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Abstract

Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of 

complex movements. Although recent neuronal-network models capture many qualitative aspects 

of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how 

M1 efficiently controls movements over a wide range of shapes and speeds. We demonstrate that 

modulation of neuronal input–output gains in recurrent neuronal-network models with fixed 

architecture can dramatically reorganize neuronal activity and thus downstream muscle outputs. 

Consistent with the observation of diffuse neuromodulatory projections to M1, a relatively small 

number of modulatory control units provide sufficient flexibility to adjust high-dimensional 

network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble 

novel movements from previously learned primitives, and one can separately change movement 

speed while preserving movement shape. Our results provide a new perspective on the role of 

modulatory systems in controlling recurrent cortical activity.
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Introduction

Motor cortex is one of the final cortical outputs to downstream spinal motoneurons [1], and 

it is fundamental for controlling voluntary movements [2, 3, 4]. During movement 

execution, primary motor cortex (M1) exhibits complex, multiphasic firing-rate transients 

that return to baseline after movement completion [4]. Recent studies have provided some 

understanding of how these complex, single-neuron patterns of activity relate to intended 

movements [4, 5, 6]. It has been insightful to view motor cortex as a dynamical system in 

which preparatory activity sets the initial condition for the system, whose subsequent 

dynamics drive the desired muscle activity [7, 8]. From this perspective, the complex firing-

rate dynamics provide a flexible basis set for the generation of movements [9].

Several recurrent neuronal-network models have been developed to capture M1 activity 

during movement execution [10, 11]. These models rely on strong recurrent connectivity that 

is optimized for the neuronal dynamics to be qualitatively similar to M1 activity during 

movement execution. However, these models cannot explain how new movements can be 

constructed or how their static architecture allows variations in both output trajectories and 

speed.

A possible mechanism for effectively switching neuronal activity, and consequently 

downstream muscle activity to generate different movements (see Fig. 1a), is to adjust the 

intrinsic gain — that is, the input–output sensitivity — of each neuron so that they engage 

more (or less) actively in the recurrent neuronal dynamics [12, 13, 14, 15, 16, 17, 18]. 

Indeed, neuromodulation in M1 can cause such changes in neuronal responsiveness [19, 20], 

and gain modulation of both neurons in M1 [13] and spinal motoneurons [21, 22] has been 

linked experimentally to skill acquisition and optimization of muscular control.

In this paper, we study the effects of gain modulation in recurrent neuronal-network models 

of motor cortex. We show that individually modulating the gain of neurons in such models 

allows learning of a variety of target outputs on behaviourally relevant time scales through 

reward-based training. Motivated by diffuse neuromodulatory innervation of M1 [19, 23, 

24], we find that coarse-grained control of neuronal gains achieves a similar performance to 

neuron-specific modulation. We demonstrate that we can combine previously learned 

modulatory gain patterns to accurately generate new desired movements. Therefore, gain 

patterns can act as motor primitives for quickly constructing novel movements [25, 26]. 

Finally, we show how to control the speed of an intended movement through gain 

modulation. We find that it is possible to learn gain patterns that affect either only the shape 

or only the speed of a movement, thus enabling efficient and independent movement control 

in space and time.

Results

Modelling gain modulation in recurrent neuronal networks

To understand how cortical networks can efficiently generate a large variety of outputs, we 

begin with an existing cortical circuit model [11]. We use recurrent networks, with N = 2M 
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neurons (with M excitatory and M inhibitory neurons), for which the neuronal activity 

vector x(t) = (x1(t), ...,xN(t))T evolves according to

τ dx(t)
dt = − x(t) + W f (x(t); g), (1)

where the single-neuron time constant is τ = 200 ms, and (unless we state otherwise) we 

generate the synaptic weight matrix W in line with [11] (i.e., we use ‘stability-optimized 

circuits’). These networks consist of a set of sparse, strong excitatory weights that are 

balanced by fine-tuned inhibition (see Methods).

The gain function f, which governs the transformation of neuronal activity x into firing rates 

relative to a baseline rate r0, is

f xi; gi =
r0tanh gixi/r0 , if xi < 0,
rmax − r0 tanh gixi/ rmax − r0 , if xi ≥ 0,

(2)

where the gain gi is the slope of the function f at the baseline rate r0 and thus controls the 

input–output sensitivity of neuron i [27]. In Eqn. (1), f(x;g) denotes the element-wise 

application of the scalar function f to the neuronal activity vector x. Unless we state 

otherwise, we use a baseline rate of r0 = 20 Hz and a maximum firing rate of rmax = 100 Hz, 

consistent with experimental observations [4, 28]. The gain function f(x;g) describes the 

neuronal firing rates relative to the baseline steady-state r0. Identical dynamics can also 

result from using a strictly positive gain function, combined with a tonic (i.e., static) external 

input (see Methods Section 1.2).

