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A B S T R A C T

Yeast frataxin homolog (Yfh1) is the orthologue of human frataxin, a mitochondrial protein whose deficiency
causes Friedreich Ataxia. Yfh1 deficiency activates Aft1, a transcription factor governing iron homeostasis in
yeast cells. Although the mechanisms causing this activation are not completely understood, it is assumed that it
may be caused by iron-sulfur deficiency. However, several evidences indicate that activation of Aft1 occurs in
the absence of iron-sulfur deficiency. Besides, Yfh1 deficiency also leads to metabolic remodeling (mainly
consisting in a shift from respiratory to fermentative metabolism) and to induction of Yhb1, a nitric oxide (NO)
detoxifying enzyme. In this work, we have used conditional Yfh1 mutant yeast strains to investigate the re-
lationship between NO, Aft1 activation and metabolic remodeling. We have observed that NO prevents Aft1
activation caused by Yfh1 deficiency. This phenomenon is not observed when Aft1 is activated by iron scarcity or
impaired iron-sulfur biogenesis. In addition, analyzing key metabolic proteins by a targeted proteomics ap-
proach, we have observed that NO prevents the metabolic remodeling caused by Yfh1 deficiency. We conclude
that Aft1 activation in Yfh1-deficient yeasts is not caused by iron-sulfur deficiency or iron scarcity. Our hy-
pothesis is that Yfh1 deficiency leads to the presence of anomalous iron species that can compromise iron
bioavailability and activate a signaling cascade that results in Aft1 activation and metabolic remodeling.

1. Introduction

Frataxin is a mitochondrial protein highly conserved throughout
evolution, with orthologous counterparts in almost all organisms, in-
cluding mammals, bacteria, fungi and plants [1]. The budding yeast
Saccharomyces cerevisiae contains an orthologous protein named Yfh1
(for Yeast Frataxin Homolog 1) and therefore has been widely used to
explore frataxin function [13]. It is also well stablished that frataxin
deficiency causes Friedreich Ataxia in humans [16,6].

Several functions have been proposed for frataxins. Most of them
are related to iron metabolism, because frataxin deficiency has been
found to cause misregulation of this process in several organisms. In
this context, the biosynthesis of iron-sulfur clusters is the function that
has attracted more support because frataxins have been found inter-
acting with several mitochondrial proteins involved in this process.
Among these proteins we can find Nfs1, a cysteine desulfurase which
supplies sulfur, and Isu1, a protein that interacts with Nfs1 and acts as
an scaffold were nascent iron-sulfur clusters are assembled. The current
model of iron-sulfur biogenesis suggests that frataxins would regulate
cysteine desulfurase activity and therefore would stimulate iron-sulfur
biogenesis [28]. Nevertheless, the analysis of the effects of frataxin

deficiency in several models indicates that frataxin is not essential for
iron-sulfur biogenesis in vivo and suggests that frataxin may have ad-
ditional functions [35]. In this regard, frataxin has also been related
with heme biosynthesis [32], iron storage and/or detoxification [29],
and modulation of iron regulatory protein-1 activation [9]. Frataxin
may be also interacting with components of the OXPHOS system [12]
and may confer oxidative stress protection [3].

In yeast, frataxin/Yfh1 deficiency induces the expression of several
proteins involved in iron uptake. This phenomenon results in iron
overload and is caused by activation of the iron regulator Aft1 [14].
Nevertheless, the mechanisms leading to activation of Aft1 in Yfh1
deficient cells have not been investigated in detail. Aft1 is regulated by
an iron-sulfur cluster, which under iron-sufficient conditions stabilizes
a protein complex that retains Aft1 inactive in the cytosol. Iron scarcity
or impaired iron-sulfur biogenesis prevent the formation of such cluster
and activate Aft1, resulting in increased iron uptake [23]. In Yfh1 de-
ficient cells, it has been assumed that Aft1 activation would be caused
by the loss of such iron-sulfur cluster. However, previous research from
our group using conditional Yfh1 mutants provided two observations
which challenged this hypothesis: i) activation of Aft1 could be ob-
served earlier than iron-sulfur loss [22]; ii) loss of iron-sulfur containing
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proteins in Yfh1 deficient yeasts required the presence of Cth2, an Aft1
target that binds to mRNAs from iron-containing proteins and promotes
its degradation [21]. Therefore, we hypothesize that in Yfh1 deficient
yeast, Aft1 may be activated by a mechanism different than iron-sulfur
cluster deficiency.

In this work, we provide further evidences that Aft1 is not activated
by iron-sulfur deficiency in Yfh1-deficient yeasts. These evidences have
been obtained upon the analysis of the relationship between frataxin
and yeast flavohemoglobin (Yhb1). We had previously found this pro-
tein induced in a proteomic and transcriptomic analysis of Yfh1-defi-
cient yeast [21]. This protein attracted our attention, as Yhb1 had been
found interacting with Yfh1, although the physiological relevance of
such interaction was not explored [12]. Yhb1 is a flavoprotein with a
globin-like domain as well as NAD and FAD binding sites. It has NO
reductase activity and therefore it is believed to act in NO detoxifica-
tion. Yhb1 is localized in the mitochondria in anoxic conditions, while a
dual cytoplasmatic/mitochondrial localization is observed in aerobic
conditions [7]. It has also been recently shown to be involved in sulfur
detoxification [10]. In mammals, neuroglobin it is structurally related
to the globin domain and could conserve some of its functions [2]. After
focusing on the analysis of the relationship between frataxin, Yhb1 and
NO in yeast, we have found that Aft1 activation in Yfh1-deficient yeast
is prevented by NO, further supporting that Aft1 activation upon Yfh1
deficiency occurs through a mechanism not dependent on iron-sulfur
deficiency.

