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ABSTRACT: The coronavirus disease of 2019 (COVID-19) pandemic
speaks to the need for drugs that not only are effective but also remain
effective given the mutation rate of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). To this end, we describe structural
binding-site insights for facilitating COVID-19 drug design when
targeting RNA-dependent RNA polymerase (RDRP), a common
conserved component of RNA viruses. We combined an RDRP structure
data set, including 384 RDRP PDB structures and all corresponding
RDRP−ligand interaction fingerprints, thereby revealing the structural
characteristics of the active sites for application to RDRP-targeted drug
discovery. Specifically, we revealed the intrinsic ligand-binding modes and
associated RDRP structural characteristics. Four types of binding modes
with corresponding binding pockets were determined, suggesting two
major subpockets available for drug discovery. We screened a drug data set of 7894 compounds against these binding pockets and
presented the top-10 small molecules as a starting point in further exploring the prevention of virus replication. In summary, the
binding characteristics determined here help rationalize RDRP-targeted drug discovery and provide insights into the specific binding
mechanisms important for containing the SARS-CoV-2 virus.

KEYWORDS: RNA virus, SARS-CoV-2, COVID-19, RNA-dependent RNA polymerase (RDRP), structural RDRP data set,
protein−ligand interaction fingerprint, structure-based drug design, function-site interaction fingerprint, drug repurposing,
drug virtual screening

1. INTRODUCTION

The coronavirus disease of 2019 (COVID-19) pandemic is a
severe threat to global public health, infecting over 15 million
people, according to the World Health Organization (WHO)
situation report.1 Consequently, researchers have focused on
developing convenient testing techniques, vaccines, and drug
design and repurposing to mitigate the causative coronavirus,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2).2−4 However, to date, there are no effective COVID-19-
specific therapeutic agents being prescribed. Laboratory testing
techniques have made breakthroughs: the Food and Drug
Administration has recently granted an emergency use
authorization for the Sofia 2 SARS Antigen FIA COVID-19
test,5 which can detect the virus within minutes. Progress in
detection is important, but it does not speak to a treatment;
hence, the research community is developing specialized
SARS-CoV-2 vaccines and drugs to mitigate and treat the
pandemic.6

Drug discovery is thwarted by the multiple mutations found
in the SARS-CoV-2 family.7 Three distinct “variants” from the
SARS-CoV-2 genomes sampled7 between December 24, 2019,
and March 4, 2020, have been reported. Thus, it is challenging

to design novel COVID-19 medications, which not only are
effective but also remain so given the mutation rate.
Scientists have established SARS-CoV-2 as an RNA virus

containing a single-stranded positive-sense RNA genome.2

RNA viruses have been the main cause of epidemics over the
last two decades: SARS8 in 2003, MERS9 in 2012, Ebola10 in
2014, Zika11,12 in 2015, and now COVID-19. RNA viruses are
divided into 4 classes:3 single positive-strand RNA ((+)-
ssRNA) such as SARS, MERS, and SARS-CoV-2; single
negative-strand RNA ((−)ssRNA) such as Ebola; double-
strand RNA (dsRNA); and retroviruses such as HIV.13,14

These viruses replicate their genetic material within host
cells;15 hence, one way to limit infection is to inhibit virus
replication. Apart from retroviruses, the other classes all
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contain a common RNA-dependent RNA polymerase
(RDRP),16 which catalyzes the replication of viral RNA and
hence is a prime drug target. Multiple high-resolution RDRP
3D structures have been solved, each with a similar core
architecture,17 namely a “cupped right hand” with 7 motifs
(A−G) comprising “palm”, “fingers”, and “thumb” (Figure 1
and Table S1).18,19 Here, we propose a drug discovery scheme
targeting the conserved RDRP.

On April 29, 2020, the National Institutes of Health (NIH)
indicated that the repurposed drug remdesivir, targeting
RDRP, shortened patients’ time to recovery by 4 days, or
31%. However, remdesivir did not show significant efficacy in
reducing mortality,20 but it is a start in the quest for RDRP-
targeted drugs. Here, we advance anti-COVID-19 drug
research and development by revealing new features of drug
binding to RDRP using a computational pharmacology
approach.
We collected 384 PDB structures of RDRP catalytic

domains and their complexes (available as of July 1, 2020)
from 47 RNA viruses, including coronavirus, as our RDRP data
set (see Methods). Then, using computational pharmacology
methods, notably a function-site interaction fingerprint
method, we characterized the RDRP−ligand interactions to
provide new insights into antiviral drug design and discovery.
Finally, combining the new structure-based insights and a
virtual docking process with an antiviral compound library
from Drugbank (www.drugbank.ca), we determined specific
potential inhibitors as a proof of concept for drug-repurposing
opportunities as well as for gaining new insights into possible
modes of inhibition.