For appropriate initial conditions x(t = 0) = x0 (see Methods Section 1.1), the neuronal 

dynamics given by Eqn. (1) exhibit naturalistic activity transients that resemble M1 

recordings [4, 11], and the population activity is rich enough to enable the generation of 

complex movements through linear readouts [11]. We emulate neuromodulation in this 

model by directly controlling the input–output gain gi of each neuron (see Figs. 1b,c).

Neuron-specific gain modulation

We find that increasing the gain of all neurons uniformly (i.e., gi = g in Eqn. (2)) increases 

both the frequency and amplitude of the neuronal firing rates (see Fig. 1c). One can 

understand these effects of uniform modulation by linearizing Eqn. (1) around x = 0, 

yielding the linear ordinary differential equation τ dx
dt = (gW − I)x (where I is the identity 

matrix), and studying changes in the spectrum of the matrix gW − I; see Supplementary 

Math Note.

To allow more precise control of neuronal activity than through uniform modulation, we can 

independently adjust the gain of each neuron in what we call neuron-specific modulation. 

We obtain gain patterns that lead to the generation of target output activity using a reward-
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based node perturbation learning rule (see Methods Section 1.7). Our rule, which acts on the 

modulatory pathway of our model but is similar to proposed synaptic plasticity rules for 

reward-based learning [29, 30, 31, 32], uses a global scalar signal of recent performance to 

iteratively adjust each neuron’s gain while the initial condition x0 and the network 

architecture remain fixed.

Starting with a network and readout weights that produce an initial movement with all gains 

set to 1 (see the black curve in Fig. 1d), our learning rule yields a gain pattern that leads to 

the successful generation of a novel target movement after a few thousand training iterations 

(see Fig. 1d and Methods Section 1.10). Errors between the actual and desired outputs tend 

to decrease monotonically and eventually become negligible. Independent training sessions 

with the same target movement produce nonidentical but positively correlated gain patterns 

(see Fig. 1e and Supplementary Fig. 1c). Counterintuitively, the neuronal firing rates change 

only slightly, even though the network output is altered substantially (see Supplementary 

Fig. 1b). Once the target is learned, the same initial condition can produce either of two 

distinct network outputs, depending on the applied gain pattern (see Fig. 1f). The outputs are 

also similarly robust with respect to noisy initial conditions for each gain pattern (see 

Supplementary Fig. 1d).

We also compare the learning performance of gain modulation with alternative learning 

mechanisms. We train either the neuronal gains, the initial condition x0 of the neuronal 

activity, a rank-1 perturbation of the synaptic weight matrix, or the full synaptic weight 

matrix using back-propagation (see Methods Section 1.10). We find empirically for this task 

that training through gain modulation yields a similar learning performance as training the 

initial condition or the full synaptic weight matrix and that training through gain modulation 

performs substantially better than learning a rank-1 perturbation of the synaptic weight 

matrix (see Supplementary Fig. 1f).

Gain modulation in different models

Next, we examine whether learning through gain modulation is possible in alternative, 

commonly-used models of movement generation. Motor circuits that drive movements also 

engage in periods of movement preparation [5, 7, 33], suggesting a role for gain modulation 

in shaping circuit dynamics both during movement planning and during movement 

execution. We find that learning is also possible in a model in which we include gain 

modulation during movement planning. We simulate the preparatory period using a ramping 

input to the system [11] (see Methods Section 1.10), such that gain modulation now directly 

affects the neuronal activity at movement onset. We find that learning performance (i.e., 

error reduction) for the task that we showed in Fig. 1d is slightly poorer if we do employ a 

ramping input than if we do not. (Compare the red and blue curves in Fig. 2a.) This occurs 

because gain modulation during the preparatory phase changes the neuronal activity at 

movement onset, allowing it to leave the null space of the readout weights (which are fixed) 

and thus elicit premature muscle activity at movement onset.

We also construct a ‘chaotic’ variant of our model [34] (see Methods Sections 1.3 and 1.10) 

for the same task and train only the neuronal gains. We achieve similar learning performance 

compared to our original model that we used in Fig. 1d (compare the red and grey curves in 
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Fig. 2a), even though the neuronal firing rates are very different (compare the far left and far 

right panels in Fig. 2b). Finally, we also use an alternative learning rule to train the neuronal 

gains (see Eqns. (10) and (11)); in this rule, learning slows down as the decrease in error 

slows down (see Methods Section 1.8). We find that the error decreases at a faster rate than 

that in our original learning rule (see the purple curve in Fig. 2a.) This may occur because 

the standard deviation of the noise perturbation term in the alternative learning rule becomes 

smaller over training iterations as the error decreases.

