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Abstract: A combination of droplet solidification tester and confocal laser scanning microscope was
used to simulate subrapid solidification and secondary cooling process pertinent to the strip casting.
The IF steel droplet had a delamination structure and the bottom part went through sub-rapid solidi-
fication. During secondary cooling, γ/α transformation mechanism belonged to interface-controlled
massive transformation and the ferrite grains grew quickly. With the increase of cooling rate, the
γ/α transformation temperature decreased and the incubation period and phase transformation
duration reduced. The hardness showed a slight increase due to fine-grain strengthening. With
coiling temperature increasing from 600 ◦C to 800 ◦C, the grain size became larger, precipitates
became coarse, and defects in grain were recovered. Consequently, the hardness decreased.

Keywords: interstitial-free steel; strip casting; subrapid solidification; massive transition; secondary
cooling; coiling

1. Introduction

As a near-net-shape casting technology, strip casting has realized the century-old
dream of directly producing ultrathin steel strip from molten steel [1,2]. Different from
conventional casting and rolling technologies, strip casting process mainly composes of
casting thin strip from liquid steel, in-line hot rolling and secondary cooling, following
with coiling [3]. Since this revolutionary technique eliminates reheating and repeated hot-
rolling steps, it can save a large amount of energy, reduce CO2 emission, simplify operating
process, and reduce investment costs [4,5]. Because of the absence of molten slag, molten
steel can directly contact with the water-cooled copper mold, and thus achieve a cooling
rate of 1000–10,000 K/s (subrapid solidification) [1]. This would bring many benefits on the
solidification microstructure, such as high solid solubility of alloying elements, refinement
of grain size, attenuation of elements segregation, and crystallographic texture [6].

Since H. Bessemer first conceived strip casting in 1846, several strip casting tech-
nologies have been researched and developed, such as single- and twin-roll casting and
single- and twin-belt casting. Among them, twin-roll casting is the most popular and
mature one and has been commercialized in NUCOR Steel. However, NUCOR’s Castrip®

process mainly focuses on plain carbon steels [2]. Many research and development (R&D)
projects on strip casting have been initiated worldwide since 1980, but there are still many
challenges in improving productivity, alleviating surface defects, and producing high alloy
steels, etc. Three main types of research methods have been developed: industrial or
pilot experiment, numerical simulation, and thermal simulation. However, it is usually
costly to conduct industrial or pilot strip casting experiments. Thanks to the progress in
computer science, numerical simulation is considered to be an efficient method to simulate
heat transfer behavior [7], flow field, and solidification behavior [8] of the conventional
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continuous casting process. However, when it comes to subrapid solidification process,
which is a complicated nonequilibrium process with lacking thermal–physical parameters
and boundary conditions, prediction of solidified structure by numerical simulation still
has a long way to go.

Consequently, laboratory-scaled thermal simulation equipment was developed for
the fundamental studies on strip casting. Interfacial heat transfer between melt and mold
has a significant effect on the microstructure and surface quality of steel strip, and the
microstructure has a great effect on mechanical properties such as strength and tough-
ness. Zhai [9] developed a flipping pouring apparatus in which molten steel flows into
a crucible with a chill copper wall in it. This facility can be used to study heat transfer
and solidification of conventional slab cast. However, the cooling rate and flow field
are quite different from the strip casting process. Strezov [10] designed an experimental
apparatus named the dip tester to approximate the initial contacting conditions between
molten steel and copper mold during strip casting by immersing a copper substrate into
molten steel. Then, the dip tester was upgraded in Central South University [11–13]. A
steel strip with a thickness of 0.8–3 mm can be obtained for microstructure and properties
examination. Cramb [14] built a droplet solidification tester in which molten steel directly
drops onto a chill copper substrate to study factors affecting initial solidification behavior
during strip casting, such as surface oxide films [14,15], superheat [16] and the roughness
of substrate [17]. Few research studies went further to study related microstructure and
pertinent thermal schemes.