2. Results

2.1. Yhb1 is induced upon Yfh1 depletion

In order to explore in more detail the relationship between Yhb1
and Yfh1, we first confirmed the previously reported induction of Yhb1
in Yfh1-deficient cells [21]. We used a conditional Yfh1 mutant in
which YFH1 expression is under the control of a tet promoter (te-
tO7YFH1 strain). In this strain YFH1 can be repressed by doxycycline
addition to the growth media. In addition, this strain is able to grow in
non-fermentable carbon sources such as glycerol, avoiding the repres-
sing effect of glucose on several mitochondrial activities [22]. To con-
firm induction of Yhb1, this protein was GFP-tagged in a tetO7YFH1
strain and its content analyzed by anti-GFP western blot. Fig. 1A in-
dicates that a clear induction of Yhb1-GFP could be observed 6 h after
doxycycline addition. We also analyzed cellular localization by fluor-
escence microscopy. We could observe that Yhb1-GFP was localized
both in the cytoplasm and mitochondria, as previously reported by
other authors. Microscopic images confirmed the increase in protein
content upon Yfh1 depletion, but we did not observe any change in the
dual localization of Yhb1-GFP (Fig. 1B). We finally analyzed the pre-
sence of the holo form of Yhb1 in both control and frataxin deficient
cells. Yhb1 contains a heme group and a FAD binding site. Both groups
can be detected using non-denaturing (native) polyacrylamide gels and
a Chemidoc XRS imaging system. Flavins can be directly detected in
gels due to its fluorescent properties. Heme can be detected after
transfer to PVDF membranes due to its peroxidase activity. Thus, cell
extracts from control and doxycycline treated tetO7YFH1 cells were
separated in native polyacrylamide gels and either imaged to detect the
fluorescence from protein-bound flavins or transferred to PVDF mem-
branes to detect heme. Extracts from Δyhb1 mutants were also loaded
and were used to identify the flavin and heme bands corresponding to
Yhb1. As shown in Fig. 1C, the heme signal corresponding to Yhb1 is
strongly increased upon Yfh1 depletion. This result confirms the in-
duction of Yhb1 and indicates that the protein is present in the holo
form. Of note, using this analytical approach, the heme from Yhb1
appears as the most intense band, supporting previous data about the
abundance of this protein. Yhb1-bound FAD could also be detected in
both control and doxycycline treated tetO7YFH1 cells. However, the low
signal-to-noise ratio from this flavin signal did not allow reliable

quantitative analysis of this band.

2.2. Increased nitroxidative stress in Δyfh1 cells

It has been proposed that Yhb1 would have a central role in reg-
ulating NO levels in yeast cells, as it has NO oxidase activity and is
induced by nitroxidative stress. We hypothesized that induction of
Yhb1 in Yfh1-deficient cells would be related to the presence of reactive
oxygen or nitrogen species in Yfh1-deficient cells. Indeed, we had
previously shown an increased O2

- production in Δyfh1 cells [13]. Thus
we analyzed O2

- and NO levels in tetO7YFH1 and tetO7YFH1Δyhb1 cells
treated with doxycycline. Superoxide levels were measured using DHE,
while NO levels were measured using DAF-FM DA and flow cytometry.
As shown in Fig. 2A, loss of Yfh1 led to increased production of su-
peroxide, while NO levels were increased in Δyhb1 mutants (Fig. 2B),
confirming the role of this protein in regulating NO levels. Interestingly,
loss of Yfh1 promoted a slight but significant decrease in NO levels in
both strains (Fig. 2B). This observation suggested us that O2

- could be
reacting with NO to form peroxynitrite, a highly reactive compound
that can easily react with tyrosines to form nitrotyrosines. To confirm
this hypothesis, we analyzed the presence of nitrotyrosines by western
blot in tetO7YFH1 and tetO7yfh1Δyhb1 cells and we observed a sig-
nificant increase in the presence of this postraductional modification
when cells where deficient in both Yfh1 and Yhb1 (Fig. 2C–D). These
results confirm that Yfh1 loss leads to increased O2

- production, which
in Yhb1 deficient cells would react with NO to produce peroxynitrite.

Fig. 1. Yhb1 is induced by Yfh1 deficiency. Yeast cells were grown in YPG and, where
indicated, doxycycline was added to the culture media for 6 h in order to repress Yfh1
expression. A, whole cell extracts were analyzed by western blot using anti-GFP anti-
bodies; B, tetO7YFH1 YHB1GFP cells were analyzed by fluorescence microscopy. A
punctuate pattern can be appreciated in both images, indicating the dual localization of
Yhb1-GFP irrespective of the presence of doxycycline. C, whole cell extracts were loaded
on native gels and the presence of the heme group and the flavin from Yhb1 were detected
as described under experimental conditions. Protein load was verified by post-western
Coomassie Briliant Blue (CBB) staining of the gels or PVDF membranes.
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To further confirm that increased NO levels could be scavenging O2
-

and lead to nitrotyrosine formation, we exposed wild type and Δyhb1
cells to the superoxide generating agent menadione and analyzed the
presence of nitrotyrosines and NO levels in these cells (Fig. 3A–B). Si-
milar to what we had previously observed in doxycycline treated te-
tO7YFH1 cells, menadione induced a decrease in NO levels and in-
creased presence of nitrotyrosines. These observations confirmed that

increased levels of O2
- were produced in Yfh1-deficient cells and sug-

gested that NO could be acting as a O2
- scavenging agent.

2.3. Yhb1 deficiency and NO prevent Aft1 activation in Yfh1-deficient cells

We decided to analyze which was the impact of Yhb1 deficiency on
the phenotypes caused by Yfh1 deficiency. First, we analyzed the effect

Fig. 2. Superoxide and NO levels in tetO7YFH1 and tetO7YFH1Δyhb1 strains. Yeast cells were grown in YPG and, where indicated, doxycycline was added to the culture media for 6 h
in order to repress Yfh1 expression. A, Superoxide production was measured using DHE; B, NO levels were measured using DAF-FM DA and flow cytometry; C, the presence of
nitrotyrosines was evaluated in crude extracts by western blot using antibodies which recognize this prostraductional modification. Histograms represent relative nitrotyrosine content in
each condition, which was calculated from the chemiluminescent signal of each lane of the western blot analyzed with Quantity One software (Bio-Rad). Nitrotyrosine levels in tetO7YFH1
control cultures were used as a reference value. From A to C, data are represented as means± SD from 3 independent experiments. * and ** indicate significant (p< 0.05) or highly
significant (p< 0.01) differences, respectively, when compared to control condition.

