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Abst rac t
Introduction: Convolutional neural networks gained popularity due to their ability to detect and classify objects in 
images and videos. It gives also an opportunity to use them for medical tasks in such specialties like dermatology, 
radiology or ophthalmology. The aim of this study was to investigate the ability of convolutional neural networks 
to classify malignant melanoma in dermoscopy images.
Aim: To examine the usefulness of deep learning models in malignant melanoma detection based on dermoscopy 
images.
Material and methods: Four convolutional neural networks were trained on open source dataset containing der-
moscopy images of seven types of skin lesions. To evaluate the performance of artificial neural networks, the 
precision, sensitivity, F1 score, specificity and area under the receiver operating curve were calculated. In addition, 
an ensemble of all neural networks’ ability of proper malignant melanoma classification was compared with the 
results achieved by every single network. 
Results: The best convolutional neural network achieved on average 0.88 precision, 0.83 sensitivity, 0.85 F1 score 
and 0.99 specificity in the classification of all skin lesion types. 
Conclusions: Artificial neural networks might be helpful in malignant melanoma detection in dermoscopy images. 
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Introduction

Early detection of malignant melanoma – one of the 
most aggressive skin tumours – plays a key role in reducing 
mortality due to this neoplasm. The increase in melanoma 
morbidity is observed all over the world, especially in the 
Caucasian population [1, 2]. One of the most important 
prognostic factors in patients with malignant melanomas 
is the tumour thickness, histologically assessed according 
to the Breslow scoring system. The 5-year survival rate for 
patients with stage IA (with tumours less than 1 mm thick) 
is above 90%, whereas for patients with tumours thicker 
than 4 mm is far less satisfactory [2, 3]. Even though a dy-
namic development of a number of novel anti-cancer im-
munotherapies has been observed in recent years leading 
to a significant improvement of the survival rate of pa-
tients with advanced malignant melanoma, still many pa-
tients die due to this malignancy [4, 5]. Thus, detection of 
the tumour in the primary stage remains crucial for patient 

prognosis. A large number of early malignant melanomas 
are asymptomatic, and frequently they do not arouse any 
suspicion among patients, even though they are usually 
visible to the naked eye. The early detection of malignant 
melanoma is often possible with the help of dermoscopy, 
but the accuracy of this diagnostic technique relies on the 
physician’s skills and experience. Implementation of an 
automatic lesion classification with deep learning meth-
ods might help clinicians in faster malignant melanoma 
detection and proper differentiation from benign pigment-
ed lesions and other malignancies. Convolutional neural 
networks have increased performance in computer vision 
tasks, like classification, object localization and detection, 
being even able to outperform humans [6, 7]. Here, we 
have tested various convolutional neural networks as an 
aid for proper classification of pigmented skin lesions and 
differentiating malignant melanoma from other skin tu-
mours. 
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Aim

The aim of this study was to evaluate the accuracy of 
deep learning models in malignant melanoma detection 
based on dermoscopic images.

Material and methods

Dataset

The dataset used in this study was extracted from 
“ISIC 2018: Skin Lesion Analysis Towards Melanoma De-
tection” grand challenge [8, 9]. Authors of HAM10000 
dataset also provided supplementary data about the 
origin of the lesion with a unique identifier. Based on 
this unique identifier we have split our dataset, to avoid 
training-test data leakage. The diagnosis of all skin le-
sions was confirmed by histological examination with 
reference to the information provided in the dataset  
[8, 9]. This dataset had a total of 10015 images assigned 
to one of the following categories with a given quantity: 
1. Melanoma – 1113 images,
2. Melanocytic nevus – 6705 images,
3. Basal cell carcinoma – 514 images,
4. �Actinic keratosis/Bowen’s disease (intraepithelial car-

cinoma) – 327 images,
5. �Benign keratosis (solar lentigo/seborrheic keratosis/

lichen planus-like keratosis) – 1099 images,
6. Dermatofibroma – 115 images,
7. Vascular lesion – 142 images.

For training, monitoring and evaluating models we 
proportionally split the dataset into following parts: 
1. Training dataset – 8123 images,
2. Validation dataset – 886 images,
3. Test dataset – 1006 images.

Distribution of skin lesion types across datasets can 
be found in Table 1.

