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New molecular design of conjugated polymer that possess high sensitivity to vapour and self-recovering
property against pressure is proposed. We synthesised a rod-rod diblock copolymer, poly(3-((3S)-
3,7-dimethyl-octyl)-thiophene)-block-poly(4-octyl phenylisocyanide) (PTh-b-PPl), composed of a
T-conjugated polymer and a rod-type helical coiled polymer. Introduction of PPI block in the block
copolymer architecture enabled PTh-b-PPI film to exhibit solid-to-liquid crystal phase transition by

. exposure to chloroform vapour, accompanied with colour change (purple-to-yellow), which is the

. firstreport on a new phenomenon of “vapour-induced liquid crystallinity”. In addition, PTh-b-PPI film
showed colour change (purple-to-vermillion) during mechanical shearing, and spontaneously recovered
under ambient conditions. We concluded that rod-type helical coiled polymer PPI block performs

. crucial roles as intrinsically vapour-induced liquid crystallinity and self-reassembling property in the

. architecture of PTh-b-PPI.

Stimuli-responsive materials have been attracted substantial attention for a wide variety of potential applications
such as sensors!, drug delivery systems® and actuators®. Responsiveness to external stimuli, for example heat,
. light, electrical and magnetic field, vapour and pressure, involves changes of molecular conformation and packing
structure of molecules that converts physical signals into optical, electrical, mechanical and thermal signals*.
One of the strategies to create stimuli-responsive materials is the incorporation of liquid crystal (LC) compo-
nent in the molecular structure. LC is one of the self-organized soft materials originating from weak interactions
of van der Waals force and the excluded volume effect. LC materials spontaneously form organized structures
. and possess dynamic properties against external stimuli such as shear-stress, electrical and magnetic field. With
. these advantages, the materials incorporated with well-designed LC moiety into the molecular structure show
. mechanical-induced phase transition®’, and form spontaneous ordered structures with anisotropic functionali-
ties®® and photo- and magnetic field-assisted macroscopic orientations'® 1,
Molecular design of conjugated polymers (CPs) with high stimuli-responsiveness is challenging task. Because
CPs possess strong ©-T interaction between polymer chains in aggregation state, the film hardly shows respon-
siveness to external stimuli. To control conformation of the CP backbones, modifications of side chain have been
carried out, which provide improvement of solubility, promotion for self-organization with higher order, and
suppression of inter-chain interaction between the CP backbones'*"'*. However, it is still challenging to create CP
films with high sensitivities to weak external stimuli, such as vapour and low pressure. CPs are attractive systems
since they have w-electrons delocalized over the polymer backbone that are origins of electronic, optical and mag-
netic properties. In this context, “soft CPs” with high sensitivity to the above stimuli is greatly desired for future
smart polymers. If such small stimuli are converted to the dynamic conformational change of the CPs, the signals
are amplified, resulting in the drastic changes in colour, conductivity and electronic properties.
In this study, based on the recent advancement of supramolecular chemistry, we strategically designed block
copolymer, poly(3-((3S)-3,7-dimethyl-octyl)-thiophene)-block-poly(4-octyl phenylisocyanide) (PTh-b-PPI),
composed of a CP and a rod-type helical coiled polymer as shown in Fig. 1. Polythiophene is one of CPs and
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Figure 1. Molecular design. Synthetic route for PTh-b-PPI through Grignard metathesis (GRIM) reaction in
one-pot. dppp = 1,3-Bis(diphenylphosphino)propane. THF = Tetrahydrofuran.