Fig. 3. NO levels in W303 and Δyhb1 strains after menadione
treatment. Yeast cells were grown in YPG and, where indicated,
menadione was added to the culture media. A, NO levels were
measured using DAF-FM DA and flow cytometry. Data are re-
presented as means± SD from 3 independent experiments. * and
** indicate significant (p< 0.05) or highly significant (p< 0.01)
differences, respectively, when compared to control condition.; B,
the presence of nitrotyrosines was evaluated in crude extracts by
western blot using antibodies which recognize this prostraduc-
tional modification.
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of Yhb1 on iron overload, one of the phenotypes observed in Yfh1 de-
ficient cells. Iron overload in Yfh1-deficient yeast is caused by Aft1
activation, which promotes induction of several proteins involved in
iron uptake. One of these proteins is the ferro-oxidase Fet3 [22].
Therefore, iron content was analyzed in tetO7YFH1 and te-
tO7YFH1Δyhb1 cells treated for 24 h with doxycycline and we observed
that Yhb1 loss prevented iron accumulation (Fig. 4A). To confirm that
this effect was due to prevention of Aft1 activation, we also analyzed
the content of Fet3 by western blot in tetO7YFH1 mutants containing a
Fet3-myc tagged version of the protein. As expected, Yfh1 deficiency
promoted Fet3 induction. This induction was partially prevented in
Yhb1 deficient cells, confirming that Aft1 activation was prevented in
Δyhb1 cells (Fig. 4B–C). We also analyzed Fet3 expression by qPCR in
both strains at different times after doxycycline treatment (Fig. 4D).
This analysis confirmed that activation of Aft1 was prevented in Δyhb1
cells and also confirmed previous results which indicated that activa-
tion of the iron regulon after Yfh1 depletion is progressive (expression
of the Aft1 targets increases over time) [21]. To further investigate the
role of NO in preventing iron overload in Yfh1-deficient cells, we

explored the effects of sodium nitroprusside (SNP), an NO donor, on
iron accumulation in doxycycline-treated tetO7YFH1 cells. In order to
use a non-toxic concentration of this compound, we first analyzed the
effects of different concentrations of SNP on generation time of W303
cells. As we observed that SNP had minor effects on generation time at
concentrations up to 10 μM (data not shown), we performed the
forthcoming experiment at this concentration. Thus, we analyzed the
effect of 24 h treatment with 10 μM SNP and doxycycline on iron
content of tetO7YFH1 and W303 cells. As indicated in Fig. 4E, SNP
prevented iron accumulation in doxycycline treated tetO7YFH1 cells,
while had minor effect on non-doxycycline treated cells or wild type
cells.

2.4. Activation of the iron regulon by iron scarcity does not require Yhb1

As loss of Yhb1 prevented activation of Aft1 in doxycycline-treated
tetO7YFH1 cells we became interested in analyzing which was the effect
of Yhb1 deficiency on the ability of the cell to sense iron levels and
induce an Aft1-mediated response. Therefore, a wild type and a Δyhb1

Fig. 4. Activation of Aft1 by Yfh1-deficiency is prevented in Δyhb1 cells. Yeast cells were grown in YPG and, where indicated, doxycycline was added to the culture media for 24 h in
order to repress Yfh1 expression. A, whole cell iron content was measured by the BPS method as indicated in experimental procedures. B, Fet3-myc was detected by western blot using
anti-myc antibodies. CBB staining was used as loading control. C, Histograms represent relative Fet3-myc content in each condition, which was calculated from the chemiluminescent
signal of the western blot analyzed with Quantity One software (Bio-Rad). D, Relative FET3 expression was analyzed by qPCR in YPG-grown tetO7YFH1 (grey) and tetO7YFH1Δyhb1
(black) after addition of doxycycline for the indicated times. Actin expression was used as an internal control to normalize expression levels. E, whole cell iron content measured by the
BPS method in SNP-treated cells (10 μM). In A, C, D and E levels in tetO7YFH1 untreated cultures were used as a reference value. Data are represented as means± SD from 3 independent
experiments. * and ** indicate significant (p<0.05) or highly significant (p< 0.01) differences, respectively, when compared to control condition.
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strain with Aft1 GFP-tagged were treated with the iron chelator BPS for
4 h and nuclear localization of Aft1 was examined by fluorescence
microscopy. Yhb1 deletion had no effect on the nuclear localization of
Aft1 (Fig. 5A–B). We also measured the expression levels of FET3 by
qPCR. BPS promoted a marked induction of this gene, but in this case
induction was not prevented in Δyhb1 cells (Fig. 5C). We finally ana-
lyzed the sensitivity of Δyhb1 cells towards BPS in SC agar plates. A
Δaft1 mutant was used as a control of mutant with increased sensitivity
towards iron-deficiency. As shown in Fig. 5D, Δyhb1 cells did not show
increased sensitivity towards iron deficiency. Overall, these results in-
dicate that Yhb1 is not required for the response to iron scarcity, al-
though it modulates Aft1 activation triggered by Yfh1. These observa-
tions suggest that Aft1 induction in Yfh1 deficient cells is triggered by a
different pathway than Aft1 activation by iron scarcity.

2.5. Lack of Yhb1 does not prevent iron overload caused by disrupted iron-
sulfur biogenesis

Mutations in proteins involved in iron-sulfur biogenesis are known
to cause activation of Aft1 and consequently iron overload. We decided
to analyze the effect of a null Yhb1 mutation in the activation of the
iron regulon caused by depletion of Grx5, a mitochondrial protein in-
volved in iron-sulfur biogenesis [27]. For that purpose, we used te-
tO7GRX5 strains, in which Grx5 was under the control of a tetO7 pro-
moter. Addition of doxycycline to this strain promoted an increase in
iron accumulation, similar to that observed in tetO7YFH1 cells (Fig. 6).
However, contrary to what we had observed in the tetO7YFH1Δyhb1
mutant, iron accumulation was not prevented in tetO7GRX5Δyhb1.