Interstitial-free (IF) steel is a steel product in which the interstitial elements C and
N are fixed to TiC(N) or NbC(N) by sufficient amount of Ti or Nb [18]. Therefore, IF
steel has an excellent deep-drawing performance. With the good combination of low
yield strength, high plastic anisotropy ratio, and excellent weldability, IF steel has been
widely used in automobile manufacturing industry, household appliances, and so on [19].
Numerous works have been conducted on IF steel to remove interstitial elements [20,21]
and improve formability [22]. From industrial viewpoints, IF steel is generally produced
by the conventional continuous casting and rolling processes, during which reheating and
repeated hot rolling steps escalate operation difficulty and energy consumption greatly.
In terms of the apparent advantages of strip casting technique, it is of great significance
to carry out fundamental research studies on the solidification process, solid-state phase
transformation, and mechanical properties for the strip casting of IF steel. However, related
studies have not been reported at present.

It is believed that the solidification and solid phase transformation is quite different
when provided with a high cooling rate. At slow cooling rate, undercooled austenite
pretends to transform into polygonal ferrite. As the cooling rate increases, massive trans-
formation takes over [23]. Massive transformation is a thermally activated noncooperative
phase transformation. Interface control, composition invariance, and irregular boundaries
are the main features of massive transformation [24–27]. Based on in situ observation
on ultralow carbon steel, Lee [28] revealed that the acicular Widmanstätten ferrite was
also formed through massive transformation mechanism. However, the transformation
mechanism, such as dynamics of nucleation and growth, is still unclear.

In this study, the droplet solidification tester was used to obtain the subrapid solidified
IF steel sample. Then, a confocal laser scanning microscope was used on the subrapid
solidified sample to simulate secondary cooling pertinent to strip casting process, by
which in situ observation of high-temperature phase transformation and grain growth was
achieved. Finally, the effects of cooling rate and coiling temperature on microstructure
evolution and properties of IF steel were discussed.

2. Experimental Details
2.1. Experimental Apparatus

The droplet solidification tester was designed for simulating the subrapid solidification
pertinent to the strip casting by impinging molten steel onto a water-cooled substrate. It was
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first developed at Carnegie Mellon University [14] and further upgraded at Central South
University [16]. The schematic of the droplet solidification tester is shown in Figure 1a,
which is mainly comprised of a heating system, ejection system, cooling system, and
atmosphere control system. A cylindrical steel specimen is held in a vertical quartz tube
with a small hole at bottom. The induction coil outside the quartz tube can heat and melt
the specimen in several seconds. The temperature of steel specimen is measured by an
infrared pyrometer and transmitted to a proportional–integral–derivative (PID) controller,
which can adjust the power of the induction furnace to keep the molten steel at a certain
temperature. Under the impulsion of pressurized high-purity argon, the molten steel can
be ejected and impinged onto a water-cooled copper mold, and then it starts solidifying. At
the same time, the real-time process of droplet ejection and solidification is recorded with a
CCD camera. In order to control the atmosphere, the sample and copper mold are placed
in a bell jar. With the help of deoxidizer and oxygen sensor, the oxygen partial pressure
inside can be adjusted precisely in a wide range.

Figure 1. The schematic illustration of (a) droplet solidification tester and (b) confocal laser scanning microscope.

Confocal laser scanning microscope (CLSM, VL2000DX-SVF18SP) (Yonekura MFG.
Co. Ltd., Osaka, Japan) was used to simulate the secondary cooling and coiling processes
pertinent to the strip casting of IF steel. CLSM is equipped with an elliptical furnace
chamber plated with gold (Figure 1b), in which a halogen lamp was used to heat the sample.
The thermocouple with disk shape was used to hold the Al2O3 crucible and measure the
sample temperature. The temperature schedule of the sample can be programmed in
advance as we need. A laser radiation is used to form a clear real-time image by scanning
the sample surface. When austenite to ferrite transformation takes place, macroscopic
volume change causes surface relief; therefore, the solid-state phase transformation can be
observed in situ.