2. METHODS

2.1. Structural RDRP Data Set

We first counted the PDB IDs of all RDRP structures by
accessing the ProRule accession number of RDRP
(PRU00539) using the PROSITE21 database and then
downloaded all corresponding PDB structures22 as of February
26, 2020. Then, we manually collected RDRP structures
deposited in the PDB database from February 27, 2020, to
June 30, 2020, for a total of 384 RDRP (EC 2.7.7.48) catalytic
domain structures (Table S2). We then filtered out all of apo-
RDRP structures and complexes with invalid small molecules
such as buffers, organic cofactors, and solvent molecules such
as dimethyl sulfoxide (DMSO), flavin adenine dinucleotide
(FAD), and glycerol by checking the “SITE_DESCRIPTION”
keywords in each PDB structure. Furthermore, we removed
complexes where the ligands bind the surface, or other parts of
the RDRP catalytic domain, rather than the core architecture.

Our final list contained 141 PDB structures of ligand-bound
complexes used to encode the function-site interaction
fingerprints in this paper.
The pairwise similarity of all ligands was calculated using the

screenmd from ChemAxon.23 Each ligand is described using
the molecular descriptor ECFP with a fixed length of 120 bits,
and then the pairwise similarity is calculated using a Tanimoto
coefficient.24−26 In the paper, the chemical structures are
drawn using Marvinjs from ChemAxon.27

2.2. Encoding Function-Site Interaction Fingerprints
(Fs-IFPs)

The Fs-IFP represents the characteristics of protein−ligand
interactions at functional sites and does so on a proteome-wide
scale, as described previously.28−31 Briefly, the Fs-IFP method
combines a sequence-order-independent structural binding-site
alignment method32−36 with the protein−ligand interaction
fingerprint strategy37−39 to achieve comparable binding
features. Application of the Fs-IFP method involves three
steps. The first step is to align all of the binding sites. The
secondary structures of all RDRP catalytic domains are aligned
against the SARS-CoV-2 RDRP structure template using the
sequence-order-independent structural alignment program
TM-align with the default scoring function. TM-align results
have a value between 0 and 1. A value >0.3 implies a similar
fold, and >0.5 implies the same fold.34 The alignment of the
binding sites was performed using SMAP with default
parameters.32,33 The SARS-CoV-2 RDRP−remdesivir complex
(PDB 7BV2) was used as the template, and residues within 15
Å of the ligand defined the binding site.40 The second step is to
determine the Fs-IFP of every complex. Here, the interaction
fingerprints are encoded using a previously described
interaction fingerprint method (IChem).41 In the third step,
the comparable interaction fingerprints of each complex are
clustered using the k-means method in the R package.42

2.3. High-Throughput Screening

For screening, 7894 annotated drug molecules were down-
loaded from Drugbank to form our compound library.43 These
drugs were docked to the RDRP catalytic domain using the
docking software Surflex44 v4.103. Surflex uses a pseudomo-
lecule (also called an idealized active ligand or protomol) as a
target to generate the putative poses of ligands in the protein
binding site.45 The putative poses are scored using a
Hammerhead scoring function.46 We use a residue-based
method to generate the protomol, i.e., the residues that border
the active site. For subpocket 1, the distilled binding
characteristics (see Results) show that subpocket 1 is located
within motifs A−D and F−G. From these motifs, on the basis
of the binding characteristics, we chose residues N497, K551,
R553, D623, S682, D760, and F793 as bordering the active site
and hence to generate the protomol molecule of subpocket 1.
Similarly, subpocket 2 involves motif E, helix1, and the thumb
lobe (see Results). Hence, we chose residues F594, S814, and
P830 as bordering the active site and from which to generate a
protomol molecule.44 These two protomol molecules that
define different subpockets were chosen to screen for potential
compounds using default parameters and the scoring function.
All docked small molecules with different binding conforma-
tions were sorted based on the binding affinity score. The top-
five highest scoring molecules from different subpockets were
further analyzed.

