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IgE-mediated release of proinflammatory mediators and cytokines from basophils and
mast cells is a central event in allergic disorders. Several groups of investigators have
demonstrated the presence of autoantibodies against IgE and/or FceRI in patients with
chronic spontaneous urticaria. By contrast, the prevalence and functional activity of anti-
IgE autoantibodies in atopic dermatitis (AD) are largely unknown. We evaluated the ability
of IgG anti-IgE from patients with AD to induce the in vitro IgE-dependent activation of
human basophils and skin and lung mast cells. Different preparations of IgG anti-IgE
purified from patients with AD and rabbit IgG anti-IgE were compared for their triggering
effects on the in vitro release of histamine and type 2 cytokines (IL-4, IL-13) from basophils
and of histamine and lipid mediators (prostaglandin D2 and cysteinyl leukotriene C4) from
human skin and lung mast cells. One preparation of human IgG anti-IgE out of six patients
with AD induced histamine release from basophils, skin and lung mast cells. This
preparation of human IgG anti-IgE induced the secretion of cytokines and eicosanoids
from basophils and mast cells, respectively. Human monoclonal IgE was a competitive
antagonist of both human and rabbit IgG anti-IgE. Human anti-IgE was more potent than
rabbit anti-IgE for IL-4 and IL-13 production by basophils and histamine, prostaglandin D2

and leukotriene C4 release frommast cells. Functional anti-IgE autoantibodies rarely occur
in patients with AD. When present, they induce the release of proinflammatory mediators
and cytokines from basophils and mast cells, thereby possibly contributing to sustained
IgE-dependent inflammation in at least a subset of patients with this disorder.
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INTRODUCTION

Mast cells and basophils are important cells of the immune
system (1–3) and play critical roles in several allergic (4–9) and
autoimmune disorders (10–12), infections (13, 14),
cardiovascular diseases (15–17), immunodeficiencies (18), and
cancer (19–22). The secretion of preformed mediators (e.g.
histamine) and de novo synthesis of lipid mediators (e.g.
leukotriene C4, prostaglandin D2) and various cytokines
following FceRI cross-linkage plays key roles in diverse IgE-
mediated allergic conditions, including atopic dermatitis (AD)
(23), chronic spontaneous urticaria (CSU) (24, 25), asthma (5,
26, 27), allergic rhinitis (28), food allergies (29), and anaphylaxis
(30–32).

Human mast cells and basophils express a complete (abg2),
high-affinity receptor for IgE (FceRI) (33). The interaction of IgE
with its receptor is characterized by a very slow dissociation rate
(Koff < 10-5/s), accounting for its uniquely high affinity, the
highest reported for a human immunoglobulin (Ig) to any of
its receptors (34, 35). Aggregation of FceRI bound to IgE by
multivalent antigens, anti-IgE antibodies generated in rabbit or
goat (36, 37), or superantigens (38–41) leads to mast cell and
basophil activation and mediator release.

Several studies have reported the presence of spontaneously
occurring autoantibodies to IgE (36, 42–45), FceRI (46–49), or
both in diverse allergic (36, 42–46, 48, 50–52) and autoimmune
disorders (47, 53). Most of these studies have focused on the
ability of anti-IgE/FceRI autoantibodies isolated from patients
with CSU to activate peripheral blood basophils (36, 42, 46–48).
However, most anti-IgE/FceRI antibodies isolated from patients
with CSU (36), asthma (50), or AD (44) are ineffective basophil
secretagogues, which might explain some of the controversies in
the field (50, 54). These controversial findings do not necessarily
rule out the ability of some of these autoantibodies to activate
human tissue mast cells. In any instance, the recent
documentation of IgE autoantibodies against eosinophil
peroxidase and eosinophil cationic protein in some patients
with CSU and AD further reinforce the notion that shared,
dysregulated immune functions may differentially contribute to
the pathogenesis of these conditions (55).

Even though basophils account for approximately 1% of
circulating peripheral blood leukocytes, analysis of basophil
activation in vitro has become a mainstay of research in allergy
and immunology for some compelling reasons. First, these cells
can play critical roles in the activation of type 2 immune
responses through the production of such Th2-like cytokines
as IL-4 and IL-13 (38, 39, 56–62); second, basophils have the
propensity to migrate into the sites of allergic inflammation (63–
65); last, but not least, these cells are much more readily available
for analysis than human tissue-resident mast cells.