These results indicate that NO is not able to prevent Aft1 activation
caused by impaired iron-sulfur biogenesis and also confirm that acti-
vation of Aft1 in Yfh1 deficient cells is not caused by impaired iron-
sulfur biogenesis.

2.6. Lack of Yhb1 prevents metabolic remodeling in Yfh1-deficient cells

We finally, decided to analyze the consequences of NO on metabolic

Fig. 5. Activation of Aft1 by iron scarcity is no
prevented in Δyhb1 cells. A, the indicated strains
were grown in YPD media with or without 100 μM
BPS and the localization of Aft1-GFP analyzed by
fluorescence microscopy. B, histograms show the
percentage of cells showing nuclear localization of
Aft1-GFP in each indicated condition. Data are re-
presented as means± SD from 3 independent ex-
periments in which at least 100 cells were analyzed.
* and ** indicate significant (p< 0.05) or highly
significant (p< 0.01) differences, respectively, when
compared to control condition. C, the indicated
strains were grown in YPG media with or without
BPS and FET3 mRNA expression was measured by
qPCR. Data are represented as means± SD from 3
independent experiments. D, the indicated strains
were grown in YPD to OD600 = 0.5 and serial di-
lutions (1:5) where plated on YPD plates supple-
mented or not with BPS.

Fig. 6. Activation of Aft1 by Grx5 deficiency is not prevented by NO. Yeast cells were
grown in YPG and, where indicated, doxycycline was added to the culture media for 24 h
in order to repress Grx5 expression. Whole cell iron content was measured by the BPS
method as indicated in experimental procedures. Data are represented as means± SD
from 3 independent experiments. * and ** indicate significant (p< 0.05) or highly sig-
nificant (p< 0.01) differences, respectively, when compared to control condition.
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remodeling caused by Yfh1 deficiency. In a previous work, we reported
that Yfh1 deficiency in yeasts triggers a drastic metabolic remodeling
governed by the metabolic regulators Adr1 and Cth2. This remodeling
finally leads to downregulation of iron-sulfur containing proteins and
other proteins involved in respiratory metabolism [21]. We decided to
analyze the changes in the content of some key Adr1 and Cth2 targets

upon Yfh1 deficiency in tetO7YFH1 and tetO7YFH1Δyhb1 cells. These
were three Adr1 targets (Adh2, Gut2 and Lsc2) [33], two iron-sulfur
containing enzymes which are Cth2 targets (Aco1 and Sdh2) and a Cth2
target not containing an iron-sulfur (Sdh1) [25]. In order to have a
more complete view of the metabolic status of the yeasts, we also
analyzed the content of two enzymes involved in alcoholic fermentation

Fig. 7. Analysis of S. crerevisiae metabolism by targeted proteomics. A, a simplified scheme of S. cerevisiae metabolism showing the proteins analyzed. Note that many intermediate
reactions are not indicated. Colors indicate the following functional groups: red, Cth2 targets; green, Adr1 targets; blue, TCA enzymes; yellow, OXPHOS components; purple, enzymes
involved in fermentation; orange, pentose phosphate pathway. The yellow Q indicates that these enzymes provide electrons to ubiquinone. Nde1 is known as the external NADH
dehydrogenase, as it oxidizes NADH from the cytosol and the intermembrane space. Ndi1 is the internal NADH dehydrogenase and oxidizes NADH from the mitochondrial matrix. Both
dehydrogenases transfer electrons to Ubiquinone. GAP, Glyceraldehyde-3P; DHAP, dihydroxyacetone phosphate. B, a representative chromatogram showing the MRM trace of the
different peptides analyzed. C, Histograms show the relative content of the measured proteins. Protein levels in tetO7YFH1 control cultures were used as a reference value. Data are
represented as means± SD from 3 independent experiments. * and ** indicate significant (p< 0.05) or highly significant (p< 0.01) differences, respectively, when compared to control
condition. D, correlation patterns of the indicated proteins among different samples. Dark red in the heatmap indicates strong correlation, while dark blue indicates poor correlation. E,
Adh1/Adh2 ratio in each condition analyzed.
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(Adh1 and Pdc1), glucose-6-P-dehydrogenase (Zwf1) -a key enzyme of
the pentose phosphate pathway-, the Krebs cycle enzyme citrate syn-
thase 1 (Cit1), and the components of the OXPHOS system Nde1, Ndi1,
Cox1 and Cox2. Yhb1 and Yfh1 were also measured to confirm its
presence or absence. Actin and mitochondrial porin were used as
loading controls. Fig. 7 shows a simplified scheme of S. cerevisiae me-
tabolism indicating the pathways in which these proteins are involved.
For the detection of these proteins we used an MRM-based targeted
approach in which one or two proteotypic peptides from each protein
were detected in a LC-Triple quadrupole mass spectrometer. To develop
these assays, four proteotypic peptides and five transitions per peptide
were selected from SRM atlas (www.srmatlas.com) [24] for each pro-
tein of interest. These transitions were analyzed in trypsin-digested
crude yeast extracts using an Agilent LC/Triple Quad system. Then,
isotope-labeled (heavy) synthetic versions of those peptides showing
the best results were synthesized (JPT peptides) and used to confirm the
retention times and transitions observed in yeast samples. These heavy
peptides were also used as internal standards in subsequent analysis.
For the final analysis we selected the two best-responding peptides for
each protein, and three transitions were used for detecting each pep-
tide. For some proteins, we could only find a single peptide that fulfilled
the quality criteria. Details about the peptides and transitions used can
be found in Table 2 and in Supplemental table 1. We next analyzed the
relative content of these peptides in trypsin-digested whole cell extracts
from tetO7YFH1 and tetO7YFH1Δyhb1 cells exposed or not to dox-
ycicycline for 24 h. Actin and mitochondrial porin were used as loading
controls, as previous work had indicated that porin content was not
altered after 24 h of doxycycline addition [22]. A summary of the re-
sults obtained can be found in Fig. 7 (the complete set of results can be
freely browsed through Panaromaweb). It can be observed that peptides
from Yfh1 were not detected in doxycycline treated cells, nor Yhb1
peptides in Δyhb1 cells, confirming the quality of the analysis. The
content of the Adr1 targets (Adh2, Gut2 and Lsc2) and of the Cth2
targets (Aco1, Sdh1, Sdh2) also decreased in tetO7YFH1 cells after
doxycycline treatment, confirming previous observations. Interestingly,
loss of Cth2 targets was completely prevented in Δyhb1 cells. Indeed,
the content of these proteins was increased in doxycycline-treated te-
tO7YFH1Δyhb1. In the case of the Adr1 targets, the decrease was more
pronounced for Adh2. This effect is not surprising, as Adr1 has a
stronger regulatory effect on this protein than on Gut2 or Lsc2 [33].
Recovery in Δyhb1 cells was less pronounced for Adh2 than for Cth2
targets, and therefore did not reach statistically significance. Interest-
ingly, Yfh1 depletion also lead to a slight induction of enzymes involved
in alcoholic fermentation (Adh1 and Pdc1), which was also prevented
in Yhb1-deficient cells. Such increase may be related to the metabolic
remodeling experienced by yeast upon Yfh1 deficiency, which tries to
direct its metabolism to fermentation. In this sense, the ratio Adh1/
Adh2 is clearly higher in Yfh1 deficient cells, and is restored in Yfh1-
deficient Δyhb1 cells (Fig. 7E). Regarding the OXPHOS system, marked
changes were observed in complex II, as the Cth2 targets Sdh1 and Sdh2