Figure 1. Conserved motifs in the RDRP binding site (PDB 7BV2).
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3. RESULTS

3.1. RDRP Structures and Ligands

The 384 released RDRP PDB structures from 47 different
RNA viruses belong to 3 classes: (−)ssRNA (8), dsRNA (10),

and (+)ssRNA viruses (29), as shown on the RDRP
dendrogram (Figure 2a). Out of the 384 structures, there are
69 structures from dsRNA, 15 structures from (−)ssRNA, and
300 structures from (+)ssRNA viruses, including SARS-CoV-2
(Table S2). All RDRP catalytic domains show high similarity
(Figure 2b) based on secondary structure alignment (see
Methods). Specifically, in the “finger” and “thumb” regions
they have the same folding patterns (helix and sheet) across all
viruses. Likewise, the conserved core architectures of all
RDRPs, such as motif C, are high similar and overlap (Figure
2b). The global structural similarity between all RDRP
catalytic domains and the SARS-CoV-2 RDRP was calculated
(see Methods). The lowest similarity 0.33, is from bacteria,
Escherichia coli (UniProt P0A6P1). The top-three viruses with
a RDRP similarity above 0.65 are poliovirus type 1 (UniProt
P03300), hepatitis C virus (HCV) genotype 2a (UniProt
Q99IB8), and hepatitis C virus genotype 1b (UniProt P26663,
Figure S1). In sum, structurally, SARS-CoV-2 has high global/
core structural similarity to the RDRP catalytic domains of all
other RNA viruses, which provides an opportunity for
structure-based COVID-19 drug design and repurposing,
noting that keys differences lie in the subtle details.

Figure 2. (a) RDRP structure data set. The tree branches are marked
by different RNA virus categories. The sub-branches show different
viruses marked by UniProt entries. Each leaf indicates a PDB
structure, and the PDB names are color-coded according to the
different viruses. The corresponding high-resolution figure is available
in Figure S2. (b) Alignment of all binding sites within the RDRP data
set.

Figure 3. (a) Top 16 common ligands in our complex data set. (b)
Pairwise similarity of all compounds.
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Out of the 384 RDRP structures, 141 have ligands bound
(see Table S3 columns 1−3). The 141 ligands come from 105
different compounds, of which 16 compounds occur more than
once (Figure 3a). The top-four recurring compounds are GTP
(15), UTP(5), CH1(5), and ATP(5), which all have the same
triphosphate fragment. However, the pairwise similarities of
85% compounds are below 0.25 (Figure 3b), which guarantees
ligand diversity and diverse chemotypes.

3.2. RDRP Ligand-Binding Characteristics

Using the SARS-CoV-2 RDRP binding site as a template, 141
binding sites were aligned using a sequence-order-independent
pocket alignment method resulting in a comparison matrix of
interacting amino acids (see Methods). Within the matrix,
columns of amino acids without any encoded interaction
information were removed. Thus, each aligned binding site
consists of 123 columns of amino acids, i.e., the interaction
fingerprint (Table S3). According to the similarity of function-
site interaction fingerprints over all complexes, it was possible
to divide the binding modes into four classes, where each class
contains multiple PDB structures from different kinds of
viruses (Table 1). Each class possesses distinct binding
characteristics (Figure 4).
3.2.1. Class I. There are 11 aligned PDB structures

belonging to the same Dengue virus (UniProt entry:
Q6YMS4) in this class (Table 1). The aligned binding sites
have almost the same binding patterns (Figure 4). Within
Motifs A−D and Motifs F and G there are no interaction
fingerprints; however, conserved interaction fingerprints exist
in motif E, helix1, and the thumb domain, implying the ligand-
binding site is located at the palm region and between motif E
and the thumb domain (Figure 5a). Residues L511, H512, and
L514 of helix1 and C709 and S710 of motif E provide the

conserved interactions (Figure 5a). In the thumb domain, the
interaction fingerprints of all complexes in the class are similar,
especially in the columns marked with the dashed rectangle,
(Figure 4). The role of this class I binding pocket has been
discussed by other groups previously.47 Noble et al. inhibited
enzyme activity through fragment screening47 that identified
this binding pocket. As part of their study, by changing a
phenyl to a thiophene, a higher binding affinity was obtained,
highlighting the role of this pocket in subsequent drug design.