Convolutional neural network (CNN)

Deep learning is a class of machine learning algo-
rithms which uses multiple layers to progressively extract 
higher level features from the raw input, e.g. in image 

processing, lower layers may identify edges, while high-
er layers may identify the concepts relevant to a human 
such as digits or letters or faces [10, 11]. Those models 
can learn – without explicit programming – different 
features at multiple levels of abstraction directly from 
data [10]. The CNN is a variant of a deep learning model 
widely used for image processing in which core operation 
is performed by a convolutional layer. A convolution is 
the simple application of a filter to an input (e.g. image) 
which results in an activation. Repeated application of 
the same filter to an input results in a map of activa-
tions called a feature map, indicating the locations and 
strength of a detected feature in an input (e.g. an image). 
The convolutional layer consists of learnable filters which 
are applied over the input data to extract features [10]. In 
our experiments, a batch normalization layer was insert-
ed after each convolutional layer, followed by rectified 
linear unit activation function [11]. Batch normalization is 
a technique for improving the speed, performance, and 
stability of artificial neural networks [10, 11].

Models

We have compared the performance of four different 
architectures of artificial neural networks. As the base struc-
ture, we used ResNet-101 [12] and its variations – ResNeXt 
[13], SE-ResNet, SE-ResNeXt [14]. ResNet-101 is built with 33 
residual blocks as shown in Figure 1 A and, in total, consists 
of 100 convolution operations. Residual blocks introduce 
a shortcut connection. The shortcut connection adds iden-
tity mapping between the input of the residual block and 
its output. The architecture of the residual block showed 
a positive impact on training deeper CNNs.

ResNeXt introduces new hyperparameter – cardinality, 
which can be achieved by a grouped convolution operation 
as shown in Figure 1 B. This operation divides the input into 
32 groups. This is equivalent to performing 32 smaller con-
volution operations side by side. 

Squeeze and excitation (SE) networks (SE-ResNet, SE-
ResNeXt) are built on that idea with an additional opera-
tion block (Figure 1 C) to increase sensitivity to descriptive 
features. 

Table 1. Distribution of skin lesion types across training, validation and test datasets

Type of skin lesion Training dataset Validation dataset Test dataset Total number

Malignant melanoma 896 (11.0%) 103 (11.6%) 114 (11.3%) 1113 (11.1%)

Melanocytic nevus 5446 (67.0%) 589 (66.5%) 670 (66.6%) 6705 (66.9%)

Basal cell carcinoma 416 (5.1%) 46 (5.2%) 52 (5.2%) 514 (5.1%)

Actinic keratosis/Bowen’s disease (intraepithelial carcinoma) 264 (3.3%) 33 (3.7%) 30 (3.0%) 327 (3.3%)

Benign keratosis (solar lentigo/seborrheic keratosis/lichen 
planus-like keratosis)

896 (11.0%) 92 (10.4%) 111 (11.0%) 1099 (11.0%)

Dermatofibroma 94 (1.2%) 10 (1.1%) 11 (1.1%) 115 (1.1%)

Vascular lesion 111 (1.4%) 13 (1.5%) 18 (1.8%) 142 (1.4%)

Total number 8123 (100%) 886 (100%) 1006 (100%) 10015 (100%)
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Ensemble of CNNs

At the end of our experiments, we have combined all 
CNN models as a stacked ensemble [15] to test whether the 
achieved prediction of malignant melanoma could be further 
improved. Output produced by this method was calculated 
by averaging all predictions of CNNs as seen in Figure 1 D.

Training

A good practice is to use transfer learning when faced 
with CNN training on a small dataset. We have used mod-
els, which have been already pre-trained on ImageNet da-
taset [6], which has 1000 object classes. To adapt it for our 
needs, the last fully connected layer consisting of 1000 
output nodes was removed and replaced with a fully con-
nected layer with 7 output neurons. On the product of the 
last fully connected layer, a softmax activation function 
was applied. Each of those models was trained on the 
training dataset with Adam optimizer [16]. To work with 
the imbalanced dataset, weighted cross-entropy loss func-
tion was utilized, in which weights were equal to inverse 
cardinality in the training dataset. As most of the images 
in our dataset had lesions located in the centre of the 
image, during training an input image of 600 × 450 size 
was augmented by random rotation by 180°, and image 
centre was cropped to 300 × 400 size in order to cut out 
black or skin background. Finally, each image was resized 
to 224 × 224 which is the input size of a CNN. CNNs were 

trained up to 20 epochs. If the network started to show 
signs of overfitting on the validation dataset, the training 
was stopped. Continuation of the training could result in 
better CNN fitting to the images presented in the training 
set, but this outcome was not desired, as next the CNN 
would not generalize well on the test dataset. 