exhibits colour changes in visible range originating from the conformational changes in the polymer backbone
between the planar state (purple) and the twisted state (yellow)'. The conformation of polythiophene that has
chiral side chain has also been investigated, and it is considered to form helical packing of predominantly planar
chains in the aggregation state driven by strong ©-7 interaction'®. Introducing chiral side chain into polythio-
phene block also allows us to investigate the aggregation process in detail since we can track its process using
circular dichroism (CD) spectroscopy. Therefore, we expect that the poly(3-((3S)-3,7-dimethyl-octyl)-thiophene
(PTh) block can act as a colour-changing chiral chromophore in visible range by external stimuli. On the other
hand, polyphenylisocyanide form rigid rod-like helical backbone. Polyphenylisocyanide with bulky side chains
forms a rigid helical backbone not only in the solid state but also in solution. Because of its anisotropic rod-shaped
structure, the polyphenylisocyanide segment can serve as a mesogen for liquid crystal superstructure in concen-
trated solution'”. Recently, polyphenylisocyanide can also be used as an alignment medium to measure resid-
ual dipolar coupling in NMR studies!® since polyphenylisocyanide has magnetically anisotropic phenyl rings as
side chains oriented in the peripheral position. Therefore, we envisioned that the poly(4-octyl phenylisocyanide)
(PPI) unique structural motif has potential to be a novel responsive building block in block copolymers, which
provides LC-like self-assembling and magnetic-field responsiveness.

Recently, Wu and Bielawski first reported the one-pot synthesis of polythiophene-block-polyphenylisocyanide,
consisting of poly(3-hexylthiophene) and poly(decyl 4-phenylisocyanide)'®. They have reported on a variety of
morphologies of polythiophene-block-polyphenylisocyanide derivatives that form nanofibril, micelle and vesicle
in a mixture of good and poor solvents and its pH-responsiveness?-2>.

We coincidentally found potentially important phenomena of PTh-b-PP1I film: vapour-induced liquid crys-
tallinity and self-recovering mechanochromism. We found out PPI block performs crucial roles in the block
copolymer, which are intrisically vapour-induced liquid crystallinity and self-reassembling property. PTh-b-PPI
film possesses the softness and flexibility enough to show high sensitivity to solvent vapours and shear stresses.

Results and Discussion

Synthesis and characterisation of PTh-b-PPl. PTh-b-PPI was synthesised according to the previously
reported literature using the Grignard metathesis (GRIM) reaction'® 2% 2. First, we prepared Ni-terminated
PTh macro-initiator from 2,5-dibromothiophene in a flask, then PPI monomer was added. When the polym-
erisation ceased, the resultant polymer was washed with a large volume of methanol and collected by filtration.
Gel-permeation chromatography (GPC) showed a number average molecular weight M, = 16000 and a poly-
dispersity PDI=4.5. The PDI value was relatively high because the GRIM reaction usually proceeds in living
fashion. The high value of PDI is probably caused by the broad polydispersity nature of Ni-teriminated PTh mac-
roinitiator as reported in the literature?®. PTh-b-PPI was thoroughly characterised by NMR, IR, UV, CD, and PL
(Figures S1 and S2, Fig. 2a,b,c) and all the basic properties were well in accordance with those previously reported
for polythiophene-block-polyphenylisocyanide derivatives'®-23.