Notably, in all of these examples, changes in neuronal responsiveness alone — for example, 

via inputs from neuromodulatory afferents — can cause dramatic changes in network 

outputs, thereby providing an efficient mechanism for rapid switching between movements, 

without requiring any changes in either synaptic architecture or the initial condition x0.

Coarse, group-based gain modulation

Individually modulating the gain of every neuron in motor cortex is likely unrealistic. In line 

with the existence of diffuse (i.e., not neuron-specific) neuromodulatory projections to M1 

[19, 24, 23], we cluster neurons into groups so that we identically modulate units within a 

group. (See Fig. 3a and Methods Sections 1.9 and 1.10.) We find that such coarse-grained 

modulation gives similar performance to neuron-specific control for as few as 20 randomly-

formed groups (see Methods Section 1.9) using our model from Fig. 1 consisting of 200 

neurons (see Fig. 3b and Supplementary Fig. 2a). For a given number of groups, one can 

improve performance if, instead of grouping neurons randomly as above, we use a 

specialized clustering for each movement that is based on previous training sessions (see 

Fig. 3b, Supplementary Fig. 2a, and Methods Section 1.9). Importantly, there exist 

specialized groupings that perform similarly across multiple different movements (see Fig. 

3c and Supplementary Figs. 2b,c). Such specialized groupings acquired from learning one 

set of movements also perform well on novel movements (see Supplementary Fig. 2d).

Notably, even with random groupings, network size hardly affects learning performance for 

a single readout (see Fig. 3d). The performance depends much more on the number of 

groups than on the number of neurons per group. When the task involves two or more 

readout units, larger networks do learn better, and achieving a good performance necessitates 

using a larger number of independently modulated groups (see Figs. 3e,f). Finally, smaller 

networks typically learn faster (see the bottom panel of Fig. 3e), but they ultimately exhibit 

poorer performance, demonstrating that there is a trade-off between network size, number of 

groups, and task complexity (i.e., the number of readout units).

Gain patterns can provide motor primitives for novel movements

In principle, it is possible to independently learn numerous gain patterns, supporting the 

possibility of a repertoire (which we call a ‘library’) of modulation states that a network can 

use, in combination, to produce a large variety of outputs. Generating new movements is 

much more efficient if it is possible to ‘intuit’ new gain patterns as combinations of 

previously acquired primitives [26, 15]. To test if this is possible in our model, we first 

approximate a novel target movement as a convex combination of existing movements. (We 

call this a ‘fit’ in Fig. 4; see Methods Section 1.10.) We then use the same combination of 
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the associated library of gain patterns to construct a new gain pattern (see Fig. 4a). 

Interestingly, the resulting network output closely resembles the target movement (see Fig. 

4b). This may seem unintuitive, but one can understand this result mathematically by 

calculating power-series expansions of the solution of the linearized neuronal dynamics (see 

Supplementary Math Note).

Finally, increasing the number of elements in the movement library reduces the error 

between a target movement and its fit, which is also reflected in a progressively better match 

between the target and the network output (see Figs. 4b–d and Supplementary Fig. 3). 

Although the idea of using motor primitives to facilitate rapid acquisition of new movements 

is well established [26, 25], our approach proposes the first (to our knowledge) circuit-level 

mechanism for achieving this objective. In addition to neuromodulatory systems [19, 20, 

22], the cerebellum is a natural candidate structure to coordinate such motor primitives [25], 

as it is known to project to M1 and to play a critical role in error-based motor learning [35, 

25].

Nonlinear behaviour

We initially choose the baseline firing rate (r0 = 20 Hz in Eqn. (2)) to be consistent with 

experimentally measured firing rates in motor cortex [4, 36, 28]. Most of the time, neurons 

operate within the linear part of their nonlinear gain function (i.e., the neuronal dynamics are 

similar to the case of using the linear gain function f (xi; gi) = gi xi (see Figs. 5a,c)). To test if 

our results hold for scenarios with more strongly nonlinear dynamics, we reduce the baseline 

firing rate to r0 = 5 Hz. This increases the neuronal activity near the lower-saturation regime 

(i.e., towards the left part of the curve in the left panel of Fig. 1c) of the gain function (see 

Figs. 5b,c). As expected from the larger range of possible network outputs (and improved 

learning performance) in nonlinear recurrent neuronal networks than in linear ones [34, 31, 

32], we observe better learning performance for r0 = 5 Hz than for r0 = 20 Hz (compare the 

black and blue curves in Fig. 5d), and we obtain a very similar distribution of gain values 

after training (see Fig. 5e).