The purpose of this study was four-fold. First, we examined
the presence of functional IgG anti-IgE autoantibodies in
patients with AD and compared their functions to rabbit IgG
anti-IgE and to human polyclonal IgG. Second, we evaluated the
effects of functional IgG anti-IgE on the release of Th2-like
cytokines (IL-4 and IL-13) from human basophils. Third, we
investigated whether human monoclonal IgE is a competitive
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antagonist of human and rabbit IgG anti-IgE. Finally, we
examined the ability of functional human IgG anti-IgE to
activate human primary skin and lung mast cells.
MATERIALS AND METHODS

Reagents and Buffers
Bovine serum albumin, human serum albumin, piperazine-N,N’-
bis (2-ethanesulfonic acid) (Pipes), L-glutamine, antibiotic-
antimycotic solution (10,000 IU penicillin, 10 mg/mL
streptomycin, and 25 µg/mL amphotericin B), collagenase
(Worthington Biochemical Corp., Lakewood, NJ, USA), Hanks’
balanced salt solution, fetal calf serum (FCS) (Thermo-Fisher,
Grand Island, NY, USA), pronase (Merck Millipore, Burlington,
CA, USA), RPMI 1640 with 25 mM HEPES buffer, Eagle’s
minimum essential medium (Fuji Film, Research Triangle
Park, NC, USA), Percoll (Pharmacia Fine Chemicals, Uppsala,
Sweden), CD117 MicroBeads (Miltenyi Biotech, Bologna, Italy),
Iscove modified Dulbecco Medium (IMDM) (Fuji Film, Research
Triangle Park, NC, USA), HClO4 (Baker Chemical Co.,
Deventer, Netherlands), hyaluronidase, chymopapain, elastase
type I, cysteinyl leukotriene C4 (LTC4), and prostaglandin D2

(PGD2) (Sigma Chemical Co., St. Louis, MO), deoxyribonuclease
I (Merck Millipore, Burlington, CA, USA), (3H)-LTC4 and (3H)-
PGD2 (New England Nuclear, Boston, MA) were commercially
purchased. Rabbit IgG anti-IgE antibody, produced by rabbit
immunization with the Fc fragment of a human IgE myeloma
(patient PS) and then absorbed with the IgE Fab as previously
described (37), was kindly donated by Drs. Kimishige and
Teruko Ishizaka (La Jolla Institute for Allergy and
Immunology, La Jolla, CA). Rabbit anti-LTC4 and anti-PGD2

antibodies were a gift of Dr. Lawrence M. Lichtenstein (The
Johns Hopkins University, Baltimore, MD). The Pipes buffer
used in these experiments was a mixture of 25 mM Pipes, 110
mM NaCl, 5 mM KCl, pH 7.37, referred to as P. P2CG contains,
in addition to P, 2 mM CaCl2 and 1 g/L dextrose (66); pH was
titrated to 7.4 with NaHCO3.

Atopic Dermatitis Patients
The study was approved by the Ethics Committee of the University
of Naples Federico II, School of Medicine (Prot. 198/18), and
informed consent was obtained from all participants prior to
collection of blood according to recommendations from the
Declaration of Helsinki. Serum samples from six patients with
AD (aged 5 to 17 years) and six normal donors (aged 6 to 22
years) were collected and stored at -20°C. Patients with AD had
similar clinical pictures, characterized by a chronic, pruritic skin
eruption marked by erythema, papules, or lichenification of flexural
areas of the extremities, face and neck (67). Serum samples were
obtained from these patients after not taking any drug for at least
one week.

Purification of Human Monoclonal IgE
IgE myeloma protein was purified from a myeloma patient (68)
by gel filtration on Sepharose G-200 followed by elution through
May 2022 | Volume 13 | Article 880412
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a Sepharose CL-4B column. Analysis by sodium dodecyl-sulfate
polyacrylamide gel electrophoresis of purified human
monoclonal IgE proteins demonstrated a single protein with a
m.w. of 180,000-200,000 D. Analysis by radioimmunoassay
showed no IgG, IgM, or IgA contamination (38, 69, 70).