2.2. Experimental Procedure

The IF steel studied in this work is taken from the slab produced by conventional
continuous casting process, whose chemical composition is shown in Table 1. Usually, the
average shell cooling rate during conventional continuous casting is about 12 ◦C/s [3],
which is far lower than that of strip casting. First, the IF steel slab was cut into cylinders
with a diameter of 6 mm and length of 15 mm, then polished with 400-grit metallographic
sandpaper to remove the oxidized layer. Next, the cylinder sample was put into the
quartz tube of droplet solidification tester. Then, the sample was heated and melted by
the induction coil (Figure 2a). As soon as it reaches the target temperature (1586 ± 3 ◦C),
the liquid sample was ejected onto the copper mold (Figure 2b,c), followed by rapid
solidification to form a hemisphere droplet with a radius of 6 mm (Figure 2d,e). Since the
bottom of the droplet made direct contact with the copper substrate, it should have gone
through subrapid solidification and is of greater interest. The following tests focus on the
region that is 0.5–1.5 mm away from the bottom surface of droplets.
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Table 1. Chemical composition of the studied IF steel (Weight percent).

C N Si Mn P S Al Ti Nb

0.0008 0.0050 0.005 0.107 0.0113 0.0041 0.0335 0.0189 0.0112

Figure 2. Ejection and solidification process during droplet solidification test: (a) melting of the steel sample at target
temperature, (b,c) ejection of liquid steel, (d,e) solidification on chill copper mold.

The second-stage experiment aims at simulating secondary cooling and coiling after
subrapid solidification of IF steel. A 5 × 5 × 3 mm3 subrapid solidified sample was cut
from the bottom of the solidified droplet, as is shown in Figure 1b. The temperature history
of the sample in the CLSM is illustrated in Figure 3. In order to simulate the grain size
and distribution of prior austenite characterized by the as-cast strip, the samples were
heated to 1300 ◦C at a rate of 20 ◦C/s, and then held for 3 min [29], as shown in Figure 3.
Similar schedule for simulating prior austenite grain size was also applied in Pereloma’s
work [30]. After austenization, the sample was cooled to 600–800 ◦C with different cooling
rates and then held for 30 min to simulate the coiling process. For the cooling process from
1300 ◦C to 1050 ◦C, three different cooling rates were set, i.e., 45 ◦C/s, 30 ◦C/s, and 20 ◦C/s.
When the temperature was below 1050 ◦C, the cooling rates were set as 20 ◦C/s, 10 ◦C/s,
and 5 ◦C/s, respectively. Consequently, there were three sets of different cooling rates in
this study, denoted by 45–20 ◦C/s, 30–10 ◦C/s, and 20–05 ◦C/s, respectively. The coiling
temperatures were 600 ◦C, 700 ◦C and 800 ◦C, respectively. Figure 3a shows the first series
of experiments that cooling at different rates following with coiling at 700 ◦C. Figure 3b
shows another series of experiments that coiling at different temperatures after cooling
with the same cooling schedule of 30–10 ◦C/s.

Figure 3. Temperature history in CLSM: (a) different cooling rates, (b) different coiling temperatures.
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2.3. Analytical Methods

The solidified droplet prepared by droplet solidification tester was cut into halves
along the longitudinal direction. The initial IF slab and droplet samples were metallo-
graphically prepared through the standard procedure, followed by picric acid or nitric
acid etching for the microstructure examination through optical microscopy (OM, MR5000)
(Jiangnan Yongxin Optical Co., LTD, Nanjing, China). Factsage 7.2 was used to figure out
equilibrium phase transformation temperature and precipitation thermodynamics. The
solid-state phase transformation was in situ observed by CLSM. After the simulation of
secondary cooling and coiling, the samples were also metallographically prepared, and
then etched by nitric acid for OM examination. Hardness was measured under the load of
2 kg with 10 s retention using a digital Vickers hardness tester (DVHT, HVS-5) (Laizhou
Huayin Test Instrument Co. LTD, Yantai, China). Six individual points were tested for
each sample at the same region (0.2-0.3 mm away from the bottom surface of droplet). The
average and deviation were calculated. Yield strength (YS) and ultimate tensile strength
(UTS) were estimated using the following formulae [31]:

YS = 2.87× HV − 90.7 (1)

UTS = 3.734× HV − 99.8 (2)

3. Results and Discussion
3.1. Thermodynamics Calculation and Microstructures of IF Steel Samples

Figure 4 shows the equilibrium phase diagram calculated by Factsage. Owing to
the low alloying element content, the phase transformation temperatures of liquid (L)→
ferrite (δ), ferrite→ austenite (γ), and austenite→ ferrite (α) are 1536 ◦C, 1392 ◦C, and
920 ◦C, respectively (Figure 4a), which are close to those of pure iron. According to the
thermodynamics calculation (Figure 4b), the precipitate sequence can be speculated to
be TiN, TiC, NbC, and Ti4C2S2 as the temperature decreases. TiN and TiC form at a high
temperature and consume the vast majority of Ti. At 700 ◦C, part of C is substituted by S, so
that TiC transforms into Ti4C2S2. In addition, redundant C diffuses out and combines with
Nb to form NbC around Ti4C2S2. Similar phenomena were also reported by Hua et al. [32].

Figure 4. Thermodynamics calculation: (a) phase evolution and (b) precipitation as a function of temperature.

Figure 5 shows the optical microstructures of different IF steel samples. The steel
materials studied in this work (named initial IF slab hereafter) were produced by a con-
ventional continuous casting process. Figure 5a shows its coarse columnar ferrite grains,
whose diameter is 300–400 µm and length is longer than 1000 µm. After the droplet test,
however, the bottom part of the droplet shows a refined ferrite grain of only dozens of
microns (Figure 5b). The heat transfer between droplet and substrate can be considered to
be nearly one dimension, which is perpendicular to the substrate surface. The solidification
structure is significantly influenced by the heat transfer between steel droplet and copper
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substrate. As is shown in Figure 5c, almost all dendrites are parallel to the heat transfer
direction. As a result, three distinct microstructures were formed within a single droplet,
i.e., diffusionless zone at the bottom, columnar zone in the center, and equiaxial zone at
the top.

Figure 5. Microstructures of IF steel samples: (a) initial IF steel slab, (b) bottom, and (c) longitudinal
section of the solidified droplet. (a,b) were etched by nitric acid and (c) were etched by picric acid.

In the bottom part of droplet, the molten steel made contact with water-cooled copper
substrate directly. Therefore, it solidified so rapidly that solute atoms were frozen in Fe
matrix, forming the diffusionless zone. The diffusionless zone measures up to 2.5 mm in
thickness. Dendrite structures can hardly be observed after etching with picric acid in this
zone. The grains are quite fine, irregular, and elongated along the direction of heat flow.

In the center part of droplet, dendrite structure perpendicular to the surface of the
copper substrate is observed. This 2-mm-thick section is called the columnar zone. Grains
in this part are much coarser than that at the bottom. It is reported that primary dendrite
arm spacing (PDAS) is governed by the cooling rate and carbon content in steel. H. Jacobi
established the following formula to estimate PDAS [33]:

λ1 =
283

CR0.49 (3)

where λ1 represents primary dendrite arm spacing measured as 10–15 µm and CR is the
estimated cooling rate. The cooling rate is estimated to be 400–1000 ◦C/s in the center part
of the solidified droplet. The cooling rate of the bottom part would be larger because it was
closer to the chill copper substrate. Therefore, it can be concluded that the bottom part of
droplet went through a subrapid solidification (>1000 ◦C/s).

Equiaxial grains with coarse primary and secondary dendrite were formed near the
top of solidified droplet. This is attributed to the slowly cooling rate and multidirectional
heat transfer of the top part of solidified droplet.