Importantly, it is still possible to learn new movements by using combinations of existing 

gain patterns. As before, performance is limited by the accuracy with which one can 

construct target movements as linear combinations of existing primitives. (See the 

correlations between network output errors and fit errors in Supplementary Fig. 4b.) 

Moreover, errors in network output decrease on average with increasing numbers of gain 

patterns in the movement library (see the orange curve in Fig. 5f), and the difference 

between the network output and corresponding fit remains small for all tested numbers of 

library elements (see the blue curve in Fig. 5f). However, reducing r0 to sufficiently small 

values (that are below 5 Hz) does eventually lead to a deterioration in the effectiveness of 

gain patterns providing motor primitives for new movements.

Gain modulation can control movement speed

Thus far, we have demonstrated that simple (even coarse, group-based) gain modulation 

enables control of network outputs of the same, fixed duration. To control movements of 

different durations, motor networks must be able to slow down or speed up muscle outputs 
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(i.e., change the duration of movements without affecting their shape). In line with recent 

experimental results [37, 38], we investigate if changing neuronal gains allows control of the 

speed of an intended movement (see Fig. 6a and Methods Section 1.10). We begin with a 

network of 400 neurons (with 40 random modulatory groups) that generates muscle activity 

that lasts approximately 0.5 s. We find that our learning rule can successfully train a network 

to generate a slower variant that lasts 5 times longer (see Fig. 6b and Supplementary Fig. 5a) 

than the original movement (see Methods Section 1.10).

In contrast to simply changing the single-neuron time constant τ — which uniformly scales 

the duration, but does not affect the shape of each neuron’s activity — modifying neuronal 

gains to generate ‘fast’ and ‘slow’ output variants leads to changes in both the shape and 

duration of neuronal firing rates, in line with recent experimental findings [37]. Changing 

neuronal gains thus enables interactions between the shape and duration of outputs without 

requiring retraining of the synaptic weight matrix to scale the duration of neuronal activities 

[39].

The learned slow variants are more sensitive to noisy initial conditions than the fast variants, 

but we can find more robust solutions by using a regularized back-propagation algorithm to 

train both the neuronal gains and the readout weights (see Methods Section 1.10). Following 

training, the slow variants are learned successfully (see Fig. 6c) and are less sensitive to the 

same noisy initial conditions (see Supplementary Fig. 5g). The neuronal dynamics oscillate 

transiently, with a substantially lower frequency than either the fast variants or the slow 

variants trained by our reward-based learning rule. (Compare the bottom panels of Fig. 6c 

and Fig. 6b.) We also find a single gain pattern that, rather than slowing down only one 

movement, slows down up to approximately five distinct movements, which result from five 

orthogonal initial conditions, by a factor of 5 (see Supplementary Figs. 5h–j). Consequently, 

one can extend the temporal scale of transient neuronal activity several-fold through specific 

changes in neuronal gains.

Smoothly controlling the speed of movements

Following training on a fast and slow variant of the same movement (see the previous 

section), we find that naively interpolating between the two gain patterns does not yield the 

same movement at intermediate speeds (see the top panel of Fig. 6d), consistent with human 

subjects being unable to consistently apply learned movements at novel speeds [39, 40]. 

Therefore, even when we consider ‘fast’ and ‘slow’ variants of the same movement, both our 

learning rule and the back-propagation training do not learn to ‘slow down’ the movement; 

instead, they learn two seemingly unrelated gain patterns. However, it is possible to modify 

our back-propagation training procedure by including additional constraints on the fast and 

slow gain patterns (see Methods Section 1.10) so that interpolating between the two gain 

patterns produces progressively faster or slower outputs. We successfully train the network 

to generate two movements (associated with two different initial conditions) at 7 different 

speeds with durations that range from 0.5 s to 2.5 s (see Fig. 6e, Supplementary Fig. 6, and 

Methods Section 1.10). Linear interpolation between the fast and slow gain patterns (see 

Supplementary Fig. 6b) now generates smooth speed control of both movements at any 

intermediate speed (see the bottom panel of Fig. 6d as well as Fig. 6f). In other words, we 
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can control the speed of multiple movements associated with different initial conditions by 

learning a ‘manifold’ [41] in neuronal gain space that interpolates between the fast and the 

slow gain patterns (see the bottom right of Fig. 6a).

Joint control of movement shape and speed

Thus far, we have shown that gain modulation can affect either the shape or the speed of a 

movement. Flexible and independent control of both the shape and speed of a movement 

(i.e., joint control) necessitates separate representations of space and time in the gain 

patterns. A relatively simple possibility is to find a single universal manifold in neuronal 

gain space (see the previous section) for speed control (we call this the ‘speed manifold’) 

and combine it with gain patterns that are associated with different movement shapes. 