Purification of Human Polyclonal IgG
Human IgG were purified by precipitation of human serum with
50% saturated NH4SO4 followed by chromatography on a
DEAE-cellulose column equilibrated with 0.01 M phosphate
buffer (pH 7.9), as previously described (70, 71).

Purification of Human IgG
Anti-IgE Antibody
Comparable levels of IgG anti-IgE antibodies were detected in
serum samples from the six AD patients studied, which averaged
1,020 ng/ml (± 135 ng/ml), much higher than in nonatopic
controls (< 50 ng/ml) (45). For affinity purification of these
autoantibodies, sera (3 ml for each run) were passed through an
immunosorbent Sepharose 4B column (1.2 x 5 cm) coated with
IgE purified from ADZ (45). Immunosorbent-bound Ig with
anti-IgE activity were eluted with glycine HCl buffer 0.2 M (pH
2.8), and the pH was rapidly readjusted by the addition of 2 M
NaOH. The total content of immunoglobulins of the eluted
fraction was measured by radioimmunoassay. Anti-IgE activity
belonged to the IgG isotype. IgE content was less than 0.05 U/ml.
The specificity and activity of IgG anti-IgE were tested as
described elsewhere (45).

Purification of Human Basophils
Basophils were purified from peripheral blood of healthy volunteers,
aged 19-45 years, undergoing hemapheresis within the
Immunohematology Unit at the University of Naples Federico II.
Buffy coats were subjected to double-Percoll density centrifugation,
which produced basophil-depleted and basophil-enriched cell
suspensions (72). Basophils were purified from the basophil-
enriched cell suspensions using the Basophil Isolation Kit II
(Miltenyi, Biotec, Bologna, Italy). Basophils, with purity ≥ 95%,
assessed by Alcian blue staining, were incubated in IMDM in the
presence of activating stimuli for 4 hours (IL-4 secretion) or 18
hours (IL-13 secretion) at 37°C (38). At the end of these
incubations, the cell-free supernatants were stored at -20°C for
subsequent assay of IL-4 and IL-13.

Isolation of Human Skin Mast Cells
The study was approved by the Ethics Committee of the
University of Naples Federico II (Protocol: Human MC No. 7/
19) and informed consent was obtained from all donors. Skin
obtained from patients undergoing either mastectomy for breast
cancer or elective cosmetic surgery was separated from the
subcutaneous fat by blunt dissection. The tissue was finely cut
into 1- to 2-mm fragments and dispersed into single-cell
suspension as previously described (73). Yields with this
technique ranged between 0.1 and 0.9 × 106 mast cells/g of wet
tissue, and purity was between 5 and 10%. Human skin mast cells
(HSMCs) were further purified using a CD117MicroBead kit cell
Frontiers in Immunology | www.frontiersin.org 3
sorting system (Miltenyi Biotec, Bologna, Italy) according to the
manufacturer’s instructions. Mast cell purity using this technique
ranged from 36 to 71% as assessed by Alcian blue staining.

Isolation of Human Lung Mast Cells
Human lung mast cells (HLMCs) were purified from
macroscopically normal lung tissue obtained from patients
[hepatitis C virus (HCV−), hepatitis B surface Ag (HBsAg−),
HIV−] affected by lung adenocarcinoma undergoing thoracic
surgery (74, 75). Freshly resected lung tissue was obtained
intraoperatively and was minced finely with scissors and
washed extensively with Pipes buffer over Nytex cloth (120-mm
pore size) (Tetko, Elmsford, NY, USA). The cells were suspended
(106 cells/mL) in RPMI 1640 with 5% FCS, 2 mM L-glutamine,
and 1% antibiotic-antimycotic solution and incubated in 24-well
plates (Falcon, Becton Dickinson, Milan, Italy). The enzymatic
tissue dispersion yielded ≈5 × 105 mast cells/gram of lung tissue and
purity ranged from 4% to 19% (40). HLMCs were further purified
using a CD117 MicroBead kit cell sorting system (Miltenyi Biotec,
Bologna, Italy) according to the manufacturer’s instructions (40).
Mast cell purity using this technique ranged from 58% to 82% as
assessed by Alcian blue staining.