decreased. Such decrease was prevented in Yhb1-deficient cells. We
also noticed a decrease in Ndi1, but neither in Nde1 nor in the complex
IV subunits Cox1 and Cox2. The reasons and consequences of NdiI1
decrease are not known, as neither Adr1 nor Cth2 have been described
to regulate Ndi1 expression. No major changes were observed in the
Krebs cycle enzymes Cit1 nor in the pentose phosphate pathway en-
zyme Zwf1. We also performed an analysis of covariance of the com-
plete dataset, which included the four samples and three replicates per
sample (Fig. 7D). Clustering of these data indicates a strong correlation
among the Cth2 targets and that Ndi1 showed a better correlation with
these Cth2 targets than with Adr1 targets. A good correlation could also
be observed between the fermentative enzymes Adh1 and Pdc1, and
also between the Adr1 targets Adh2 and Gut2. Overall, the results ob-
tained from these analyses confirm the previous observed decrease in
Adr1 and Cth2 targets. They also show that such decrease is specific, as
there is not a general loss of mitochondrial proteins. Finally, the ana-
lysis also indicates that NO can prevent metabolic remodeling asso-
ciated with Yfh1 deficiency.

3. Discussion

Yfh1 deficiency activates Aft1 and promotes iron uptake. It has been
assumed that such activation is caused by impaired iron-sulfur bio-
genesis as occurs under conditions of iron scarcity or when certain
proteins involved in the biosynthesis of iron-sulfur clusters are mutated.
However, previous results from our group suggested that Aft1 activa-
tion in Yfh1-deficient yeasts was not caused by iron-sulfur deficiency, as
such activation occurred earlier than iron-sulfur deficiency [22]. In the
present work we have shown that increased NO levels can prevent Aft1
activation in Yfh1-deficient yeasts. This has been demonstrated in
Δyhb1 cells, where increased NO levels are due to the absence of this
NO detoxifying enzyme, and by exogenous exposure to SNP, an NO
donor. Remarkably, this phenomenon is only observed when Aft1 ac-
tivation is triggered by Yfh1 deficiency, while it is not observed when
Aft1 is activated by iron scarcity or impaired iron-sulfur biogenesis
(Grx5 deficiency). Therefore, this work confirms that the mechanism
that leads to Aft1 activation in Yfh1-deficient yeasts differs to the one
promoted by that other conditions.

We hypothesize that Aft1 activation in Yfh1-deficient yeast may be
caused by the presence of anomalous iron species and that NO would
chelate such iron, form iron-nitrosyl complexes and limit its toxicity.
The ability of NO to chelate free iron and form these complexes has
been observed in several biological systems experiencing increased NO
concentrations [17,36,37]. Interestingly, iron-nitrosyl complexes may
have beneficial effects, such as preventing iron from generating free
radicals or increasing iron bioavailability. It has been proposed that
these complexes can also contribute to iron mobilization as they could
be transported to different organs [4]. Therefore, our hypothesis
(summarized in Fig. 8) is that Yfh1 deficiency would lead to the pre-
sence of anomalous iron species in mitochondria that could compromise

Table 1
S. cereviasiae strains used in this work.

Strain Name used in text Relevant genotype Comments

W303-1A Wild-type MATa ura3-1 leu2-3, 112 trp1-1 his3-11,15 ade2-1 Wild-type
BQS201 tetO7-YFH1 W303-1A tetO7-YFH1::kanMX4 Chromosomal YFH1 promoter replaced with tetO7 promoter [22]
BQS254 Δyhb1 W303-1A yhb1::natMX4 Deletion of Yhb1 in W303-1A
BQS255 tetO7-YFH1 Δyhb1 BQS201 yhb1::natMX4 Deletion of YHB1 in BQS201
BQS280 tetO7-YFH1 Yhb1-GFP BQS201 YHB1-GFP::hphNT1 Chromosomal YHB1 tagged with GFP in BQS201
BQS267 tetO7-YFH1 Fet3-Myc BQS201 FET3-MYC::hphNT1 Chromosomal FET3 tagged with Myc-tag in BQS201
BQS268 tetO7-YFH1 Δyhb1 Fet3-Myc BQS255 FET3-MYC::hphNT1 Chromosomal FET3 tagged with Myc-tag in BQS255
MML348 Δaft1 W303-1A aft1::URA3 Deletion of AFT1 in W303-1A [27]
BQS269 W303 Aft1-GFP W303-1A AFT1-GFP::hphNT1 Chromosomal AFT1 tagged with GFP in W303
BQS270 Δyhb1 Aft1-GFP BQS254 AFT1-GFP::hphNT1 Chromosomal AFT1 tagged with GFP in BQS254
MML313 tetO7-GRX5 W303-1A tetO7-GRX5::kanMX4 Chromosomal GRX5 promoter replaced with tetO7 promoter [27]
BQS279 tetO7-GRX5 Δyhb1 MML313 yhb1::natMX4 Deletion of YHB1 in MML313
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iron bioavailability and activate a signaling cascade resulting in Aft1
activation. This activation would be progressive. An initial mild Aft1
activation would slightly increase iron uptake. Then, a vicious cycle
will be initiated in which the increased presence of anomalous iron
species would further activate Aft1. NO would be able to chelate these
iron species and therefore avoid Aft1 activation. Interestingly, some
authors have described that respiratory function in Yfh1-deficient

yeasts can be rescued by limiting iron toxicity, either expressing human
mitochondrial ferritin [5] or overexpressing the vacuolar iron trans-
porter CCC1 [8]. Therefore, our results further support that iron toxicity
plays a central role in frataxin-deficient cells.