Biologically, this may be achievable using separate modulatory systems. We achieve such 

separation by simultaneously training one speed manifold and 10 gain patterns for 10 

different movement shapes such that movements are encoded by the product of shape-

specific and speed-specific gain patterns. (See Fig. 7a and Methods Section 1.10.) Following 

training, we can generate each of the 10 movements at the 7 trained speeds by multiplying a 

speed-specific gain pattern (see Fig. 7b) with the desired shape-specific gain pattern. 

Importantly, we can also accurately generate each of the 10 different movements at any 

intermediate speed by simply linearly interpolating between the fast and slow gain patterns 

(see Figs. 7c,d). We thereby obtain separate families of gain patterns for movement shape 

and speed that independently control movements in space and time.

Learning gain-pattern primitives to control movement shape and speed

To construct new movement shapes with arbitrary durations, we examine the possibility of 

using both the speed manifold and the 10 trained shape-specific gain patterns that we 

obtained previously (see Fig. 7) as a library of spatiotemporal motor primitives. We test this 

library using 100 novel target movement shapes (see Fig. 4). For each target movement, we 

learn the coefficients for linearly combining the 10 shape-specific gain pattern primitives to 

obtain each new movement at both the fast and slow speeds while keeping the speed 

manifold fixed (see Fig. 8a and Methods Section 1.10).

We find that it is possible to accurately generate the new movements at fast and slow speeds 

using the above spatiotemporal library of gain patterns (see Supplementary Fig. 7), and we 

are able to produce the new movements with similar accuracies as those at the fast and slow 

speeds at any intermediate speed by linearly interpolating between the fast and slow gain 

patterns from the unaltered speed manifold. (See Fig. 8b and the black and red curves in Fig 

8c.) The mean error of approximately 0.5 across all movement durations is similar to the 

error that we obtained previously from a movement library that consists of 10 gain patterns 

(see Fig. 4d). We can substantially outperform both the (uniformly-at-random) permuted 

gain patterns from their associated targets (see Methods Section 1.10) and using least-

squares fitting (which we used previously) to combine gain patterns. (See the grey and black 

dashed curves in Fig. 8c.)

Consistent with the idea of rapidly generating movements using motor primitives, we 

generate correlated target shapes by using correlated combinations of gain patterns (see Fig. 
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8d). Therefore, one can use previously learned gain patterns for controlling movement 

shapes to generate new movements while maintaining independent control of movement 

speed.

Discussion

The movement-specific population activity that has been observed in monkey primary motor 

cortex [4], can arise through several possible mechanisms. Distinct neuronal activity can 

emerge from a fixed population-level dynamical system with different movement-specific 

preparatory states [7]. Alternatively, one can change the underlying dynamical system 

through modification of the effective connectivity [42] even when a preparatory state is the 

same across movements. Such changes in effective connectivity can arise either through a 

feedback loop (e.g., a low-rank addition to the synaptic weight matrix [34]) or through 

patterns of movement-specific gains, as we explored in this paper. We found that movement-

specific gain patterns provide a similar performance to training a different initial condition 

for each desired output (with a fixed duration) and that both of these approaches outperform 

a rank-1 perturbation of the synaptic weight matrix (see Supplementary Fig. 1f). Gain 

modulation thus provides a complementary method of controlling neuronal dynamics for 

flexible and independent manipulation of output shape. Additionally, gain modulation 

provides a compelling mechanism for extending the duration of activity transients without 

needing to carefully construct movement-specific network architectures [39].

Gain modulation may occur via neuromodulators [20, 22], but it can also arise from a tonic 

(i.e., static) input that shifts each neuron’s resting activity within the dynamic range of its 

input–output function (for example, through inputs from the cerebellum) [14]. Although this 

is an effective way of mimicking gain changes in recurrent network models with strongly 

nonlinear single-neuron dynamics [37, 43], we were unable to produce desired target outputs 

by training a tonic input. It is worth noting that a tonic input also modifies baseline neuronal 

activity, thereby altering the output muscle activities away from rest.

In line with previous research [8, 4, 10], we trained networks to generate specific target 

output trajectories (which we suggest act as a proxy for muscle activity). This is a 

simplification of actual motor learning, as there are many different possible muscle 

activations that can lead to a ‘successful’ movement. For some motor tasks, it is probably 

more biologically plausible to train a network to increase the success of the desired 

movement defined by the position of an end effector while also minimizing the total amount 

of muscle activity (e.g., see [32, 44]). Nevertheless, our learning rule is biologically 

plausible, in that it uses only local information and a single scalar signal (which is the total 

sum of squared errors) per trial. It does not carry detailed information about the exact way in 

which an output trajectory deviates from a desired trajectory. We thus expect that our main 

results will still be relevant for more realistic models of motor learning (e.g., using a 

biophysically realistic model of a human arm [32]).

