors usually tag these individuals before the simulations starts, by attrib-

uting some characteristics that differentiate superspreaders from other individuals [8, 11, 15,

17, 18]. Here, we are looking for evaluating if a system presents these SSEs features as emergent

behavior, identifying if there are superspreaders in the population without inserting SSE char-

acteristics to some individuals a priori, and proposing an auxiliary method to identify key-

spreaders.

Materials and methods

Here we present the basic method developed to run the simulations. We designed an agent-

based model (ABM) combined with probabilistic cellular automata (CA) to mimic the dynam-

ics of a heterogeneous population within an urban area. One of the characteristics of CA is

that they are simple enough for detailed mathematical analysis but also quite sophisticated to

be used to study complex phenomena [19]. Our CA consists of a grid of cells over a regular
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square lattice (L × L sites, each site corresponding to *9m2) where the simulation takes place.

Each agent can assume a finite number of states that are updated synchronously each time

step. In this study, each agent can be in one of the following states: Susceptible, Incubated,

Asymptomatic Infected, Symptomatic Infected, Infected in the hospital ward, Infected in

Intensive Care Unit (ICU), Recovered, and Dead. In case of infection, it is defined a priori if

the individual will be asymptomatic, have light symptoms, need to go to the hospital, or to die.

This choice intends to reproduce the genetic heterogeneity of the population as well the health

condition of a given agent.

Time step is equivalent to one hour and agents execute a random walk along the environ-

ment, using Moore’s neighborhood and with periodic boundary conditions. When two or

more agents are in the same site and one of them is infected, the susceptibles ones have a prob-

ability of 80% of becoming infected, except if those individuals are in the infirmary or in the

ICU, once in these sites they are considered as isolated. Both symptomatic and asymptomatic

can transmit the disease [20]. We do not consider the possibility of reinfection along the period

of the simulation run.

To evaluate the impact of personal protective equipment (PPE), we also run simulations

where there is a 70% probability that an individual is wearing a mask. In this case, if two indi-

viduals are in the same site and not wearing a mask, we keep the 80% probability of infection

transmission, but, in the case of one of them is wearing a mask, there is 50% probability of

transmission, and just 10% of probability in the case of both are wearing masks.

All simulations begin with only susceptible individuals and we choose randomly one of

them to be infected. The period of permanence into a given state follows a Gaussian distribu-

tion around the mean intervals shown in Table 1. These mean values were extracted from liter-

ature as typical for COVID-19 [21–24].

To analyze mobility restriction, the model considers a reduction in the individual displace-

ments by a percentage (0% or no restriction, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and

90%). High mobility restriction values mean that the agents move less. For example, if an indi-

vidual takes approximately 24 steps by day in a normal situation (0% restriction), with 50%

restriction it will take approximately 12 steps. With an 80% restriction, the displacements will

be reduced to 4 or 5 steps by day. We apply the Monte Carlo method (64-bit Xorshift algo-

rithm [25]) to implement the randomness in the model. It worth noting that the algorithm

does not prevent the agents from meeting each other, but since everyone is displacing less, the

chance of encounters is reduced.

For this work, we used L = 250 and 10000 individuals. Risk population is distributed

according the following probabilities (considering the case of the individual be infected): 60%

will become symptomatic [20]; 21% will need to go to a hospital [26]; 5% will need ICU [26]

and 2% of death rate [26], as Fig 1.

We calculate the basic number of reproduction in two ways: a) by dividing the number of

new infections per day by the actual number of individuals responsible for those infections

(R0); b) by dividing the number of new infections per day by the total number of infected

Table 1. Time (days) used as model parameters.

State Mean Minimum Maximum

Incubation 5.2 2 12

Infection (after incubation) 5.8 3 14

Infirmary (after infection, if hospitalized) 10.5 7 14

ICU (after infirmary, if goes to ICU) 17.5 14 21

https://doi.org/10.1371/journal.pone.0248708.t001
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(and potential transmitters of the disease) on that day (R�
0
). The aim for these different defini-

tions is to compare the simulation results with the real statistics of the infection furnished by

the public health institutions which can not access the actual data of transmission among

individuals.

Network analysis

By treating the results, it was possible to build a directed graph from the originally infected

individual towards the subsequent ones, allowing to visualize the transmission network of the

disease. It was done recording the infection chain from individual to individual. Agents not

infected were not considered in the graph.

