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Abstract

Summary: HTSeq 2.0 provides a more extensive application programming interface including a new representation
for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and
molecular barcodes, improved documentation, testing and deployment, bug fixes and Python 3 support.

Availability and implementation: HTSeq 2.0 is released as an open-source software under the GNU General Public
License and is available from the Python Package Index at https://pypi.python.org/pypi/HTSeq. The source code is
available on Github at https://github.com/htseq/htseq.

Contact: fabio.zanini@unsw.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

Single-cell omics have exploded in popularity over the last few years,
spearheaded by single cell transcriptomics. While commercial soft-
ware solutions from manufacturers such as 10X Genomics and
BD Biosciences provide standardized pipelines (e.g. cellranger) for
analysing single-cell omics data, numerous experimental approaches
rely on open source software to align reads and subsequently to
quantify biological phenomena such as gene expression, chromatin
accessibility, transcription factor binding affinities, and 3D chroma-
tin conformation. HTSeq (Anders et al., 2015) was initially
developed as a general purpose tool to analyse high-throughput
sequencing data in Python. In parallel, the htseq-count script was
designed to count the number of reads or read pairs attributable to
distinct genes in bulk RNA-Seq experiments. At that time, single-cell
approaches were limited to specialized biotechnology laboratories.
In this application note, we report the development of HTSeq 2.0,
which improves the general-purpose application programming inter-
face (API) and specifically htseq-count to encompass diverse omics
analyses, including single-cell RNA sequencing (scRNA-Seq).

First, we have improved htseq-count, a popular script used to
quantify gene expression in bulk and scRNA-Seq experiments
(Fig. 1A–C). Multiple BAM files can now be processed with a single
call of the script, which results in a counts table with either each
row or column representing the counts from a separate BAM file.

This is not only convenient but also faster because genomic features
are loaded only once from the Gene transfer format (GTF) file,
which can take as long as processing the reads for a typical plate-
based single-cell experiment (Supplementary Fig. S1A and B). If mul-
tiple cores are available on the machine, htseq-count is now able to
parallelize the quantification by allocating distinct input BAM files
to each core (Fig. 1A, Supplementary Fig. S1A and B). The script
also supports more output formats: compressed sparse matrices via
scipy (Virtanen et al., 2020), mtx files in the style of cellranger, h5-
like file formats such as h5ad (Wolf et al., 2018), and loom (http://
loompy.org) (Fig. 1A). These output formats make it easier for users
to import the counts table into downstream analysis libraries, espe-
cially single-cell ones such as scanpy (Wolf et al., 2018) and singlet
(https://github.com/iosonofabio/singlet). We also added support for
storing additional metadata for each genomic feature. This has two
clear applications: (i) Tracking additional gene information such as
chromosome or aliases, which is useful for downstream analyses
(e.g. for excluding sex chromosomes), and (ii) Collecting disaggre-
gated exon-level counts, which provides a simple yet powerful
approach to quantifying differential isoform expression (Fig. 1B).
To encourage users to customize their analysis pipeline, we also
restructured the key steps of htseq-count into well-documented func-
tions and added a tutorial that explains the feature counting step by
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step. In addition, through a new script called htseq-count-barcodes,
we support quantification of features in data multiplexed via cell
barcodes and unique molecular identifiers (UMIs). Among other
applications, the new script enables custom re-analysis of BAM files
produced by cellranger using different parameters. Pearson correl-
ation between cellranger and htseq-count-barcodes with default
parameters is 0.985, with uniformly high correlation across cells
(Supplementary Fig. S1C).

One of the key data structures in HTSeq is StepVector, an effi-
cient sparse representation for piecewise-constant values on a 1D
discrete space (typically a chromosome) (Fig. 1D). As an example, it
can be used to store overlaps between gene bodies, critical for
removing ambiguities in downstream gene expression analyses.
However, genomic data is sometimes characterized by a distinct
type of sparsity whereby the data appears as dense ‘islands of know-
ledge’ in a sea of missing data. This type of sparsity is apparent in
the read coverage produced by amplicon sequencing or Chromatin
Immunoprecipitation Sequencing (ChIP-Seq) where most of the
genome is uncovered, but non-zero rapidly fluctuating coverage,
down to a single nucleotide resolution (e.g. due to single nucleotide
polymorphisms), are present only around specific kilobase-long
stretches. To represent this type of sparsity efficiently, we created a
new data structure called StretchVector. At its core, a StretchVector
is a collection of stretches implemented via dense numpy arrays
(Harris et al., 2020), each with associated start-end coordinates
(Fig. 1E). Each stretch represents an island of data, while the rest of
the genome is not stored. We implemented functions for stretch ex-
tension, trimming, resetting, shifting, views or slices, copy and con-
version to and from monolithic arrays for simple data ingestion/
extraction. Separately from StretchVector, we also improved the
support for custom ChIP-Seq and chromatin conformation capture
(Hi-C) analyses by adding parsers for bedGraph and BigWig files via
pyBigWig (Ryan et al., 2021) and by writing new dedicated
tutorials.

Finally, we improved the API of HTSeq as a whole and made
architectural changes to the package to ensure its compatibility with
current software development standards. Among other things, we (i)
modernized the codebase to Python 3, (ii) added provisions for con-
tinuous integration and development including automatic binary
releases on multiple architectures, (iii) established unit tests and test
suites, (iv) fixed bugs and (v) added support for improved

dependency infrastructure such as autodetection of SAM/BAM/
CRAM file type via HTSlib (Bonfield et al., 2021). All aforemen-
tioned changes were carried out without compromising the effi-

ciency of HTSeq, which stems from a cross-language design via
Cython (Behnel et al., 2011) and SWIG (Beazley, 2003).

In conclusion, HTSeq 2.0 is a fast and reliable Python library for
not only analysing high-throughput sequencing data, but also for
quantifying gene expression from bulk and single-cell RNA-Seq

experiments. Compared with the previous implementation, we
added specific support for single-cell experiments and a richer API

including a new data structure for managing ‘islands-of-data’ spars-
ity, improved API documentation and tutorials, fixed a number of
bugs, established a robust testing and deployment framework to

ensure scientific reproducibility, and enable continuous code
integration. We believe these improvements will make HTSeq 2.0 a

convenient tool for exploring and quantifying high-throughput
sequencing experiment results across multiple omic modalities.
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