Histamine Release From Human Basophils
Whole blood samples were processed immediately after collection
to obtain leukocyte-enriched preparations (76, 77). Duplicate
leukocyte aliquots were incubated (45 minutes at 37°C) in P2CG
buffer with increasing concentrations of rabbit IgG anti-human IgE
myeloma (patient PS; anti-IgE) or human IgG anti-IgE. Cell-free
supernatants were collected and stored at −20°C for subsequent
assay of histamine content using an automated fluorometric
technique (78). Histamine release (HR) was expressed as percent
of the total content assessed in parallel samples lysed by addition of
2% HClO4, minus the basal, or spontaneous release (77). Percent
HR values were the means of duplicate determinations, differing by
<5%. Basophil reactivity, that is, the maximal percent histamine
release (HRMAX), and threshold sensitivity (HRSENS), that is, 100x
the inverse of the secretagogue concentration inducing half-
maximal HR (EC50), were calculated as described (76, 79–81).

Histamine Release From Mast Cells
HSMCs or HLMCs (≈3 × 104 mast cells per tube) were
resuspended in P2CG. 0.3 mL of the cell suspensions were
placed in 12 × 75 mm polyethylene tubes. 0.2 mL of each
prewarmed releasing stimulus was added, and incubation was
continued at 37°C for 45 min (40, 41). At the end of incubation,
cells were centrifuged (1000× g, 4°C, 5 min) and supernatants
were stored at –20°C for subsequent assay of histamine content.
Histamine was measured in duplicate determinations with an
automated fluorometric technique (78).

IL-4 and IL-13 ELISA
IL-4 and IL-13 were assessed in duplicate samples using ELISA kits
according to manifacturer’s instructions (Quantikine ELISA Kit)
(R&D Systems, Minneapolis, MN, USA). The ELISA detection
range was 31-2,000 pg/ml (IL-4) and 125-4,000 pg/ml (IL-13).
May 2022 | Volume 13 | Article 880412
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Immunoassay of LTC4 and PGD2
LTC4 and PGD2 were measured in duplicate samples by
radioimmunoassay (40, 82). The anti-LTC4 and anti-PGD2

antibodies are highly selective, with less than 1% cross-
reactivity to other eicosanoids (82, 83).

Statistical Analysis
Data were analyzed with the GraphPad Prism 8 software package
(GraphPad Software, La Jolla, CA, USA). Values were expressed
as mean ± SEM (standard error of the mean). Statistical analysis
was performed using Student’s t-test or one-way analysis of
variance. Values were considered significant when the
probability was below the 5% confidence level (p < 0.05).
RESULTS

Effects of Human and Rabbit IgG Anti-IgE
on Histamine Release From
Human Basophils
In a first group of experiments, we compared the effects of
increasing concentrations of human IgG anti-IgE purified from
Frontiers in Immunology | www.frontiersin.org 4
the sera of six patients with AD, rabbit IgG anti-IgE and human
polyclonal IgG onHR from human basophils. Figure 1A shows that
increasing concentrations (10-4 to 3 x 10-2 mg/ml) of human IgG
anti-IgE isolated from only one out of six AD patients, as previously
described (44), induced the release of substantial amounts of
histamine from basophils isolated from six different normal
donors. Shown for comparison is the concentration-dependent
release of histamine induced by higher concentrations of rabbit
IgG anti-IgE (10-3 to 3 x 10-1 mg/ml) in parallel experiments with the
same basophil preparations (Figure 1B). Similarly, in the same
experiments, non-functional human IgG anti-IgE purified from the
other five AD patients did not induce HR from basophils
(Figure 1C). In these experiments, human polyclonal IgG (10-3 to
3 mg/ml) purified from six healthy donors failed to induce mediator
release from basophils (Figure 1D). Basophil reactivity, that is the
maximal percent HR (HRMAX) in response to human IgG anti-IgE
(70.0% ± 3.80%), was similar to basophil reactivity to rabbit IgG
anti-IgE (65.8% ± 3.68%). By contrast, the secretagogue
concentration inducing half-maximal histamine release (EC50)
induced by the functionally active human anti-IgE preparation
(2.4 x 10-3 ± 5 x 10-4 mg/ml) was significantly lower than the
corresponding concentration of rabbit anti-IgE (4 x 10-2 ± 1 x 10-2

mg/ml), hence resulting in significantly higher HRSENS (p < 0.05).
A B

DC

FIGURE 1 | Effects of increasing concentrations of human IgG anti-IgE (A) and rabbit IgG anti-IgE (B) on HR from basophils obtained from six normal donors.
Neither non-functional human IgG anti-IgE obtained from the other five atopic dermatitis donors (C) nor human polyclonal, pooled from six nonatopic donors, IgG
induced mediator release from basophils (D). Each point represents the mean ± SEM percent HR in six different preparations of basophils. Error bars are not shown
when graphically too small.
May 2022 | Volume 13 | Article 880412
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These results indicate that one preparation of the human IgG anti-
IgE preparations tested was active on human basophils. This
preparation of human IgG anti-IgE is from now on referred to as
“human anti-IgE”.