Each infected agent is considered as a vertex of the network and we calculated the degree of

a vertex v as the number of links connected to v. We called this value as deg(v). We consider

only the out-degree, that is, how many people does an infected individual transmit the disease.

So, the degree distribution measured in this work only considers out-degree connections.

The betweenness centrality of a node v, B(v), is given by Eq 1:

BðvÞ ¼
X

s6¼v6¼t

sstðvÞ
sst

; ð1Þ

where σst is the total number of shortest paths from node s to the node t and σst(v) is the num-

ber of these paths that pass through v. We performed a normalization by dividing B(v) by

(N − 1)(N − 2), since the graph is directed. N is the number of nodes (vertices) of the graph.

We also calculate the closeness centrality, which is given by C(v) in Eq 2.

CðvÞ ¼
N � 1

P
udðv; uÞ

; ð2Þ

Note that the Eq 2 is normalized due the factor (N − 1) in numerator. In this equation, d(v,

u) is the distance (number of nodes) in the shortest path between vertices v and u.

Results

In this section, we present the results obtained for the infection spreading considering several

percentages of mobility restriction and the impact of the use of personal protective equipment.

All the curves correspond to averages over 30 simulation runs.

Fig 1. Dynamics of the model: An infected individual can be symptomatic or asymptomatic. Symptomatic individuals can go to

the infirmary and, eventually, to the ICU.

https://doi.org/10.1371/journal.pone.0248708.g001
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Mobility restriction scenarios

In Fig 2 we observed a remarkable difference among the curves of the number of infected

agents in function of mobility restriction. The results suggest that decreasing lightly the mobil-

ity does not have a strong impact in spreading infection, as observed in 10%, 20%, 30%, and

40% curves. The most effective result for flattening the infection curve was observed in the

90% of restriction. Reducing the mobility by 70% and 80% also showed a considerable flatten-

ing when compared with scenario of no restriction (0%).

In Fig 3 we visualize the impact of PPE (personal protective equipment) in the flattening of

the infection curve. Clearly, the PPE is effective to retard the infection spreading. With 70% of

humans wearing a mask, we see a reduction in peak curves for all the restrictions values, com-

pared to cases in which people do not wear it (Fig 2).

Fig 4 shows the results for R0 and R�
0
. It was observed that the greater the mobility restric-

tion, the lower the value of these indexes, mainly at the beginning of the disease spreading. As

time goes by and, consequently, fewer individuals remain susceptible, the R0 value tends to be

close to 1 in Fig 4a, that is, one person infects one person, and R�
0

lower than 1 (Fig 4b).

In Table 2 it is possible to notice a delay of approximately 267 days to reach the peak of the

pandemic and approximately 24.5% less of infected individuals comparing the more restrictive

scenario (90%) with the no restriction case (0%). This flattening is also reflected in the percent-

age of the population hospitalized in ICUs (0.35% compared with 2.87%) at the peak. This rep-

resents a difference of about 252 ICU beds for every 10000 inhabitants and demonstrates how

the mobility restrictions are fundamental to avoid the collapse of the health system.

Fig 2. Percentage of infected agents for different values of mobility restriction.

https://doi.org/10.1371/journal.pone.0248708.g002
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Fig 3. Percentage of infected agents for different values of mobility restriction for 70% of individuals wearing masks.

https://doi.org/10.1371/journal.pone.0248708.g003

Fig 4. (a) Number of new infections per day divided by the actual number of individuals responsible for those infections for

different values of mobility restriction (R0). (b) Number of new infections per day by the total number of infected on that day for

different values of mobility restriction (R�
0
).

https://doi.org/10.1371/journal.pone.0248708.g004
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An interesting highlight is that practically all individuals who became infected in the simu-

lations run up to 60% mobility restriction. For 70% of reduction, the non-infected rate is about

0.4% and it increases up to 16% for the case of 90% restriction (Table 2).

Network analysis

Fig 5 shows the infection network for 0%, 40% and 90% mobility restriction level. Graphs were

generated at the time step corresponding to the peak of the infection curve (Fig 2) and colored

according to different values of degree, betweenneess and closeness centrality.