3.2. Austenite Transformation and Growth during Heating and Isothermal Processes

As shown in Figure 3, a series of CLSM experiments were conducted on subrapid
solidified samples. Typical CLSM pictures of austenite transformation during continuous
heating process are shown in Figure 6. The beginning temperature of transformation
from ferrite to austenite during the heating process of subrapid solidified sample is 978 ◦C
(Figure 6a), which is much higher than that for the case of equilibrium phase transformation
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(903 ◦C, Figure 4a). The number of nuclei increases during the continuous heating process.
Nucleation rate is determined by the atomic mobility through the γ/α interface, which is
given by an Arrhenius term [34]:

.
N(T(t)) = N0exp

(
−Qn

RT(t)

)
(4)

where
.

N(T(t)) is nucleation rate per unit volume, N0 is temperature-independent constant,
Qn is activation energy for atom migration through the γ/α interface, R is the universal
gas constant (=8.31 J/mol.K), and T is the absolute temperature(K). This formula indicates
an exponential increase of nucleation rate with the increase of temperature. During the
formation of austenite, new austenite phases grew into old ferrite grains rapidly and
impinged with each other (Figure 6d–f). About 1.67 s later, the morphology of sample
surface tended to be stable while the temperature reached 1112 ◦C (Figure 6f), indicating
the accomplishment of austenite transformation. It can be found that the austenite grain
size is ~80 µm when the austenization finished.

Figure 6. In situ observation of austenite transformation from ferrite during the heating process of
subrapid solidified sample at a heating rate of 20 ◦C/s: (a–f) are snapshots at 0s, 0.33 s, 0.67 s, 1.0 s,
1.33 s, and 1.67 s from 978 ◦C, respectively. Visible nucleation sites are denoted in red circles.

Typical CLSM pictures of austenite growth during isothermal process are shown in
Figure 7. Compared with the heating process, there were some obvious features during
isothermal process at 1300 ◦C. First, some surface relief within grains disappeared and
the grain boundaries became clearer, as indicated by region I. The migration of grain
boundaries can be identified in Figure 7c (region II). This is direct evidence of grain growth
by boundary migration during isothermal process. After being held at 1300 ◦C for 180 s,
the average austenite grain size of subrapid solidified sample reached ~120 µm, which is
close to 124 µm of Nb microalloying steel [35] produced by the CASTRIP® (Castrip® LLC,
Charlotte, NC, USA) process and 117 ± 44 µm of dual phase steel [29] produced by the
dip tester.
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Figure 7. Austenite growth of subrapid solidified sample held at 1300 ◦C:(a–c) are snapshots at 0 s,
90 s, and 180 s from 1300 ◦C, respectively.

3.3. Ferrite Transformation of Subrapid Solidified IF Steel at Different Cooling Rates

Temperature history used in this section is shown in Figure 3a. According to CLSM
videos, ferrite transformation occurred successively at different cooling schedules during
the cooling process from 1300 ◦C to coiling temperature of 700 ◦C. Some key frames are
listed in Figure 8. 920 ◦C is the equilibrium transformation temperature calculated by Fact-
sage. For the cooling schedule of 20–05 ◦C/s, ferrite phase transformation starts at 830.6 ◦C.
Ferrite mainly nucleates at the austenite grain boundaries, where energy fluctuation and
structural fluctuation are more likely to meet the transformation condition, as in shown
in Figure 8(a2). At about 808.1 ◦C, the surface calms down and does not change until
757.2 ◦C (Figure 8(a3,a4)). Similar processes of phase transformation can also be observed
for cooling schedules of 30–10 ◦C/s (Figure 8(b1–b4)) and 45–20 ◦C/s (Figure 8(c1–c4)),
but temperature and duration of ferrite transformation are different for different cooling
schedules. As is abstracted in Figure 9, with the increase of cooling rate from 20–05 ◦C/s to
30–10 ◦C/s and 45–20 ◦C/s, the γ/α transformation temperature decreases from 830 ◦C
to 801 ◦C and 783 ◦C, while the incubation period and phase transition duration reduces.
This is because the high cooling rate can provide a remarkable supercooling for the trans-
formation from austenite to ferrite, and thus promotes ferrite nucleation and speeds up the
growth process. In addition, it can also be found that the microstructures get refined with
the increase of secondary cooling rate. This is because a higher cooling rate can increase
the nucleation rate of ferrite and refine the final microstructure.