3.2.2. Class II. There are 50 PDB structures from 15 viruses
(Table 1) in this class (Figure 4). Class II interaction
fingerprints exist mainly in the region of motifs A−D and
motifs F and G, implying the ligand is located at the regions of
the “palm” and “fingers” (Figure 5b). Remdesivir is reported to
bind in this subpocket19 where K551 and R553 are located
within motif F, D623 located within motif A, S682 located
within motif B, and D760 located within motif C are the major
contributors to ligand binding (PDB 7BV2). While these
amino acids are conserved, remdesivir only provides moderate
improvement in the recovery time of patients with severe
symptoms of COVID-19.4 Further exploring this binding site
with compounds of a higher binding affinity would seem
warranted.

3.2.3. Class III. There are 17 PDB structures belonging to
three RNA viruses (Table 1) in this class. The interaction
fingerprints are distributed in the regions helix1, motif C, motif
E, and the thumb (Figure 4), which form a binding pocket to
accommodate the ligand (Figure 5c). Specifically, in helix1, the
three residues P197, R200, and L204 provide the primary
interactions with the ligand and are conserved in the class
(Figure 4). Motif C is a beta-hairpin folding (Figure 1), and on
each strand, there are 3 conserved amino acids (residues 314−

Figure 4. Aligned ligand-binding site interaction matrix with the clustering of interaction fingerprints (Y-axis) and the sequence conservation logo
of interaction-involved amino acids (X-axis). Each row represents the interaction fingerprint of one complex. Each column represents the
interaction fingerprint contributed by the amino acid in the same spatial position across all aligned binding sites. The purple area indicates that an
interaction exists with the bound ligand in the corresponding RDRP complex and the corresponding column, and gray indicates no interaction. The
dashed rectangles approximately delineate the unique characteristics of each class.
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316 and 319−321) contributing to forming the binding pocket
(Figures 4 and 5c). Within motif E, L360, I363, S365, C366,
and S368 provide the main binding interactions (Figure 5c).
Two conserved residues (L360 and I363) define a unique
fingerprint for the class. Compared with the class I binding

pocket, both pockets are composed of helix1, motif E, and the
thumb domain. However, the difference is that in class III,
motif C is involved as well; thus, the binding pockets partially
overlap each other. In a previous report,48 Mayland et al.
discovered an inhibitor GSK-5852, which just targets the class
III pocket in HCV RDRP, to treat HCV infection.48

3.2.4. Class IV. This is the largest class with 63 PDB
structures belonging to 4 viruses (Table 1) and has interaction
fingerprints most similar to class I and class III (Figure 4).
Specifically, using a HCV complex (PDB ID 3cwj) as the
representative (Figure 5d), in the region of helix1, F193, P197,
and R200 interact with the ligand. Residues D318 and D319
from motif C and residue C366 from motif E are also
conserved, as was found in class III. Distinct from classes I and
III, residues from motif B participate in the binding
interactions, notably N291. Another difference occurs in
motif E; only residue C366 from the hairpin loop interacts
with the ligand, differing from Class III, which involves
additional residues. Interestingly, within motif E, C366 is
highly conserved (Figure 4). In the Thumb domain, there are
interactions not found in the other classes. Thus, in class IV,
the pocket is composed of the thumb domain, motifs B, C, and
E (Figure 5d).

Figure 5. (a−d) binding patterns for the corresponding Class I−IV (PDB 5F3Z, 7BV2, 4KE5, and 3CWJ, respectively). Note, helix1 refers to the
helix located upstream of motif A in all RDRP structures.

Table 2. Top-Five Putative Inhibitors for Sub-Pockets 1 and
2 with the Docking Score and Their Corresponding Primary
Targets

pockets name
docking
score primary target

subpocket 1 darexaban 9.8 factor Xa
4SC-202 9.4 histone deacetylases
DB07779 9.1 dipeptidyl peptidase 4
osimertinib 9.0 epidermal growth factor receptor

(EGFR)
CUDC-907 8.9 phosphoinositide 3-kinase and

histone deacetylases
subpocket 2 DB07005 8.4 thrombospondin receptor

LY-517717 8.2 coagulation factor X
pentamidine 8.0 DNA and tRNA (cytosine(38)-

C(5)) methyltransferase
DB07074 8.0 coagulation factor XI
nafamostat 7.9 serine protease
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In summary, according to our clustering analysis, there are
four distinct binding modes in the conserved core architecture
of RDRP, each with different subpockets to accommodate
diverse inhibitors. Classes I, III, and IV have helix1 and motif E
that always participate in ligand-binding interactions; hence,
their binding pockets have a common overlap. Class II has a
different subpocket, which has been exploited as a primary
target11 for studying the drug remdesivir to fight COVID-19.11