In our model, in which the recurrent architecture remains fixed, synaptic modifications may 

take place upstream of the motor circuit (e.g., in the input synapses to the presumed 

neuromodulatory neurons [45]). Additionally, changes in neuronal gains can work in concert 
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with synaptic plasticity in cortical circuits, thereby allowing changes in the modulatory state 

of a network to be transferred into circuit connectivity [46], consistent with known 

interactions between neuromodulation and plasticity [45]. Consequently, understanding the 

neural basis of motor learning may necessitate recording from a potentially broader set of 

brain areas than those circuits whose activity correlates directly with movement dynamics.

Our results build on a growing literature of taking a dynamical-systems approach to studying 

temporally-structured cortical activity. This perspective has been effective for investigations 

of several cortical regions [5, 37, 7, 36, 47, 4, 48]. In line with this approach, our results may 

also be applicable to other recurrent cortical circuits that exhibit rich temporal dynamics 

(e.g., decision-making dynamics in prefrontal cortex [48], temporally-structured memories, 

etc.).

In summary, our results support the view that knowing only the structure of neuronal 

networks is not sufficient to explain their dynamics [49, 50]. We extend current 

understanding of the effects of neuromodulation [17, 20, 49, 13] and show that it is possible 

to control a recurrent neuronal network’s computations without changing its connectivity. 

We found that modulating only neuronal responsiveness enables flexible control of neuronal 

activity. We were also able to combine previously learned modulation states to generate new 

desired activity patterns, and we demonstrated that employing gain modulation allows one to 

smoothly and accurately control the duration of network outputs. Our results thus suggest 

the possibility that gain modulation is a central part of motor control.

1 Methods

Our model is specified by a differential equation governing the neuronal firing rates (Eqn. 

(1)), the gain function Eqn. (2), a set of readout weights, and each neuron’s gain. In the 

following, we describe our model precisely.

1.1 Neuronal dynamics

We model neuronal activity according to Eqn. (1), which we integrate using the ODE45 

function (using default parameters) in MATLAB. We do not explicitly model dynamics prior to 

movement execution; all of our simulations begin at the time of movement onset [11, 4] 

(except when we use a ramping input in Fig. 2). We choose the initial condition x0 among 

the ‘most observable’ modes of the system (i.e., those that elicit the strongest transient 

dynamics [11]). Specifically, we first linearize the dynamics Eqn. (1) around its unique 

equilibrium point x = 0 using unit gains (i.e., gi = 1 for all i), and we compute the 

observability Gramian (a symmetric positive-definite matrix Q) of the linearized system. The 

most observable modes are the top eigenvectors of Q [11]. Unless we state otherwise, we 

choose the eigenvector associated with the largest eigenvalue of Q (note that all of its 

eigenvalues are real and positive) as the initial condition x0 for the neuronal activity. 

Following [11], we also scale x0 so that | | x0 | |2 = 1.5 N .
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1.2 Biophysical interpretation of Eqn. (1)

Equation (1), together with Eqn. (2), describes how we model neuronal firing rates relative 

to a baseline rate r0. In this section, we clarify that one can obtain identical neuronal activity 

by using a strictly positive gain function f and including a constant input h in Eqn. (1). 

Specifically, given a desired baseline firing rate r0, one can model the neuronal activity as

τ dx t
dt = − x t + W f x t ; g + h (3)

for the same initial condition x0 that we described above, where hi = −r0Σj Wij and

f xi; g j =
r0tanh gixi/r0 + r0, if xi < 0,
rmax − r0 tanh gixi/ rmax − r0 + r0, if xi ≥ 0,

(4)

where rmax is the maximum firing rate. Note that the constant term h in Eqn. (3) is necessary 

to balance the additional r0 term in Eqn. (4).

1.3 Construction of the network architecture

Prior to optimization, we generate synaptic weight matrices W as detailed in Ref. [11]. In 

keeping with Dale’s law, these matrices consist of M positive (excitatory) columns and M 
negative (inhibitory) columns. We begin with a set of sparse (such that the connection 

probability between any two neurons is small) and strong weights with nonzero elements set 

to w0/ N (excitatory) and −γw0/ N (inhibitory), where w0
2 = 2ρ2/ p 1 − p 1 + γ2  and the 

connection probability between each two neurons is homogeneous and is given by p = 0.1. 

This construction results in W having an approximately circular spectrum (i.e., set of 

eigenvalues) of radius ρ (which we set to ρ = 10), leading to linear instability before stability 

optimization (see below). As in Ref. [11], we set the inhibition/excitation ratio γ to be γ = 3.

After constructing the initial W, we never change any of the excitatory connections. 