Effects of Human and Rabbit Anti-IgE on
Cytokine Production by Human Basophils
IgE cross-linking induced by rabbit or goat anti-IgE (57, 58, 60,
61, 72, 84–87) or superantigens (38, 39, 59) can induce the
production of IL-4 and IL-13 from human basophils. In a series
of parallel experiments, we compared the effects of human and
rabbit anti-IgE on the release of IL-4 and IL-13 from peripheral
blood basophils purified (> 95%) from healthy donors. Figure 2
shows the results of five independent experiments in which we
examined the effects of increasing concentrations (10-3 to 10-1

mg/ml) of human and rabbit anti-IgE. In these experiments,
basophils were incubated 4 hours at 37°C to evaluate IL-4 release,
whereas they were incubated 18 hours at 37°C to examine IL-13
production, as previously reported (38, 39, 60, 72). Both
preparations of anti-IgE induced a concentration-dependent
release of IL-4 (Figure 2A) and IL-13 (Figure 2B). However,
human anti-IgE, at all tested concentrations, was more effective
than the corresponding concentrations of rabbit anti-IgE in
inducing the release of both IL-4 and IL-13 from basophils.
IgG with anti-IgE activity obtained from the other five AD
patients did not cause IL-4 and IL-13 release from human
basophils (data not shown). Similarly, human polyclonal IgG
obtained from six normal donors did not induce cytokine release
from basophils (data not shown).

Effects of Human Monoclonal IgE on
Human or Rabbit Anti-IgE-Induced
Mediator Release From Human Basophils
The ability of human and rabbit anti-IgE to trigger basophil
mediator release suggested that it might interact with basophil-
bound IgE. To test this hypothesis we conducted experiments to
verify whether soluble human monoclonal IgE purified from a
myeloma patient (68) (70) might inhibit the mediator response
to human and rabbit anti-IgE. To this end, basophils were
preincubated (10 min at 37°C) with increasing concentrations
of human IgE and the cells were incubated for an additional 30
min at 37°C in the presence of increasing concentrations of
human or rabbit anti-IgE. Figure 3 illustrates the results of
typical experiments showing that preincubation with increasing
concentrations of human monoclonal IgE concentration-
dependently shifted to the right effects on basophil HR of both
human (Figure 3A) and rabbit anti-IgE (Figure 3B).
Preincubation (10 min at 37°C) of human basophils with
tenfold higher concentrations of human polyclonal IgG did not
interfere with either human (Figure 3C) or rabbit anti-IgE effects
(Figure 3D). Similar results were obtained in three additional
experiments. The parallel shift to the right of the HR curve
caused by increasing concentrations of human monoclonal IgE
on both human and rabbit anti-IgE, without changes in maximal
efficacy, suggested that it might act as a competitive inhibitor.
Frontiers in Immunology | www.frontiersin.org 5
Effects of Human and Rabbit Anti-IgE on
Histamine Release and De Novo Synthesis
of PGD2 From Human Skin Mast Cells
In five parallel experiments, we compared the activating
properties of human and rabbit anti-IgE on HR (Figure 4A)
and de novo synthesis of PGD2 by HSMCs (Figure 4B). The
maximal percent HR caused by human anti-IgE (17.8 ± 0.91%)
was similar to that induced by rabbit anti-IgE (20.2 ± 2.8%).
Similarly, the maximal production of PGD2 induced by human
anti-IgE (31.1 ± 3.7 ng/106 cells) was comparable to that caused
by rabbit anti-IgE (30.5 ± 2.6 ng/106 cells). By contrast, the
secretagogue concentration inducing half-maximal histamine
release (EC50) for histamine release was significantly lower (5 x
A