In Fig 6 are shown the degree distribution for each value of mobility restriction at the end

of simulation. There is a striking shrinking of the degree distribution for increasing mobility

restriction, which means that the average value for R0 should decrease, as verified. This obser-

vation corroborates the fact that a large number of people do not transmit the disease to any-

one, while a small number of individuals are responsible for a large number of infections,

characterizing superspreading dynamics.

The dependence of the fitting parameters versus the percentage of restriction mobility is

shown in the inset of Fig 6. It is clear that for small values of mobility restriction, this depen-

dence is quite subtle, which corroborates the observation made previously that the spreading

dynamics is almost independent of the mobility restriction for lower levels. A significant flat-

tening of the curves is observed only for restrictions above 70%.

We can see the distributions of betweenness and closeness centralities at the end of simula-

tion in Figs 7 and 8. Both measures present a positive correlation with higher mobility restric-

tion values. There are a large number of individuals with a betweenness centrality value close

to zero, especially for low mobility restriction values. High values of betweenness can be associ-

ated with key-spreaders since it means that the agent connects several infected individuals.

In order to evaluate which intrinsic features characterize superspreaders, we compare the

degree of the individuals with four infection parameters: distance traveled, infection period,

number of contacts along the simulation, and number of contacts during the infection period.

Pearson correlation test furnished, respectively: 0.0007; 0.05; 0.02 and 1 for no mobility restric-

tion scenario, as shown in distributions in Fig 9. As expected, test showed that there is a strong

positive correlation between degree and number of contacts during the infection period, but

no marked dependence with the other parameters. The results for high mobility restrictions

are similar: 0.12; 0.021 and 1, for infection period, number of contacts along the simulation

and number of contacts during the infection period, respectively, for mobility restriction of

80%.

Table 2. Maximum infected and number of ICU beds required every 10000 individuals for each percentage of mobility restriction. Simulations without PPE.

Mobility restriction Max. infected(%) Time (days) max. inf Time (days) max. ICU Max. ICU/10000 individuals Total of infected (%)

0% 27.80±0.88 63.09±1.95 83.17±2.61 287±16 99.99±0.01

10% 26.11±0.87 67.125±2.30 86.13±2.83 266±22 99.99±0.01

20% 26.64±0.89 75.33±2.41 89.88±3.56 251±22 99.98±0.01

30% 22.883±0.81 75.33±2.47 94.79±3.55 230±21 99.98±0.01

40% 21.50±1.08 81.951±2.60 102.21±4.09 217±13 99.97±0.01

50% 18.38±0.57 90.17±3.81 109.25±4.88 189±13 99.94±0.02

60% 16.36±0.82 102.83±4.41 122.17±5.44 162±11 99.86±0.04

70% 13.20±0.73 124.88±7.23 148.17±9.27 133±9 99.58±0.06

80% 9.08±0.57 168.42±8.43 189.04±12.19 93±10 98.22±0.15

90% 3.34±0.43 330.46±38.09 355.96±47.06 35±6 84.41±0.95

https://doi.org/10.1371/journal.pone.0248708.t002
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We also can see that the out-degree, betweenness and closeness centrality values at the end

of simulation, for the case with 70% of individuals wearing masks are very similar to the simu-

lation with no masks and 40% of mobility restriction (Figs 10–12).

Concerning the relation of using mask and degree distribution, we found a Pearson’s corre-

lation coefficient of -0.38, indicating that individuals wearing masks tend to have a lower

degree than those who do not, as seen in Fig 10, which shows that the higher degree values are

from the agents who do not wear a mask. This result corroborates the practice of wearing

masks to avoid the infection spreading [27].

Fig 5. Example of transmission networks generated at the time step corresponding to the maximum of infected agents

in each mobility restriction scenario, without PPE, colored according to out-degree value, betweenness and closeness

centrality: (a) Out-degree and 0% of mobility restriction; (b) Betweenness centrality and 0% of mobility restriction; (c)

Closeness centrality and 0% of mobility restriction; (d) Out-degree and 40% of mobility restriction; (e) Betweenness

centrality and 40% of mobility restriction 40%; (f) Closeness centrality and 40% of mobility restriction; (g) Out-degree

and 90% of mobility restriction; (h) Betweenness centrality and 90% of mobility restriction; (i) Closeness centrality and

90% of mobility restriction.

https://doi.org/10.1371/journal.pone.0248708.g005
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Discussion

Fig 2 and Table 2 show that increasing the mobility restriction leads to a flattening of the

infected curve, which consequently reduces the ICU bed occupation, especially for situations

near to lockdown, as 70-90% mobility restriction. However, it is almost impossible to maintain

a long time in lockdown, not only due to socio-economic impact [28], but also due to conse-

quences for the physical and mental health of the population [29, 30].