And how can frataxin deficiency be linked to the presence of
anomalous iron species? We can envisage at least two different but not
mutually exclusive ways. The first one would be related to its role as a

Table 2
Peptides sequences from the proteins analyzed in the targeted proteomics experiments.

Gene Uniprot entry Protein name Peptide sequence

Adh2 sp|P00331|ADH2_YEAST Alcohol dehydrogenase 2 ANGTVVLVGLPAGAK
VVGLSSLPEIYEK

Gut2 sp|P32191|GPDM_YEAST Glycerol-3-phosphate dehydrogenase MSNYLVQNYGTR
TPLDFLLR

Yfh1 sp|Q07540|FRDA_YEAST Yeast Frataxin Homolog LTDILTEEVEK
QIWLASPLSGPNR

Yhb1 sp|P39676|FHP_YEAST Flavohemoprotein VGAQPNALATTVLAAAK
ATVPVLEQQGTVITR

Sdh2 sp|P21801|DHSB_YEAST Succinate dehydrogenase iron-sulfur subunit DLVPDLTNFYQQYK
DGTEVLQSIEDR

Sdh1 sp|Q00711|DHSA_YEAST Succinate dehydrogenase flavoprotein subunit GEGGFLVNSEGER
DVAAPVTLK

Zwf1 sp|P11412|G6PD_YEAST Glucose-6-phosphate 1-dehydrogenase FGNQFLNASWNR
TFPALFGLFR

Cox2 sp|P00410|COX2_YEAST Cytochrome c oxidase subunit 2 LNQVSALIQR
LLDTDTSMVVPVDTHIR

Cox1 sp|P00401|COX1_YEAST Cytochrome c oxidase subunit 1 APDFVESNTIFNLNTVK
Por1 sp|P04840|VDAC1_YEAST Mitochondrial outer membrane protein porin 1 VSDSGIVTLAYK

LEFANLTPGLK
Nde1 sp|P40215|NDH1_YEAST External NADH-ubiquinone oxidoreductase 1 GALAYIGSDK
Act1 sp|P60010|ACT_YEAST Actin VAPEEHPVLLTEAPMNPK

SYELPDGQVITIGNER
HQGIMVGMGQK

Ndi1 sp|P32340|NDI1_YEAST Rotenone-insensitive NADH-ubiquinone oxidoreductase YNDLGALAYLGSER
Pdc1 sp|P06169|PDC1_YEAST Pyruvate decarboxylase 1 TPANAAVPASTPLK
Lsc2 sp|P53312|SUCB_YEAST Beta subunit of succinyl-CoA ligase DLSQEDPDEVK
Aco1 sp|P19414|ACON_YEAST Mitochondrial aconitase TIFTVTPGSEQIR

QNVETLDIVR
Cit1 sp|P00890|CISY1_YEAST Citrate synthase AIGVLPQLIIDR
Adh1 sp|P00330|ADH1_YEAST Alcohol dehydrogenase 1 ANELLINVK

VVGLSTLPEIYEK

Fig. 8. Working model to explain the protective
effect of NO in Yfh1-deficient cells. A, Yfh1 con-
tributes to maintain mitochondrial iron in a reduced
and/or safe form. Fe-containing proteins (notably Fe-
S proteins) retain Aft1 in the cytosol. B, loss of Yfh1
leads to increased presence of anomalous iron spe-
cies which trigger a mild activation of Aft1 trough
unknown mechanisms. A moderate increase in iron
uptake proteins can be found. C, a vicious cycle takes
place: the more iron enters the cell, the more
anomalous iron species are formed and Aft1 is acti-
vated more strongly. Furthermore, Cth2 is expressed,
leads to decreased expression of Fe-containing pro-
teins and the repressing effect of these Fe-proteins on
Aft1 is lost. A high increase in iron uptake proteins
can be detected. D, In the absence of Yhb1, NO levels
increase and NO can form iron-nitrosyl complexes
which can prevent the formation of anomalous iron
species.
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regulator of cysteine desulfurase activity [28]. Loss of such regulation
could lead to an imbalance between iron delivery and iron-sulfur for-
mation that could trigger the formation of reactive iron species. The
second one would be related to its role as an iron chaperone: frataxins
would keep iron in a non-toxic, easy-deliverable form. Therefore, its
deficiency would increase the presence of free or toxic iron forms
[29,32]. Regarding the nature of these anomalous iron species and its
capacity to activate Aft1, Seguin et al. [30], showed that Yfh1-deficient
yeast cells accumulated iron in the mitochondria in the form of amor-
phous nanoparticles of ferric phosphate. In a conditional Yfh1 mutant,
these phosphate precipitates appeared early, whereas iron accumula-
tion was more progressive. Moreover, iron accumulation was prevented
by phosphate supplementation, suggesting that Aft1 activation in Yfh1-
deficient yeasts could be related to decreased phosphate bioavailability.
The relevance of this iron-phosphate connection in frataxin deficient
cells merits further investigation.