3.3. COVID-2019 RDRP-Targeted drug screening

With the above-mentioned binding classes in mind, we
screened 7894 FDA-approved small-molecule drugs targeting
the RDRP catalytic domain. In so doing, we recognize the
limitations of such in silico findings; they are nothing more
than suggestions requiring experimental validation. Two
different subpockets were chosen as the binding pockets.
Subpocket 1 is located within class II and subpocket 2 is
located in the area centered on the common region of classes I,
III, and IV (see the two subpockets highlighted with spheres44

in Figure S3). Through virtual screening (see Methods), the
top-five highest scoring compounds against each subpocket are
listed in Table 2. For subpocket 1, there is an inhibitor of
factor Xa (Darexaban),49 which prevents venous thromboemb-
olism by acting as an anticoagulant and antithrombotic after
surgery; two inhibitors of histone deacetylase (4SC-202 and
CUDC-907);50,51 an inhibitor of dipeptidyl peptidase 4
(DB07779);22 and an inhibitor of EGFR (Osimertinib).52

These subpocket 1 inhibitors interact with Motifs A−D and F
and G (Figure 6a). For comparison, remdesivir (accession
number DB14761) is included in our compound library, and
its docking score is 6.0 (Figure 5b), considerably less than our
top-scoring inhibitors.
Screening of subpocket 2 revealed five inhibitors with a

binding affinity of >7.9 (Table 2, Figure 6b). It is noteworthy
that two of the inhibitors (LY-517717 and DB07074)53 target
coagulation factors X and XI, respectively. It is reported that
COVID-19 induces blood clotting in the lungs and else-
where.54,55 As blood thinners, these drugs might have the
added value of reducing blood clotting,56 and indeed, there are
multiple clinical trials using anticoagulants.57 Pentamidine is an
agent to treat pneumocystis pneumonia in HIV-infected
patients.58 Nafamostat is a short-acting anticoagulant, which
acts as a serine protease inhibitor and is reported to have
antiviral properties,59 and is undergoing a clinical trial in Japan.

To summarize, we characterized RDRP binding pockets,
suggesting four classes of binding modes (classes I−IV). In
silico screening against two of these completely different
pockets (subpockets 1 and 2) provided a series of putative
inhibitors with a high binding affinity. Again, we emphasize
that experimental validation is necessary to draw any meaning
from this putative outcome given, among other possible
computational inaccuracies, the unreliability of such binding
affinities.

4. CONCLUSION

In this paper, we explored the structural characteristics of the
RDRP catalytic domain using a computational pharmacology
method. More specifically, we focused on the ligand-binding
characteristics of the RDRP binding site using a receptor−
ligand function-site interaction fingerprint strategy. We
collected all available RDRP structures and analyzed the
conserved core structure. Across the entire data set, a “cupped
right hand” folding pattern and 7 conserved motifs characterize
a highly similar RDRP architecture. By analyzing these
protein−ligand complexes with an overall shared architecture,
four different classes of binding modes were revealed. Class II
is based on the pocket consisting of motifs A−D and F and G,
whereas classes I, III, and IV have distinct yet somewhat
overlapping characteristics; for example, helix1 and motif E
always participate in ligand binding. In terms of distinct
characteristics, class I has a unique binding mode in the thumb
domain, class III in motif E, and class IV in motifs B and E. On
the basis of these RDRP−ligand-binding features, multiple
FDA drugs were screened to determine possible repurposing
opportunities. The top-10 speculative inhibitors against the
two most distinct subpockets are discussed. One is already part
of a clinical trial as a potential COVID-19 drug, and three
anticoagulants are also included. In sum, these results provide
structural insights into targeting the RDRP catalytic domain
and provide potential repurposing opportunities that need
experimental verification.
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Figure 6. Putative inhibitors obtained via virtual screening (PDB 7BV2): (a) Targeting subpocket 1 and (b) subpocket 2.
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Conserved motifs and their sequences (Table S1),
similarity of catalytic domains between all RDRPs and
SARS-CoV-2 RDRP (Figure S1), RDRP structure data
set (Figure S2), and two subpockets (gray and lime)
used to screen the compound library (Figure S3) (PDF)
The complete RDRP data set (Table S2) (XLSX)
The aligned ligand-binding sites (Table S3) (XLSX)
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