Evaluation

To measure the performance of the algorithm we 
have computed precision, sensitivity, specificity, F1 score 
(1) and area under the receiver operating curve (AUC) on 
the test dataset. F1 score was calculated as a harmonic 
mean of precision and sensitivity according to the for-
mula: 
                             1                                2TP
F1 = 2 × ––––––––––––––––––––––––– = –––––––––––––––––
                      1                     1         2TP + FP + FN 
              –––––––––––  + ––––––––––––––
               Precision           Sensitivity           

where TP = true positives, FP = false positives, FN = false negatives. 

Visual explanation

In order to explain the classifications of the best CNN 
model, Grad-CAM was used [17]. This method allowed 
us to visualize which regions, according to CNN, were 
the most important for given class prediction. Grad-CAM 
produces heatmap that can be overlaid over the tested 
image. The area coloured in red corresponds to the high-
est score of activation of the CNN, which potentially de-

Figure 1. Example of a residual block (A) of ResNet-101 with input of C channels. The first convolutional layer decreases 
channels by 4 and the last one restores it to C channels. ResNeXt block (B). SE-ResNet block (C), where residual block can 
be a block from (A) or (B). D – Scheme of the ensemble of CNNs
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termines the membership of the appropriate category of 
skin lesions, whereas the light blue colour indicates the 
least specific area for a correct prediction to the network. 
In addition, we present Guided Grad-CAM, which shows 
in detail the most distinctive features, based on which 
CNN decided about image classification to a given class.

Software list

The software with given versions used in the current 
study is listed below:
•	Python 3.6.
•	PyTorch 0.4.1.
•	NumPy 1.15.
•	Pandas 0.23.4.
•	Scikit-learn 0.19.2.
•	Pillow 5.2.0.

Results

Evaluation of CNNs 

After training, the results of each CNN was evaluated 
as described above their average metrics were compared 
between models. 

All of the examined neural networks achieved the 
best precision, sensitivity and F1 score in the evaluation of 
melanocytic nevi, which can be explained by the fact that 
they accounted for the vast majority of lesions in the train-
ing dataset. Interestingly, the specificity of melanocytic ne-
vus detection achieved the lowest score in all CNN com-
pared to other calculated parameters (Table 2). Regarding 
malignant melanoma assessment, the ResNeXt appeared 
to be superior, achieving the best precision, sensitivity and 
F1 score, followed by ResNet which precision was lower by 
0.01 and sensitivity by 0.02 than in ResNeXt. SE-ResNet 
and SE-ResNeXt scored 0.05 and 0.07 fewer precision 
points compared to the best model, respectively (Table 2). 

Based on average metrics, ResNeXt again turned out 
to be the best among all the analysed CNNs (Table 2). 
However, ResNet matched ResNeXt regarding average 
sensitivity. 

Despite the fact that ResNeXt turned out to be the 
best tested model, we observed misclassifications of 
malignant melanoma by this model in reference to other 
CNNs (Table 3). A total percentage of wrongly classified 
images of malignant melanoma by ResNeXt was 28%, 
from which half were correctly classified by other neu-
ral networks. The remaining ones were improperly diag-
nosed not only by ResNeXt, but also by other CNNs. The 
considerable number of false negative results of malig-
nant melanoma image prediction were melanocytic nevi 
or benign keratoses. 

The ensemble of CNNs’ precision, F1 score and speci-
ficity surpassed the best result of ResNeXt in malignant 
melanoma prediction. However, sensitivity remained 

similar with this model as shown in Figure 2 A. The nor-
malized confusion matrix is presented in Figure 2 B.

Visual explanation

Based on Grad-CAM activation heatmaps we have 
shown how ResNeXt learned to distinguish skin lesion 
from unaltered skin (Figure 3). Figures 3 A and B demon-
strate properly classified images of melanocytic nevus 
(Figure 3 A) and malignant melanoma (Figure 3 B). On 
the other hand, ResNeXt misclassified malignant mela-
noma with melanocytic nevus as shown in Figure 3 C. 
Presumably, the spatial size of skin lesion as well as its 
colour may have an impact on the accurate assignment 
of the lesion type. Likewise, zoom, lighting, and angle of 
dermatoscopic images taken might be important factors 
that contribute to malignant melanoma prediction, as 
seen in Figure 3 D. Only the first picture of the disease 
was correctly classified as malignant melanoma.