Due to the ultralow content of carbon, long-range diffusion is not necessary at γ/α
interface during the ferrite transformation. The phase transformation belongs to interface-
controlled type. Thermally activated atoms cross the γ/α interface and rearrange as ferrite
quickly. The arrows in Figure 8(b2,b3) indicate the position and growth direction of α
grains. The growth rate was about 350 mm/s on average. Some α grains grew across prior
γ grains, indicating that the γ/α interface was incoherent. Figure 8(a5–c5) show the optical
microstructures of the above three samples after coiling at 700 ◦C. They all have ragged
ferrite grains with irregular boundaries. All of these features match well with massive
transformation [28,36].
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boundaries. Red arrows in (b2,b3) depict a route of γ/α interface migration. Black curves in (b2,b3) outline prior
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Figure 9. Temperature and duration of phase transformation from austenite to ferrite at different
cooling rates. Time = 0 s corresponds to initial transformation temperature from austenite to ferrite at
equilibrium condition.
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3.4. Effect of Coiling Temperature on the Microstructure of Subrapid Solidified IF Steel

Temperature history used in this section is shown in Figure 3b, by which subrapid
solidified samples with different coiling temperatures can be obtained. Figure 10 shows
the CLSM pictures and optical microstructures of samples after coiling simulation at
600 ◦C, 700 ◦C, and 800 ◦C, respectively. The microstructures are identified to be ferrite
with different grain sizes and irregular boundaries. When coiled at 600 ◦C and 700 ◦C,
the average grain sizes of the samples are quite similar. According to Figure 9, these
coiling temperatures are lower than the finishing temperature of ferrite transformation
(771 ◦C) at the cooling schedule of 30–10 ◦C/s, that is, the coiling process was conducted
after ferrite transformation. Due to the relative low temperature and pinning effect of
precipitate, the ferrite grains did not grow obviously during the coiling process. As is
shown in Figure 9, the start temperature of ferrite transformation is 801 ◦C at the cooling
schedule of 30–10 ◦C/s, so the sample went through an isothermal phase transformation
when coiled at 800 ◦C. Due to a higher γ/α transformation and lower supercooling, the
resulting grain size is obviously larger than that of 600 ◦C and 700 ◦C coiling conditions.
A higher coiling temperature would eliminate several lattice defects generated during
cooling. The scavenging effect of titanium and niobium in IF steel not only renders the
ferrite matrix nearly interstitial free but also leads to the formation of precipitates. The
formation of precipitates is influenced by coiling temperatures during strip casting. As is
indicated in Figure 4b, TiN is the dominating precipitate formed during and after coiling.
Coiling at a higher temperature would promote the formation and coarsening of TiN and
TiC. In contrast, coiling at a lower temperature may result in the insufficient scavenging
of nitrogen in solid solution. The formation of Ti4C2S2 and NbC at 600 ◦C would also
enhance the strength of the coiled sample. The whole microstructure evolution process
during subrapid solidification, reaustenitization, secondary cooling, and grains growth
after coiling is schematically described in Figure 11.

Figure 10. CLSM pictures and optical microstructures after coiling simulation at (a) 600 ◦C, (b) 700 ◦C, and (c)
800 ◦C, respectively.
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Figure 11. Schematic diagram of the microstructure evolution during the simulated strip casting process of IF steel.