Regarding the relationship between NO and frataxin, our results are
reminiscent of that found in frataxin-deficient Arabidopsis thaliana,
where Martin and collaborators found that elevated NO levels protected
this plant against oxidative stress caused by frataxin deficiency [19].
However, some differences may exist between the mechanisms of NO
protection in plants and yeast. In plants, Martin et al. detected an in-
crease in NO production after frataxin deficiency, and induction of the
iron regulon was prevented by NO scavengers. In yeast, we have not
detected an increase in NO upon Yfh1 depletion and we have shown
that NO can prevent activation of the iron regulon. These differences
may be related to the fact that NO is a signaling molecule in plants
which acts as a mediator in the response to iron scarcity. It is produced
upon iron deficiency and is required for the expression of genes in-
volved in iron metabolism [19,4]. This may not be the case in yeast,

Another interesting point of this work is the analysis of the effect of
NO on the metabolic remodeling triggered by Yfh1-deficiency in yeast.
The deployed targeted proteomics approach allowed us to test the
metabolic status of the yeast cell in a rapid and efficient way. Some of
the targeted proteins (or their mRNAs) had been analyzed previously in
this same tetO7YFH1 model by western blot (Aco1, Sdh2, Yfh1) or qPCR
(Adh2) [21]. We have been able to reproduce these previous results,
demonstrating the validity of the approach. In addition, we have
monitored several additional proteins, providing a more complete view
of the yeast metabolic status. An interesting indicator is the Adh1/Adh2
ratio. Adh1 reduces acetaldehyde to ethanol during glucose fermenta-
tion, while Adh2p catalyzes the conversion of ethanol to acetaldehyde.
Adh1 accounts for most of the Adh activity in the presence of glucose,
while Adh2 is repressed in the presence of glucose and strongly induced
in the presence of non-fermentable carbon sources such as glycerol or
ethanol [31]. Therefore the Adh1/Adh2 ratio is an indicator of whether
the yeasts are focused on fermentation (high Adh1/Adh2 ratio) or re-
spiration (low Adh1/Adh2 ratio). In our model, we can observe that this
ratio increases in Yfh1-deficient tetO7YFH1 yeasts due to both decreased
Adh2 and increased Adh1. This ratio is restored in Yfh1-deficient te-
tO7YFH1Δyhb1 yeasts due to partial recovery of both Adh1 and Adh2
control levels. The decrease in Adh2 is caused by inactivation of Adr1, a
transcription factor required for Adh2 expression which is inactivated
upon Yfh1 deficiency [21]. The partial recovery of Adh2 suggests that
NO may partially prevent Adr1 inactivation. As this inactivation can be
caused by oxidative stress, the observed effect could be a consequence
of the O2

- scavenging properties of NO (as shown by the increased
presence of nitrotyrosines in double Yfh1 and Yhb1-deficient cells).

The targeted proteomics approach also indicates that the con-
sequences of the other known actor in metabolic remodeling, Cth2, are
clearly prevented in Δyhb1 cells. This is not surprising, as Cth2 acti-
vation depends on Aft1 activation (which is in turn prevented by NO)
and we had previously demonstrated that Aco2 and Sdh2 content (and
activity) were preserved in a Yfh1-deficient Δcth2 strain [21]. There-
fore, our results confirm that loss of iron-sulfur proteins in Yfh1-defi-
cient cells is a secondary event caused by Cth2 induction.

4. Conclusions

A major conclusion of this work is that Yfh1 deficiency activates the
iron regulon by a different pathway than iron-sulfur loss. Therefore,
alternative pathways for Aft1 activation may exist in yeast which, as
discussed above, could be related to the presence of anomalous iron
species. We have also observed that metabolic status can be efficiently
monitored using a targeted proteomics strategy focusing on key meta-
bolic enzymes. Finally, the observation that NO can mitigate the defects
caused by Yfh1 deficiency supports the hypothesis that Yfh1 loss leads
to the increased presence of anomalous iron forms, and that this
anomalous iron plays a central role in the events caused by Yfh1 defi-
ciency. It also suggests that NO donors could have a therapeutic effect
in FRDA patients. NO donors such as SNP or nitroglycerin have been
used for more than a century for controlling congestive heart failure
associated with heart attack or lowering blood pressure during surgery
[20]. Beyond its vasodilating action, neuroprotective properties have
been demonstrated for NO in an iron-induced model of Parkinson's
disease [26]. This observation, together with the results presented in
this work, opens the possibility to explore the potential therapeutic
effect of NO donors in mammalian models of FRDA.

5. Materials and methods

5.1. Yeast strains and culture conditions

The strains used in this work are summarized in Table 1. All the
mutants are derived from the strain W303-1A (Mata ura3-1 leu2-3, 112
trp1-1 his3-11,15 ade2-1) considered the wild-type strain in this work.
Cells were grown using rich media preferentially containing glycerol
(1% yeast extract, 2% peptone and 3% glycerol (YPG)) or glucose when
stated (1% yeast extract, 2% peptone and 2% glucose (YPD)). Cells were
cultured in a rotary shaker at 30 °C. All the experiments described in
this work were performed using exponentially growing cells at optical
densities ranging from 0,4 to 0,7 (λ = 600 nm, 1 cm light path).

5.2. Plasmids

The plasmid pAG25 was used to construct deletion cassettes. This
plasmid was a gift from John McCusker (Addgene plasmid # 35121)
[11]. Plasmids pYM20 and pYM25 were used for Myc and GFP tagging
the c-terminus of selected proteins [15].

5.3. Western Blot analysis

Whole cell protein extracts were prepared in the following way.
Cells were resuspended in 50 mM Tris-HCl buffer pH 7,5 containing a
mixture of protease inhibitors (Merck-Millipore, ref 539133) and dis-
rupted using glass beads in a BioSpec Mini-Beadbeater. To this lysate,
an equal volume of SDS 7,5% and β-mercaptoethanol 7,5% was added.
After vortexing, the lysate was centrifuged at 12,000 rpm for 10 min.
Protein extracts were separated in SDS-polyacrylamide gels and trans-
ferred to PVDF membranes. The following primary antibodies were
used: GFP (Clontech, 632381), Nitrotyrosine (Biovision, 5416-50) and
Myc (Millipore, 06–549). Anti-Rabbit and anti-mouse antibodies con-
jugated to peroxidase were used for detection. Images were acquired in
a Chemidoc XRS (Bio-Rad) and chemiluminescent data was analyzed
using Image lab software (Bio-Rad). Comassie Blue staining of the
membrane after detection was used as protein load control.