Following [11], we refine the inhibitory connections to minimize an upper bound of W’s 

‘spectral abscissa’ (SA) (i.e., the largest real part among the eigenvalues of W) [11]. Briefly, 

we iteratively update inhibitory weights to follow the negative gradient of this upper bound 

to the SA. First, the inhibitory weights remain inhibitory (i.e., negative). Second, we 

maintain a constant ratio (of γ = 3) of mean inhibitory weights to mean excitatory weights. 

Third, we restrict the density of inhibitory connections to be less than or equal to 0.4 to 

maintain sufficiently sparse connectivity. We observed that this constrained gradient descent 

usually converges within a few hundred iterations. As was noted in Ref. [11], the SA 

typically decreases during optimization from 10 to about 0.15. For additional details, see the 

supplemental information of Ref. [11].

As a proof of principle, we also construct a ‘chaotic’ variant of our recurrent neuronal-

network model (see Fig. 3). These networks are chaotic in the sense that the neuronal 

dynamics in Eqn. (1) have a positive maximum Lyapunov exponent [51]. We use a synaptic 
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weight matrix W (as described above) prior to optimization, but now use parameter values of 

γ = 1 and ρ = 1.5. We also set τ = 20 ms, and we choose the initial condition x0 for the 

neuronal activity from a uniform distribution on the interval [−10,10]. We use only the first 

0.5 s of neuronal activity for our simulations of the chaotic network model.

1.4 Creating target muscle activity

We generate target muscle activities of duration ttot = 500 ms (see Figs. 1–5) and ttot = 2,500 

ms (see Figs. 6–8). In each case, we draw muscle activity from a Gaussian process with a 

covariance function K ∈ [0, ttot] × [0, ttot] → ℝ≥0 that consists of a product of a squared-

exponential kernel (to enforce temporal smoothness) and a non-stationary kernel that 

produces a temporal envelope similar to that of real electromyogram (EMG) data during 

reaching [4]. Specifically,

K t, t′ = e

− t − t′ 2

2ℓ2
× E t /σ × E t′/σ , (5)

where E(t) = te(−t2/4). We set σ = 110 ms and ℓ = 50 ms for movements that last 500 ms, and 

σ = 550 ms and ℓ = 250 ms for movements that last 2, 500 ms. We also multiply the resulting 

muscle activity by a scalar to ensure that it has the same order of magnitude as the neuronal 

activity. We use a sampling rate of 400 Hz for movements that last 500 ms and 200 Hz for 

movements that last 2, 500 ms.

We are modelling network output as a proxy for muscle-force activity. When we study 

whether we can generate the same movement that lasts 5 times longer (see Figs. 6–8), we 

scale the duration of the muscle activity without changing its amplitude. To actually generate 

the same movement so that it lasts 5 times longer, we also need to scale the amplitude of the 

muscle activity by the factor 1/52 = 1/25. To demonstrate the effectiveness of learning 

through gain modulation, we omit this scaling, so the tasks on which we train are more 

difficult ones, as the target activity without the scaling has a substantially larger amplitude 

throughout the movement. However, we find that learning through gain modulation can also 

account for this scaling of muscle activity when performing movements at different speeds 

(see Supplementary Fig. 8). Alternatively, it may be possible for gain modulation of 

downstream motoneurons in the spinal cord to account for scaling of the amplitude of 

muscle activity when performing movements at different speeds (for example, see Ref. 

[21]).

1.5 Network output

We compute the network output z(t) as a weighted linear combination of excitatory neuronal 

firing rates:

z t = mT f xE t ; gE + b, (6)
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where m, xE(t), gE ∈ ℝM, the quantity xE(t) is the excitatory neuronal activity, and M is the 

number of excitatory neurons. To ensure that the network output corresponds to realistic 

muscle activity (see Methods Section 1.4) prior to any training of the neuronal gains, we fit 

the readout weights m and the offset b to an initial output activity (see Methods Section 1.4) 

using least-squares regression. To ameliorate any issues of overfitting, we use 100 noisy 

trials, in which we add white Gaussian noise to the initial condition x0 for each trial with a 

signal-to-noise ratio of 30 dB [11]. Subsequently, the readout weights remain fixed 

throughout training of the neuronal gains. See our simulation details for each figure for 

additional details.

1.6 Measuring error in network output

We compute the error ε between the network output z ∈ ℝttot and a target y ∈ ℝttot by 

discretizing time and calculating

ε = 1 − R2 =
∑t = 1

ttot z t − y t 2

∑t = 1
ttot y t − y 2

, (7)

where y = 1
ttot

∑t = 1
ttot y t  and R2 is the coefficient of determination (which is often called 

simply ‘R-squared’). Therefore, an error of ε = 1 implies that the performance is as bad as if 

the output z were equal to the mean of the target y and thus does not capture any variations 

in output. When we use multiple readout units, we take the mean error ε across all outputs. 