We also notice that there is not big difference between the Fig 3 curves for low and medium

variation in mobility reduction, suggesting that although the use of masks may contribute to

the reduction of the spread of the disease, other combined non-pharmaceutical interventions

may be necessary to fight the virus spreading, as in isolation, quarantine, contact tracing and

physical distancing [31]. Thus, it is necessary that public health organizations have a policy

that involves several actions. For a disease whose effects are not fully yet known, as for

COVID-19, with a fast initial spreading to different countries, characterizing a pandemic,

establish severe mobility restrictions is a good initial strategy to give time for governments

avoid the collapse of health institutions. Indeed, it was verified by the results in Table 2 that

higher mobility restriction values led to fewer individuals to be hospitalized simultaneously.

Fig 4 shows evidence of how the different definitions of basic reproduction number impact

the evaluation of pandemics propagation. Firstly, it worth noting that both definitions display

similar overall behaviors: after some initial oscillations, there is a plateau for intermediate

times and a decrease marking the end of the infection. However, R�
0

values are significantly

smaller than those for R0, as one can observe in the plateau values. The marked difference in

Fig 6. Out-degree distribution for each mobility restriction percentage considered. Lines corresponds to

exponential fitting. Inset of the fitting parameters versus the percentage of restriction mobility. Data registred at the

end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g006
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Fig 7. Betweenness centrality distribution of each mobility restriction value. Lines are just guides for the eyes. Data

registred at the end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g007

Fig 8. Closeness centrality distribution for each mobility restriction value. Lines are just guides for the eyes. Data

registred at the end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g008
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the values of R0 and R�
0

can be understood in terms of the superspreaders. While R0 plateau is

above unity, R�
0

saturates at values quite below unity, indicating that most part of the infected

agents do not transmit the infection.

In our simulations, 70% of the individuals did not infect anyone and 13% were responsible

for 77% of the infections. In comparison, a COVID-19 study in Hong Kong showed that 69%

of infected did not spread the disease, while 17-19% of infectious individuals were responsible

for 80% of all transmission events [32].

This conclusion corroborates other studies that have already shown that the existence of

superspreaders can significantly impact the pattern of outbreaks and, consequently, it is neces-

sary to be careful when interpreting epidemiological parameters as R0[8]. This indicates that

the methodology to calculate the basic reproduction number should be carefully analyzed to

avoid underestimating the power of the infection transmission.

An important feature presented in other studies of superspreading is that the heterogeneity

is assigned a priori to the individuals, as a longer infectious period [8], a higher level of infec-

tivity [8, 11, 15], a high number of contacts [11, 15, 17, 18] or a longer period out of isolation

[33]. Here, we only implemented Gaussian distribution in the infection duration, but we did

not establish larger values for the superspreaders. Instead, we analyzed the results to verify

whether it would possibly to identify the superspreaders based on these parameters. In other

words, the superspreaders were not defined a priori, but they were identified after the

Fig 9. (a) infection period; (b) travelled distance during simulation; (c) number of contacts during whole simulation and (d)

number of contacts during infection period. All distributions in function of degree.

https://doi.org/10.1371/journal.pone.0248708.g009
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simulation ran based on the statistics of the infection. Their existence became clear by looking

at the degree distribution (Fig 6), in which is possible to observe large degree individuals up to

value 34, that is, one individual transmitted the disease directly to 34 other individuals.

Besides, with increasing mobility restriction, the maximum degree of the superspreaders

tends to decrease, but the spreading dynamics remains the same. In Fig 6, the distribution

exhibits heavy tails, as observed for the SARS epidemic in Singapore in 2003 [14]. In this way,

some researchers affirm that superspreading is a typical feature of disease spreading [7] and

that data from infectious diseases tend to have a variance greater than the mean, that is, they

tend to be over dispersed [14].