B

FIGURE 2 | Effects of increasing concentrations of human IgG anti-IgE (red
bars) and rabbit IgG anti-IgE (blue bars) on IL-4 (A) and IL-13 (B) release from
human basophils obtained from five donors. Basophils were incubated with
secretagogues for 4 hours (IL-4) or 18 hours (IL-13) at 37°C. Each bar
represents the mean ± SEM in five parallel experiments. Error bars are not
shown when graphically too small. ***p < 0.001 when compared to the
corresponding value obtained with rabbit IgG anti-IgE.
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A B

DC

FIGURE 3 | (A) Effects of increasing concentrations of human monoclonal IgE on human IgG anti-IgE-induced HR from human basophils. Cells were preincubated (10
minutes, 37°C) with the indicated concentrations of IgE and then challenged with the indicated concentrations of human IgG anti-IgE for an additional 30 minutes at 37°C.
Each value is the mean of duplicate determinations in a typical experiment out of three similar experiments. (B) Effects of increasing concentrations of human monoclonal
IgE on rabbit IgG anti-IgE-induced HR from human basophils. Cells were preincubated (10 minutes, 37°C) with increasing concentrations of IgE and then challenged with
the indicated concentrations of rabbit IgG anti-IgE for an additional 30 minutes at 37°C. Each value is the mean of duplicate determinations in a typical experiment out of
four. (C) Effect of increasing concentrations of human polyclonal IgG purified from a healthy donor on human IgG anti-IgE-induced HR from human basophils. Cells were
preincubated (10 minutes, 37°C) with increasing concentrations of human polyclonal IgG and then challenged with the indicated concentrations of human IgG anti-IgE for
an additional 30 minutes at 37°C. (D) Effect of increasing concentrations of human polyclonal IgG purified from a healthy donor on rabbit IgG anti-IgE-induced HR from
human basophils. Cells were preincubated (10 minutes, 37°C) with increasing concentrations of human polyclonal IgG and then challenged with the indicated
concentrations of rabbit IgG anti-IgE for an additional 30 minutes at 37°C. Each value is the mean of duplicate determinations in a typical experiment out of four.
A B

FIGURE 4 | Effects of increasing concentrations of human IgG anti-IgE and rabbit IgG anti-IgE on HR (A) and the de novo synthesis of PGD2 (B) from HSMCs obtained from
five different donors. HSMCs were incubated (45 min at 37°C) in the presence of the indicated concentrations of human IgG anti-IgE or rabbit IgG anti-IgE. Each point shows
the mean ± SEM. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05 when compared to the corresponding value. Error bars are not shown when graphically too small.
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A

B

C

FIGURE 5 | Effects of increasing concentrations of human IgG anti-IgE and rabbit IgG anti-IgE on HR (A) and the de novo synthesis of LTC4 (B) and PGD2 (C) from
HLMCs obtained from five different donors. HLMCs were incubated (45 min at 37°C) in the presence of the indicated concentrations of human IgG anti-IgE or rabbit
IgG anti-IgE. Each point shows the mean ± SEM. **** p < 0.0001, *** p < 0.001, * p < 0.05 when compared to the corresponding value. Error bars are not shown
when graphically too small.
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10-2 ± 1 x 10-2 mg/ml) for human anti-IgE compared to rabbit
anti-IgE (2.5 x 10-1 ± 6 x 10-2 mg/ml) (p < 0.05), indicating a
comparably higher HRSENS. Similarly, the EC50 for PGD2

production caused by human anti-IgE (7.2 x 10-2 ± 2.1 x 10-3

mg/ml) was significantly lower than that of rabbit anti-IgE (2.9 x
10-1 ± 3 x 10-2 mg/ml) (p < 0.05).