3.5. Relationship between Mechanical Properties and Microstructure

Vickers hardness of samples under different conditions is measured using a Vickers
hardness tester. The yield strength and ultimate tensile strength are estimated by the
empirical formulae. They show a similar pattern with hardness variation (Table 2). It is
well known that there are four basic types of strengthening mechanisms for metals, i.e.,
solution strengthening, dislocation strengthening, precipitate strengthening, and fine-grain
strengthening [37]. As shown in Figure 12 and Table 2, the initial IF slab sample shows the
lowest hardness and strength compared with the other samples. This can be attributed to
the coarse columnar ferrite grain and low dislocation density due to slow solidification. The
hardness or strength of the subrapid solidified sample in as-cast condition is higher than
that of the initial IF slab. This is because the subrapid solidified sample has a more refined
ferrite structure (Figure 5) and higher dislocation density. A higher dislocation density of
the subrapid solidified sample than that of the initial IF slab is caused by the high cooling
rate during droplet solidification test. Then, the subrapid solidified sample in as-cast
condition was used to simulate the secondary cooling and coiling processes by CLSM. It
can be found that the hardness or strength increase with the increase of secondary cooling
rate, as shown in Table 2. This can be explained as a higher secondary cooling rate results in
a finer ferrite structure (Figure 8(a5–c5). When increasing the coiling temperature, however,
the hardness or strength decreases. This is attributed to the coarsening of precipitates,
decreasing dislocation density, and increasing ferrite grain size. Furthermore, the hardness
or strength of samples coiled at 700 ◦C or 800 ◦C are lower than that of as-cast subrapid
solidified sample, but the sample coiled at 600 ◦C presents a highest hardness or strength
among all samples. As is shown in Figure 4b, holding at 600 ◦C can maximize weight
percent of precipitations. What’s more, a low temperature can delay the aggregation
of precipitation particles. Consequently, coiling at 600 ◦C can obtain a higher hardness
and strength.
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Table 2. Vickers hardness and estimated strength.

Samples Vickers
Hardness

Estimated Yield
Strength (MPa)

Estimated Ultimate
Tensile Strength (MPa)

Initial IF slab 77.7 ± 3.4 132.8 190.4
As-cast subrapid
solidified sample 84.8 ± 3.2 153.1 216.8

Cooling-20–05 ◦C/s 78.7 ± 3.5 135.7 194.2
Coiling-600 ◦C 90.1 ± 3.8 168.3 236.5

Cooling-30–10 ◦C/s
(Coiling-700 ◦C) 81.1 ± 4.2 142.7 203.2

Coiling-800 ◦C 80.4 ± 1.8 140.4 200.3
Cooling-45–20 ◦C/s 82.4 ± 1.2 146.4 208.0

Figure 12. Vickers hardness under different conditions. Error bar represents the standard deviation.

4. Conclusions

Based on the droplet solidification technique, the CLSM experiment on subrapid
solidified droplet was conducted for the first time to simulate secondary cooling and
coiling processes pertinent to strip casting, by which in situ observation of high-temperature
transformation and grain growth was achieved. Then, the effects of cooling rate and coiling
temperature on the microstructure and mechanical properties of IF steel were studied. The
main results can be summarized as follows:

(1) The droplet has a hierarchical structure: fine diffusionless zone at the bottom (~2.5 mm),
columnar zone in the center (~2.0 mm), and equiaxial zone at the top (~0.5 mm). By
measuring dendrite arm spacing in columnar zone, the solidification rate at the bot-
tom is indirectly estimated to be higher than 1000 ◦C/s, confirming that the droplet
tester can simulate subrapid solidification successfully. Fine grains with irregular
boundaries were formed in the bottom part of droplet during subrapid solidification.
Its hardness is 84.8 HV, higher than that of the initial IF slab (77.7 HV).

(2) After reheating to 1300 ◦C at the rate of 20 ◦C/s and held for 3 min, the average
austenite grain size of subrapid solidified sample reached ~120 µm. Upon this mi-
crostructure, secondary cooling and hot coiling is simulated. With the help of CLSM,
interface-controlled massive transformation is directly observed. Ferrite mainly nucle-
ates at the austenite grain boundaries, and the ferrite grains grow quickly (~350 µm/s).

(3) With the increase of secondary cooling rate, the γ/α transformation temperature
decreases, and the incubation period and phase transformation duration are reduced.
As a result, the hardness shows a slight increase due to fine-grain strengthening.
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(4) With coiling temperature increasing from 600 ◦C to 800 ◦C, the grain size becomes
larger, precipitates such as TiN and TiC become coarser, and lattice defects of grain
decrease. Consequently, the hardness of solidified sample decreases.
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