We first investigated the aggregation formation of PTh-b-PPI in good/poor solvent-mixture. This charac-
terisation gives us the insights of film formation process and the interactions of PTh-b-PPI. In UV-vis spec-
tra (Fig. 2a), PTh-b-PPI in chloroform shows absorption maxima at 255 nm (mainly from the PPI block) and
441 nm (derived from twisted state of the PTh block). Addition of methanol to the polymer solution decreases the
absorption peak at 411 nm, and new signals appear near 520, 570, and 620 nm. This large red-shift indicates con-
formational change of the PTh block into J-aggregation states with planar main-chain conformation. The spectra
strongly support formation of PTh-b-PPI aggregation driven by =-m interaction between the PTh blocks?®. PL
spectra (Fig. 2b) also reveals that the chloroform solution state PTh-b-PPI shows luminescence at 572 nm with
a shoulder peak at ~630 nm. The PL signal is derived from twisted PTh blocks. As methanol is increased in the
solution the PL intensity decreases, indicating formation of aggregation of PTh blocks. Furthermore, the chi-
roptical properties of PTh-b-PPI were investigated by CD spectroscopy (Fig. 2¢). The PTh-b-PPI in chloroform
shows no CD signal, indicating random conformation of PTh-b-PPI. In the chloroform/methanol (40/60v/v), the
CD signals appeared at 605, 570 nm (positive) and 490 nm (negative). Additionally, the wavelength at the cross
section from positive to negative (at 523 nm) corresponds to the maximum absorption wavelength of PTh-b-PPI
(at ~520 nm), indicating right-handed helical aggregation of PTh chromophores?. In high ratios of methanol, the
CD intensity decreases because of the precipitation. These optical measurements suggest that J-aggregation of
PTh-b-PPI is driven by w-T interaction of PTh blocks.
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Figure 2. Chiral aggregation process of PTh-b-PPI in solution driven by interaction of PTh blocks. (a) UV-
vis absorption spectra, (b) Photoluminescence (PL) spectra (\.,=420nm) and (c) Circular dichroism (CD)
spectra of PTh-b-PPI in CHCl,/CH;0H solution (0.02 mg/ml) in various ratios. In high ratios of methanol, the
spectra show film-like aggregation state. (d) Schematic illustration of PTh-b-PPI chiral aggregation in good/
poor solvent mixture.

Vapour-induced liquid crystallinity of PTh-b-PPI.  We prepared PTh-b-PPI film by a drop-casting
method from chloroform solution (2.0 mg/mL) onto a quartz substrate. Subsequently, PTh-b-PPI film was
exposed to chloroform vapour annealing at room temperature. Very interestingly, the film colour changed from
purple to transparent yellow in ~1 min in chroform vapour (Fig. 3a and Supplementary Video 1). More sur-
prisingly, polarising optical microscopy (POM) observation evaluated the texture to be Schlieren structure of
nematic liquid crystal phase (Fig. 3b,f). Other solvent vapours, such as tetrahydrofuran and dichloromethane,
also induced the vapour-induced liquid crystal for the sample. After the removal of the vapour, the PTh-b-PPI
film recovered their colour (yellow to purple) in ~1 sec. This reversible colour change is repeatable.

To examine the vapour-induced conformation change of PTh-b-PPI films, we performed optical meas-
urements on the solid state (without vapour) and the LC state (with chloroform vapour). As shown in UV-vis
spectra (Fig. 3¢c), PTh-b-PPI in solid state showed absorption peaks ~250 nm (w-w* transition of PPI block),
400 nm (n-7* transition of imine unit), and 527, 569, and 615nm (PTh block). On the other hand, the LC-state
PTh-b-PPI showed blue shift with the characteristic absorption peaks at ~250 nm (w-7* transition of PPI block)
and ~427 nm (the sum of n-w* transition of imine unit and PTh block). The large blue shift was due to the
reduced effective m-conjugated length, which is probably caused by permeation of the solvent vapour molecules
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Figure 3. Vapour-induced liquid crystallinity of PTh-b-PPI. (a) Schematic representation of PTh-b-PPI film
preparation and vapour exposure. The film shows purple in solid state and yellow in liquid crystal (LC) state
(under chloroform vapour). (b) Polarising optical microscopy (POM) image of PTh-b-PPI film in LC state (when
exposed to chloroform vapour). (c) Absorption, (d) CD and (e) PL spectra (A, =420nm) of PTh-b-PPI film in
solid state and LC state. (f) Schematic illustration of reversible phase-transition behaviour between solid state and
nematic-like LC state of PTh-b-PPI. PPI blocks serve as mesogens and have orientation along the director.

intruded between main chains. In contrast, the absorption maximum of the PPI block at 250 nm did not change
even exposed to the solvent vapour, implying that the PPI rigid helical coil was not subjected to intrusion by
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Figure 4. Magnetic orientation of PTh-b-PPI film. (a) Schematic representation of magnetic orientation of
PTh-b-PPI film with exposure to chloroform vapour. (b) POM image of magnetically oriented PTh-b-PPI film.
(c) Linear dichroism (LD) spectrum of magnetically oriented PTh-b-PPI film. (d) Schematic illustration of
magnetically oriented PTh-b-PPI. Here, the parallel direction is along the direction of the magnetic field.