Effects of Human and Rabbit Anti-IgE on
Histamine Release and De Novo Synthesis
of Lipid Mediators From Human Lung
Mast Cells
In five experiments, we compared the effects of increasing
concentrations of human and rabbit anti-IgE on HR and de novo
synthesis of LTC4 and PGD2 from HLMCs. Increasing
concentrations (10-2 to 3x10-1 mg/ml) of human or rabbit anti-IgE
(10-1 to 3 mg/ml) caused a concentration-dependent release of
histamine from HLMCs (Figure 5A). The maximal percent HR
in response to human anti-IgE (18.4% ± 1.8%) was similar to
HLMC reactivity to rabbit anti-IgE (20.2% ± 1.2%). By contrast, the
EC50 was significantly lower (4.6 x 10

-2 ± 4 x 10-3 mg/ml) for human
compared to rabbit anti-IgE (3.4 x 10-1 ± 8 x 10-2 mg/ml) (p < 0.01).
In these experiments, we also compared the effects of human and
rabbit anti-IgE on the de novo synthesis of LTC4 and PGD2 from
HLMCs. Figure 5B shows that the maximal production of LTC4 by
HLMCs exposed to human anti-IgE (40.9 ± 2.2 ng/106 cells) was
similar to that caused by rabbit anti-IgE (42.5 ± 2.0 ng/106 cells). By
contrast, the concentration of human anti-IgE inducing half-
maximal LTC4 release was significantly lower (4.0 x 10-2 ± 4 x 10-
3 mg/ml) than the EC50 for rabbit anti-IgE (2.5 x 10-1 ± 6 x 10-2 mg/
ml) (p < 0.05). Similarly, HLMC reactivity to human anti-IgE (31.4
± 2.6 ng/106 cells) was similar to rabbit anti-IgE (38.9 ± 3.0 ng/106

cells) with respect to PGD2 production (Figure 5C). The EC50 for
PGD2 production caused by human anti-IgE (4.2 x 10-2 ± 1 x 10-3

mg/ml) was significantly lower than that of rabbit anti-IgE (2.8 x 10-1

± 8 x 10-2 mg/ml) (p < 0.05).
DISCUSSION

Our results indicate that although autoantibodies against IgE can
be found in some patients with AD, these can rarely induce the
activation of human basophils and mast cells. We have detected
functional IgG anti-IgE in one out of six patients with AD and
characterized its ability to trigger mediator release from human
basophils and mast cells. This human IgG anti-IgE is a more
potent secretagogue than rabbit IgG anti-IgE, and human
monoclonal IgE appears to act as a competitive antagonist of
either antibody. A novel finding emerging from this study is the
ability of human anti-IgE from AD to induce the release of IL-4
and IL-13 from human basophils. Another novel aspect is the
observation that human anti-IgE activates not only human
basophils, but also skin and lung mast cells to release
histamine and arachidonic acid metabolites.

The role of naturally occurring anti-IgE/FceRI autoantibodies
in allergic and non allergic disorders is still a fascinating and
unsettled issue, as recently discussed by Galli (54). Several
Frontiers in Immunology | www.frontiersin.org 8
investigators have found these autoantibodies in CSU (42, 46–
49, 88–91) and in asthma (43, 50, 92). By contrast, anti-IgE
autoantibodies have been inconsistently found in AD patients
(43–45, 47, 52). Anti-IgE/FceRI autoantibodies of the IgG class
have been found in most of these studies (43–48, 88, 90, 91, 93,
94), while IgM (42, 49), and/or IgA autoantibodies have been
only documented in rare instances (49). In most cases the
autoantibodies found in patients with CSU or AD lacked the
capacity to activate human basophils in vitro (36, 44, 47). While
in some studies human IgE-specific IgG autoantibodies were able
to activate human basophils (44, 47), in others they even
inhibited basophil activation (36, 50).

A limitation in most of these functional studies was that they
only examined the potential effects of autoantibodies to IgE or
FceRI on HR from human peripheral blood basophils (36, 42,
46–48, 88, 90, 91). The above results, while contrasting, do not
necessarily rule out the hypothesis that these naturally occurring
autoantibodies can activate human basophils to release cytokines
(e.g., IL-4, IL-13) or tissue mast cells to produce arachidonic
acid metabolites.

In this study, we found that only one preparation of human
IgG anti-IgE out of six patients with AD had the ability to
activate peripheral blood basophils purified from normal donors
and mast cells isolated from human skin or lung tissue. Although
the sample size examined in this study is too small to
conclusively estimate the prevalence of functional anti-IgE
autoantibodies in AD patients, these results allow to raise a few
points. The apparent low prevalence of functional autoantibodies
to IgE might explain, at least in part, the controversial results on
the presence of functional such autoantibodies in AD patients
(43–45, 47, 52). Moreover, our findings are in line with the
systematic, aptly controlled observations by MacGlashan
demonstrating that the autoantibodies to IgE and/or FceRI
from the vast majority of patients with CSU lacked the
capacity to activate human basophil mediator release (36).