Discussion

Crucial factors of the correct malignant melanoma 
diagnosis include clinical experience and proper train-
ing of physicians. As shown by Haenssle et al. [18], the 
CNN might outperform clinicians in the differentiation of 
malignant skin lesions from benign ones. For the needs 
of that research, an international group of 58 derma-
tologists, which included 30 experts in the field, were 
involved. In the level-I study, physicians had to make 
a diagnosis only based on dermatoscopic images. The 
artificial neural network achieved 0.86 area under the 
receiver operating characteristic curve (ROC AUC) com-
pared to ROC area of 0.79 (p < 0.01) for all dermatolo-
gists. As in real life clinicians usually have more informa-
tion about the patient condition, in the level-II study, 
dermatologists were provided with an extra close-up der-
moscopy image and additional clinical information (age, 
sex and body site). In the second study, the mean ROC 
area for all dermatologists increased to 0.82, but was still 
lower than CNN. Based on these experiments, we do be-
lieve that even experienced dermatologists may benefit 
from an aid of CNN, which can give a supportive opinion 
while diagnosing a suspicious pigmented skin lesion, al-
though CNN cannot replace a well-skilled physician. 

Additionally, Yap et al. [19] showed that there is a pos-
sibility to combine CNN trained on dermatoscopic im-
ages with another CNN trained on macroscopic images. 
This research focused on the classification of five skin 
lesion types: melanocytic nevus, malignant melanoma, 
basal cell carcinoma, squamous cell carcinoma, and pig-
mented benign keratosis. Based only on one image type, 
artificial neural network prediction had achieved 0.647 
±0.01 and 0.707 ±0.01 accuracy for macroscopic and der-
matoscopic images, respectively. However, when they 
were combined, their accuracy increased to 0.721 ±0.007. 
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Despite the fact that the accuracy of macroscopic CNN 
alone is worse than the one trained with dermatoscopic 
images, their combination had a positive impact on the 
diagnosis. However, to implement such systems in real 
life scenarios, it requires additional macroscopic image 
dataset for CNN. 

Access to medical databases is a limiting factor for CNN 
development, because they require collection of personal 
data and, as a result, usually they are not freely available 
for the public. Preparation of such dataset takes time and 
the proper labelling of skin lesions on the images requires 
expert knowledge. The HAM10000 dataset [8, 9], which was 

Table 2. Results of precision, sensitivity, F1 score and specificity for ResNet, ResNeXt, SE-ResNet and SE-ResNeXt in 
classification of each disease

Skin lesion Precision Sensitivity F1 score Specificity AUC (ROC)

ResNet:

  Malignant melanoma 0.76 0.70 0.73 0.97 0.96

  Melanocytic nevus 0.95 0.96 0.95 0.89 0.98

  Basal cell carcinoma 0.86 0.85 0.85 0.99 1.00

  Actinic keratosis/Bowen’s disease 0.72 0.77 0.74 0.99 0.99

  Benign keratosis 0.79 0.80 0.80 0.97 0.97

  Dermatofibroma 0.9 0.82 0.86 1.00 0.98

  Vascular lesion 0.94 0.89 0.91 1.00 1.00

  Average 0.85 0.83 0.84 0.97 0.98

ResNeXt:

  Malignant melanoma 0.77 0.72 0.74 0.97 0.95

  Melanocytic nevus 0.95 0.96 0.96 0.90 0.98

  Basal cell carcinoma 0.85 0.9 0.88 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.84 0.70 0.76 1.00 0.99

  Benign keratosis 0.79 0.81 0.80 0.97 0.98

  Dermatofibroma 1.00 0.73 0.84 1.00 1.00

  Vascular lesion 0.95 1.00 0.97 1.00 1.00

  Average 0.88 0.83 0.85 0.99 0.99

SE-ResNet:

  Malignant melanoma 0.72 0.69 0.71 0.97 0.96

  Melanocytic nevus 0.94 0.94 0.94 0.88 0.97

  Basal cell carcinoma 0.78 0.90 0.84 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.85 0.57 0.68 1.00 0.98

  Benign keratosis 0.75 0.78 0.77 0.97 0.97

  Dermatofibroma 0.89 0.73 0.8 1.00 0.98

  Vascular lesion 0.94 0.89 0.91 1.00 1.00

  Average 0.84 0.79 0.81 0.97 0.98

SE-ResNeXt:

  Malignant melanoma 0.70 0.67 0.68 0.96 0.95

  Melanocytic nevus 0.95 0.95 0.95 0.90 0.97

  Basal cell carcinoma 0.82 0.87 0.84 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.73 0.53 0.62 0.99 0.98

  Benign keratosis 0.74 0.83 0.78 0.96 0.97

  Dermatofibroma 0.89 0.73 0.80 1.00 0.99

  Vascular lesion 0.89 0.89 0.89 1.00 1.00

  Average 0.82 0.78 0.79 0.97 0.98
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Table 3. Differences in the classification of various images by analysed CNNs. Correctly classified malignant melanomas 
on images were marked in green, whereas incorrect predictions were highlighted in red