the vapour, and maintained a stable helical conformation. CD spectroscopy (Fig. 3d) shows PTh-b-PPI in solid
state exhibited first-positive and second-negative Cotton effect, while the LC state of PTh-b-PPI showed no CD
signals. The disappearance of CD spectra suggests the interruption of chiral interactions between PTh block by
chloroform vapour. Additionally, PL spectroscopy (Fig. 3e) shows PTh-b-PPI in solid-state exhibited no signal in
the visible region, while PTh-b-PPI in LC state showed photoluminescence at ~610 nm, which is ascribed to PTh
block (excitation wavelength: 420 nm). The optical measurements suggest that the molecules in the vapour phase
intrude between main chains of PTh-b-PPI, and depress the w-w interaction of PTh and expand the distance
between the polymers, resulting in the blue-shift in UV-vis, the disappearance of the CD signal and the relaxation
of the aggregation-induced quenching. It should be noted that PTh-b-PPI in LC state has blue-shifted absorption
and red-shifted luminescence peaks compared to PTh-b-PPI in solution state (Fig. 2a,b). It implies that PTh chain
in LC state is more twisted than in solution state, and the excited energy transfer between PTh chain may occur
in the LC state

Magnetic orientation of PTh-b-PPI with exposed to chloroform vapour. To demonstrate the merit
of vapour-induced LC properties of PTh-b-PPI film, magnetic orientation of the film exposed to chloroform
vapour was carried out (Fig. 4a). As shown in Fig. 4b, an intense magnetic field of 12 Tesla for 4hours during the
vapour-annealing successfully formed unidirectional orientation of PTh-b-PPI films (Fig. 4b). To investigate
the unidirectionally oriented polymer structure, we employed linear dichroism (LD) spectroscopy. From the LD
spectroscopy, we can determine the orientation of the sample,

LD = OD, — OD; = log (1, /1))

where, OD is optical density, I is intensity of transmitted light in parallel (/) and perpendicular (L) direction
relative to the magnetic field. Figure 4c shows the negative signal (550-750 nm) derived from the PTh block, and
positive peak (300-500 nm) coming from the PPI block. Generally, PTh (conjugated polymer) possesses -7
electron transition moment along its backbone. That is, the positive signal indicates the PTh main chain is ori-
ented perpendicular to the magnetic field. On the other hand, because the phenyl rings of the PPI helical block
extend at the peripheral position of the helix core, the transition moment is perpendicular to the helical cylin-
der?. Therefore the negative signal means that the phenyl group in the side chain aligns parallel, and the helical
axis perpendicular relative to the magnetic field (Fig. 4d). This alignment was realized by vapour-induced LC of
PTh-b-PPI and the magnetically anisotropic susceptibility of PPI block.

Discussion on vapour-induced liquid crystallinity of PTh-b-PPIl. To investigate the origin of
vapour-induced liquid crystallinity of PTh-b-PPI, homopolymers PTh and PPI were synthesised by the GRIM
reaction and Ni-catalysed reaction, respectively. We prepared drop-cast film of PTh and PPI from the chloroform
solution. Magnetic orientation of the homopolymers PTh and PPI under chloroform vapour was also carried
out under chloroform vapour and the orientation was confirmed by the LD spectroscopy. Drop-cast PTh film
showed no liquid crystal-like structure (Figure S4) and PTh chains could not be oriented by the magnetic field
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Figure 5. Self-recover mechanochromism of PTh-b-PPL. (a) Schematic representation of mechanical treatment
of PTh-b-PPI films. (b) Photographs of PTh-b-PPI before and after mechanical stress. (¢) LD spectrum of
mechanically oriented PTh-b-PPI film and schematic illustration of mechanically oriented PTh-b-PPI. Here,
the parallel direction is along the grinding direction.