In Fig 9 it is not clear if there is a correlation for infection period, traveled distance, and

number of contacts during simulations, since high degree values have a higher error bar. How-

ever, it is evident that there is a positive correlation between the number of contacts during the

infection period and degree. These results highlight the importance of isolating infected indi-

viduals, reducing their contacts during the period they can spread the disease. In practice, con-

tact testing and tracing are essential to identify those infected, especially for asymptomatic.

Fig 5 shows that the greater the mobility restriction, the higher the closeness and between-

ness centrality values and the lower the degree values for each network node at the peak of

infection. Figs 7 and 8 together with the out-degree distribution (Fig 6) also evidence a change

in the network structure due to the mobility restriction (at the end of simulation). In Fig 7, the

higher the restriction, the higher the maximum values of betweenness centrality. Since

betweenness is related to how many times a vertex appears in shorter paths, the increase of this

Fig 10. Out-degree measured for simulations: No masks and no mobility restriction; no masks and 40% mobility

restriction; individuals wearing masks and for all individuals. Data registred at the end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g010
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measure indicates that the infection spreads at a slower rate, once the route of infection

become more concentrated in the superspreaders. On the other hand, when there is no restric-

tion, the transmission is made by more people, making the infection spreading be more dis-

tributed among the agents, leading to smaller values of betweenness. This enhancement of

spreaders’s role as mobility decreases is not captured by the degree distribution, and it is an

original contribution of this study. It is possible to identify key-spreaders that do not have a

very high degree but are essential to keep the transmission active even with reduced mobility.

A similar interpretation can be inferred for the closeness centrality (Fig 8). For higher val-

ues of mobility restriction, there is a small number of individuals with large closeness values,

indicating that they transmit the disease more efficiently through the network. Otherwise, for

those networks built with a lower mobility restriction, a large number of individuals presents

intermediate closeness values. This agrees with the reasoning that there are more agents

infected transmitting the disease at the same time.

It is important to notice that the results of the simulation with individuals wearing masks

furnished a lower degree distribution since the probability of transmission with masks is

lower, and these individuals have a lower degree than the others (Fig 10). Betweenness and

closeness centrality values are similar to that found for simulation with no masks and 40% of

mobility restriction, indicating that the act of wearing a mask has an equivalent effect to

restrict mobility by 40% at the simulation level (Figs 11 and 12).

In the scenarios with higher values of mobility restriction, we verify the existence of individ-

uals with high values of betweenness and closeness (Figs 7 and 8), highlighting the importance

of testing and trace infected people during a pandemic. By isolating these potential

Fig 11. Betweenness centrality measured for simulation: No masks and no mobility restriction; no masks and 40%

mobility restriction; 70% wearing masks and no mobility restriction. Data registred at the end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g011
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disseminators, it is possible to retard the massive spread of the disease and allow more human

circulation in the cities. This consequently contributes to reducing the social and economic

impacts of the pandemics.

Conclusion

In general, the simulation showed that reducing mobility is effective in flattening the infection

curve. Also, agents wearing a mask spread the infection to a smaller number of people, contrib-

uting to the flattening of the curve even in a scenario without mobility restriction.

Regarding superspreading, simulation analysis evidence that this is an emergent feature of

epidemics, and it could be quantified by network measures as out-degree distribution,

betweenness and closeness centrality, without the need to artificially introduce this kind of

agent. Besides, there is a reduction of the degree distribution as the mobility restriction

increases together with an increment of betweenness and closeness centralities values. It

reveals the most prominent role of some individuals to spread the disease, as key-spreaders.

Testing and tracing contacts is essential to make mobility restrictions more flexible, in addition

to other preventive measures as wear personal protective equipment, allowing infected indi-

viduals to remain in isolation and do not become superspreaders.

Controlling a pandemic requires high-stakes decisions that involve different factors at dif-

ferent levels of government and public health organizations. It is necessary to use appropriate

tools to support these decisions, which highlights the need for investment in science. Epidem-

ics that came before COVID-19 showed the need for governments to be prepared to face the

adversities of a disease that can affect the entire world. In this way, understanding the role of

Fig 12. Closeness centrality measured for simulation: No masks and no mobility restriction; no masks and 40%

mobility restriction; 70% wearing masks and no mobility restriction. Data registred at the end of the simulation.

https://doi.org/10.1371/journal.pone.0248708.g012
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the players in infection propagation is extremely important for making prediction models and

for establishing disease control strategies.
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