Our results provide some information on the functional potency
of the IgG anti-IgE isolated from a patient with AD. Although
basophil reactivity, that is the maximal HR in response to human
anti-IgE, was similar to that induced by rabbit anti-IgE, the potency
of human anti-IgE was significantly higher than that of rabbit anti-
IgE. Similar results were obtained when comparing the reactivity
and threshold sensitivity of human skin and lung mast cells to
human and rabbit anti-IgE in experiments looking not only at the
HR but also the de novo synthesis of lipid mediators (i.e., PGD2, and
LTC4). Collectively, these results indicate that human anti-IgE,
when it is functionally present, can be significantly more potent
than rabbit anti-IgE preparations commonly used in experimental
or diagnostic in vitro protocols for IgE-dependent activation of
human FceRI+ cells.

We also provide some clues on the immunologic mechanism
of activation of human basophils by human IgG anti-IgE. We
found that preincubation of human basophils with increasing
concentrations of human monoclonal IgE purified from a
myeloma patient (68, 70) concentration-dependently interfered
with the activating properties of both human and rabbit anti-IgE.
The specificity of this response was confirmed by the observation
May 2022 | Volume 13 | Article 880412
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that preincubation of basophils with tenfold higher
concentrations of human polyclonal IgG did not antagonize
the ability of both human and rabbit to trigger mediator
release anti-IgE.

A novel finding of this study is the ability of human IgG anti-
IgE to induce the release of Th2-like cytokines (e.g., IL-4, IL-13)
from human basophils. The vast majority of studies exploring the
functional activity of human anti-IgE and anti-FceRI have
evaluated the ability of these autoantibodies to induce HR
from human basophils (36, 42, 47, 48, 50, 88, 90, 91). To the
best of our knowledge, we provide the first evidence that a
functional preparation of human IgG anti-IgE can also induce
the release of IL-4 and IL-13 from human basophils. Also in this
case, we observed that only IgG anti-IgE obtained from one out
of six AD donors could cause cytokine release from basophils.

Our findings may have some translational relevance. AD is
characterized by robust Th2-mediated immune responses to
numerous environmental stimuli (95). The Th2 cytokines IL-4
and IL-13 are believed to play pivotal roles in the pathogenesis of
AD (96, 97). Consistent with these findings, dual IL-4 and IL-13
blockade with the IL-4Ra antagonist, dupilumab showed
unprecedented efficacy in adult AD patients (98, 99).
Moreover, recent evidence indicates that LTC4 plays a role in a
mouse model of AD (100). The observation that human IgG
anti-IgE is a potent stimulus for the production of IL-4/IL-13
from basophils and LTC4 from mast cells suggests that these
autoantibodies may play a role in the onset and progression of at
least a subset of AD patients.

Human basophils and mast cells are key contributors to
allergic disorders (1, 13, 26), including AD (67). A closer
understanding of their roles in allergies has been marked by
the considerable heterogeneity of these cells, whereby distinct
morphologic and functional properties can not only be
appreciated between mast cells and basophils (26) but also
between cells located in different tissues and districts (40, 101–
104). In this study, we demonstrated that human IgG anti-IgE is
a potent stimulus for the production of Th2-like cytokines,
hinting at a possible role in the upstream control of allergic
responses, including IgE synthesis. Further, the agonist effects on
prostanoids secretion from skin mast cells, mediators found at
substantial levels in AD lesions (105), might have important
clinical implications in AD.

In conclusion, our results extend previous findings (36, 44)
indicating that only a minority of IgG anti-IgE isolated from
patients with AD activates human FceRI+ cells. Our data show
that when functional autoantibodies to IgE are present, these can
be more potent than rabbit IgG anti-IgE in inducing the release
of histamine, cytokines (IL-4, IL-13) and lipid mediators (PGD2,
and LTC4) from human basophils and/or mast cells. Further
Frontiers in Immunology | www.frontiersin.org 9
studies in larger cohorts of patients with different phenotypes of
AD are needed to more conclusively assess the prevalence of
functional autoantibodies to IgE or FceRI and their possible
contribution to disease pathogenesis and the response to current
and prospective therapeutic strategies.
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