under chloroform vapour (Figures S5 and S6). This fact implies that PTh has no vapour-induced liquid crystal-
linity under chloroform vapour and thus does not have large domain size and/or moderate viscosity enough for
susceptibility in alignment by magnetic field. On the other hand, drop-cast PPI film shows fan-shaped structure
after chloroform vapour-annealing, indicating smectic-like super structure (Figure S4). Furthermore, PPI chains
are macroscopically oriented by the magnetic field (Figures S5 and S6). This fact demonstrates PPI itself possesses
intrinsically vapour-induced liquid crystallinity. Therefore, vapour-induced liquid crystallinity of PTh-b-PPI film
is derived from intrinsically vapour-induced liquid crystallinity of PPI. We assume that the PTh-b-PPI film is
very sensitive and it is swelled by the solvent vapour, resulting in low viscosity to form liquid crystal order. That
is, the PTh-b-PPI film can form lyotropic LC state with slight amount of vapour molecules. Since lyotropic mes-
ophase are seldom seen in CPs**~%1, it is new strategy to introduce PPI block into conjugated backbone for reali-
zation of CPs with vapour-induced lyotropic LC.

Self-recover mechanochromism of PTh-b-PPI.  Additionally, we performed a grinding test for the
PTh-b-PPI solid film (Fig. 5a). Interestingly, we found that the film gradually turned to vermillion from purple
during mechanical shearing. After the removal of the force, the colour recovered to purple under ambient condi-
tions without any treatment in ~30 sec (Fig. 5b and Supplementary Video 2). In addition, the shear-stressed film
showed anisotropic absorption between the parallel and perpendicular shear directions, which was confirmed
by visible inspection through polarisers. As shown in the LD spectroscopy (Fig. 5¢), the broad positive peak at
450-800 nm is ascribed to the PTh block. Thus the LD spectra indicates parallel orientation of the PTh chains to
the shear direction. This implies that the rod shaped PTh block also can function as mesogen in shear-induced
orientation. This shear-induced anisotropic orientation could be repeated, indicating a capability for overwrit-
ing/rewriting. This self-recovery mechanochromism is a unique phenomenon because many mechanochromism
materials require aging treatment such as annealing, fuming and recrystallisation to regain original colour*~. The
colour change during the shear process probably comes from conformation and aggregation change of the PTh
block. Although the detailed mechanism of the phenomenon is unclear, we assume that friction heat of shear
stress causes conformation change of PTh block (Figure S7). After removal of the shear stress, the liquid crystal-
line PPI moiety probably facilitates the rearrangement to the original packing structure.

Conclusions
We demonstrated vapour-induced liquid crystallinity and self-recover mechanochromisms of PTh-b-PPI. We
found out new promising properties of rod-type helical coiled polymer PPI block: intrinsically vapour-induced
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liquid crystallinity and self-reassembling property. Introduction of PPI block offers moderate viscosity enough
for PTh-b-PPI film to possess high sensitiveness to solvent vapour and self-recovery property against shear stress
at ambient condition. In addition, PPI block in PTh-b-PPI produces the anisotropic magnetic susceptibility for
magnetic alignment. As far as we know, PTh-b-PPI is the first material that exhibits vapour-induced liquid crys-
tallinity. PPI helical structural motif has been employed mainly as chiral catalyst®, chiral separation®, chiral rec-
ognition® because PPI can form one-handed helical conformation. Our study will pioneer new functionalities of
rod-shaped helical polymers. Furthermore, magnetic orientation for vapour-exposed films provides a simple and
convenient method to examine the films, offering a new orientation approach for block copolymers that possess
anisotropic magnetic susceptibility units. We believe this block copolymer can be applied in phase-transition-type
vapour sensors, pressure sensors, and as a memory medium for shear directions.
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