5.4. Heme and Flavin detection

To detect the holo form of Yhb1, cells were resuspended in PBS
containing a mixture of protease inhibitors and disrupted using glass
beads in a BioSpec Mini-Beadbeater. These protein extracts were cen-
trifuged (3000 rpm for 5 min) and 20 μg of protein were loaded in
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polyacrylamide gels and separated in native conditions (without SDS).
After electrophoresis, gels were directly imaged in a ChemiDoc XRS to
detect Flavin fluorescent signal (Excitation: Blue Epi Illumination;
Emission: 530/28 filter) or transferred to a PVDF membrane, washed
once with TBS buffer and incubated with HPR substrate to detect heme
peroxidase activity. The chemiluminescent signal was acquired in a
ChemiDoc XRS.

5.5. RNA isolation and gene expression analysis

Gene expression was analyzed using quantitative Real-Time PCR
(RT-qPCR). Total RNA was extracted using RNeasy kit (Qiagen) ac-
cording to manufacturer's instructions. 1 μg of total RNA was converted
into cDNA using SuperScript II system (Invitrogen) and 50 ng of the
produced cDNA were used for each qPCR reaction. These reactions
were carried out in an iCycler (BioRad) using TaqMan Universal PCR
Master Mix kit (Applied Biosystems). Primers and probes for each gene
were provided by Applied Biosystems (Taqman Gene Expression
Assays) and actin (ACT1) was used as an internal control.
Quantification of the acquired data was performed using the Bio-Rad
CFX Manager (version 3.1, Bio-Rad). Relative expression values were
calculated based on the Ct values with efficiency correction based on
multiple samples.

5.6. Targeted proteomics (MRM)

Cells were resuspended in 50 mM Tris-HCl buffer pH 7,5 plus 1 mM
EDTA and a mixture of protease inhibitors and were disrupted using
glass beads. After, SDS was added to a final concentration of 2% and
protein extracts were vortexed, boiled and centrifuged (12,000 rpm
10 min). Proteins were quantified using the BCA assay (Thermo
Scientific) and 30 μg were precipitated with cold acetone (9 volumes)
and resuspended in 8 M urea, 0.1 M ammonium bicarbonate. Then,
proteins were subjected to reduction by 12 mM DTT and alquilation by
40 mM iodoacetamide. Samples were diluted with 0.1 M ammonium
bicarbonate to a final concentration of 1.5 M urea and mass spectro-
metry grade trypsin (Trypsin Gold, Promega) was added to a final en-
zyme:substrate ratio of 1:100. After digestion, 0,8 ul from a heavy
peptide standards mixture was added to the sample. The approximate
concentration of each heavy peptide in this mixture was 3,5 μM. Heavy
peptides were obtained from JPT (SpikeTidesTM_L). The resulting
peptide mix was purified and enriched using C18 columns (Pierce C-18
Spin Columns, Thermo Scientific). Eluted fraction from the C18 column
was evaporated using a Concentrator Plus (Eppendorf) and peptides
were resuspended in 5% acetonitrile plus 0,1% formic acid. All peptide
samples were analyzed on a triple quadrupole spectrometer (Agilent
6420) equipped with an electrospray ion source. Chromatographic se-
parations of peptides were performed on an Agilent 1200 LC system
using a Supelco Bioshell A160 Peptide C18 column (1 mm × 15 cm).
Peptides (up to 15 micrograms of protein digest) were separated with a
linear gradient of acetonitrile/water, containing 0.1% formic acid, at a
flow rate of 75 μl/min. A gradient from 5% to 60% acetonitrile in
45 min was used. The mass spectrometer was operated in multiple re-
action monitoring mode. Transitions were obtained from SRM atlas and
imported into Skyline software [18], which was also used to analyze
results. In the SRM assays validation phase, the transitions obtained
from SRM atlas were analyzed in several runs. Each MRM acquisition
was performed with Q1 and Q3 operated at unit resolution. Once va-
lidated and optimized, the SRM assays were used to quantify all the
analyzed peptides using scheduled SRM mode in a single run (retention
time window, 120 s; cycle time, 1 s). For calculating protein content,
the light to heavy ratio of each peptide was normalized to this same
value from the housekeeping proteins (actin and porin). Finally, the
value obtained in the control sample (tetO7YFH1 minus doxycycline)
was used as a reference value.

5.7. Other methods

To analyze subcellular localization of GFP-tagged proteins, ex-
ponentially growing cells were washed once and resuspended in PBS.
After, they were visualized by fluorescence microscopy (Olympus DP30
BW) using the U-MNUA3 filter. Total cellular iron was quantified as
previously described in [34]. Briefly, cells were digested in 3% nitric
acid and total iron was quantified using bathophenanthroline sulfonate
as a chelator. To determine the rate of superoxide production, ex-
ponentially growing cells were centrifuged and washed twice with
water and finally resuspended in PBS plus 0,1% glycerol and 5 μg/mL
dihydroethidium (DHE, Fluka). The rate of the increase in DHE fluor-
escence (excitation 520 nm, emission 590 nm) was measured during
20 min using a fluorescence microplate reader (Infinite M200, Tekan)
and was used to calculate superoxide production rate. Nitric Oxide le-
vels were measured using the fluorescent dye DAF-FM DA (Life Tech-
nologies). 10 μM DAF-FM DA was added to exponentially growing cells
during 1 h at 30 °C. After, cells were washed twice and resuspended in
PBS. Fluorescence intensity was measured in a flow-cytometer (FACS
Canto II, Becton Dickinson).

5.8. Statistical analysis

All experiments were performed in at least 3 completely in-
dependent culture preparations. The data obtained from the in-
dependent experiments was analyzed using GraphPad Prism v5.01.
Data was analyzed using Students t-test or, when more than two sam-
ples were compared, using 1 way ANOVA followed with ad hoc Tukey's
test. The p-values lower than 0.05(*), 0.01(**) or 0001 (***) were
considered significant. Covariance analysis of the targeted proteomics
data was performed with MetaboAnalyst using the Pearson correlation
coefficient [38].
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