Image ResNet ResNeXt SE-ResNet SE-ResNeXt

Malignant melanoma Melanocytic nevus Malignant melanoma Malignant melanoma

Malignant melanoma Melanocytic nevus Melanocytic nevus Melanocytic nevus

Malignant melanoma Melanocytic nevus Melanocytic nevus Malignant melanoma

Malignant melanoma Benign keratosis
Benign

keratosis
Malignant melanoma

Malignant melanoma Melanocytic nevus Malignant melanoma Melanocytic nevus

Malignant melanoma Benign keratosis Basal cell carcinoma
Benign

keratosis

Melanocytic nevus
Benign

keratosis
Malignant melanoma Melanocytic nevus

Melanocytic nevus Melanocytic nevus Melanocytic nevus Malignant melanoma

Malignant melanoma Melanocytic nevus Malignant melanoma Melanocytic nevus

Malignant melanoma Benign keratosis Malignant melanoma Malignant melanoma

Malignant melanoma Benign keratosis
Benign

keratosis
Benign

keratosis
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Image ResNet ResNeXt SE-ResNet SE-ResNeXt

Malignant melanoma Melanocytic nevus Melanocytic nevus Melanocytic nevus

Benign
keratosis

Benign keratosis
Benign

keratosis
Malignant melanoma

Melanocytic nevus Melanocytic nevus Malignant melanoma Melanocytic nevus

Benign
keratosis

Melanocytic nevus Malignant melanoma
Benign

keratosis

Table 3. Cont.

MEL – malignant melanoma, NV – melanocytic nevus, BCC – basal cell carcinoma, AKIEC – actinic keratosis/Bowen’s disease,  
BKL – benign keratosis, DF – dermatofibroma, VASC – vascular lesion.

Figure 2. A – Comparison of scores at malignant melanoma prediction between ResNet, ResNeXt, SE-ResNet, SE-ResNeXt 
and ensemble of all convolutional neural networks. B – Normalized confusion matrix of the ensemble 

Predicted label

	 MEL	 0.72	 0.19	 0.02	 0.00	 0.07	 0.00	 0.00

	 NV	 0.03	 0.96	 0.00	 0.00	 0.01	 0.00	 0.00

	 BCC	 0.00	 0.04	 0.00	 0.02	 0.04	 0.02	 0.00

	AKIEC	 0.00	 0.07	 0.03	 0.73	 0.17	 0.00	 0.00

	 BKL	 0.02	 0.10	 0.00	 0.04	 0.85	 0.00	 0.00

	 DF	 0.09	 0.18	 0.00	 0.00	 0.00	 0.73	 0.00

	 VASC	 0.00	 0.00	 0.06	 0.00	 0.00	 0.00	 0.94
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used in our research, is relatively new and small compared 
to other ones commonly used in computer vision challenges 
(ImageNet [6], MS COCO [7], etc.). This dataset was highly 
imbalanced between classes, which may have an impact on 
the final performance of the convolutional neural network, 
however, despite this limitation, a huge number of images 
was an attractive and valid dataset for performing our ex-
periments. Gathering more images to this dataset might 
help to overcome some problems we have faced, such as 

different classification of images based on the camera angle, 
zoom and lighting of taken pictures (for details see Figure 3). 
This could also decrease the bias towards overrepresenta-
tion of melanocytic nevi, which had been encountered dur-
ing training. Overall, having a better image database could 
aid researchers in developing a more robust algorithm that 
generalizes well over new skin lesion images. 

Last but not least, the question arises whether der-
matologists will be willing to use an artificial neural 

A B
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network, because of its opacity. Deep learning models 
have low interpretability, thereby they are often called 
as a black box algorithm [20]. The grad-CAM method that 
has been used in the current study allowed us to visually 
explain CNN prediction for the given image via a saliency 
map. Utilizing it or another similar method in a comput-
er system might give dermatologists an insight which 

features of skin lesion were important for the particular 
model during classification.

Conclusions

Our research showed that deep learning models had 
achieved satisfactory accuracy in malignant melanoma 

Figure 3. A – Examples of a correctly classified melanocytic nevus. B – Examples of a correctly classified malignant mela-
noma. C – Wrongly classified examples of malignant melanoma (these images were predicted as melanocytic nevus). 
D – From top to bottom ResNeXt classified those images as malignant melanoma, melanocytic nevus and vascular lesion 
(from left: original image, Grad-CAM heatmap on original image and Guided Grad-CAM visualization)

A

C

B

D
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detection in dermoscopy images. In future investigations, 
one should focus on a better understanding of CNN pre-
dictions. 
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