We use this definition of error throughout the entire paper.

1.7 A learning rule for neuronal input–output gains

We devise a reward-based node-perturbation learning rule that is biologically plausible in the 

sense that it includes only local information and a single scalar reward signal that reflects a 

system’s recent performance [29, 30]. Our learning rule progressively reduces the error (on 

average) between the network output and a target output over training iterations. We update 

the gain gi for neuron i after each training iteration tn (with n = 1,2,3, …) according to the 

following learning rule:

gi(tn) = gi(tn − 1) + R(tn − 1)(gi(tn − 1) − gi(tn − 1)) + ξi(tn), (8)

where

R(tn) = sgn(ε(tn − 1) − ε(tn)),
ε(tn) = αε(tn − 1) + (1 − α)ε(tn),
gi(tn) = αgi(tn − 1) + (1 − α)gi(tn),

(9)

Stroud et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



where ε(tn) represents the output error at iteration tn (see Methods Section 1.6), sgn is the 

sign function, ξi(tn)~𝒩(0, 0.0012) is a Gaussian random variable with mean 0 and standard 

deviation 0.001, and α = 0.3. The initial modulatory signal is R(t0) = 0, and the other initial 

conditions are ε(t0) = ε(t0) (where ε(t0) is the initial error before training) and 

gi(t0) = gi(t0) = 1. One can interpret the terms gi and ε as low-pass-filtered gains and errors, 

respectively, over recent iterations, with a history controlled by the decay rate α [32]. We 

use these parameter values in all of our simulations in this paper. We find that varying the 

standard deviation of the noise term ξ or the factor α has little effect on the learning 

dynamics (not shown), in line with Ref. [31].

Although our learning rule in Eqn. (8) is similar to reward-modulated ‘exploratory Hebbian’ 

(EH) synaptic plasticity rules [30, 31, 32], we investigate changes in neuronal gains (i.e., the 

responsiveness of neurons) inside a recurrent neuronal network, rather than synaptic weight 

changes. The above notwithstanding, we expect our learning rule to perform well for a 

variety of learning problems. For example, it can solve credit-assignment problems, because 

one can formulate such a node-perturbation learning rule as reinforcement learning with a 

scalar reward [52].

The modulatory signal R does not provide information about the sign and magnitude of the 

error, and it also does not indicate the amount that each readout (if using multiple readouts) 

contributes to a recent change in performance. The modulatory signal R indicates only 

whether performance is better or worse, on average, compared with previous trials. One can 

view the modulatory signal as an abstract model for phasic output of dopaminergic systems 

in the brain [53, 19, 24, 23].

We use the following procedure for updating neuronal gains. We update the gains for 

iteration t1 according to Eqn. (8), and we obtain the network output from the gain pattern 

g(t1). We then calculate the error ε(t1) from the output, and we subsequently calculate the 

modulatory signal R(t1) and the quantities ε(t1) and g(t1) using Eqn. (9). We then repeat this 

process for all subsequent iterations. If any gain values become negative, we set these to 0. 

However, this happened very rarely in our computations, and we observed it only when we 

used 60,000 training iterations (i.e., in Figs. 3e and 6b).

1.8 Alternative learning rule

One can also adapt our learning rule so that learning ceases when the modulatory signal 

R(tn) saturates at a sufficiently small value. A way to achieve this is by instead placing the 

noise term ξi inside the brackets in Eqn. (8), so that the modulatory signal R multiplies ξi, 

together with changing the sgn function in Eqn. (9) to the tanh function. This yields the 

following learning rule:

gi(tn) = gi(tn − 1) + R(tn − 1)(gi(tn − 1) − gi(tn − 1) + ξi(tn)), (10)

where
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R(tn) = tanh(η(ε(tn − 1) − ε(tn))),
ε(tn) = αε(tn − 1) + (1 − α)ε(tn),
gi(tn) = αgi(tn − 1) + (1 − α)gi(tn),

(11)

and η = 50,000 controls the slope of the tanh function at 0 (i.e., when the low-pass-filtered 

error ε(tn) matches the current error ε(tn)). Learning now stops when ε(tn − 1) = ε(tn); see the 

purple curve in Fig. 2a. We achieve a qualitatively similar learning performance by using 

Eqns. (10) and (11) instead of Eqns. (8) and (9), respectively. Compare the purple and red 

curves in Fig. 2a.

1.9 Generating groups for group-based gain modulation

For coarse-grained (i.e., grouped) gain modulation, we generate n (modulatory) groups, and 

we independently modulate each group using one external ‘modulatory unit’. Our generation 

mechanism for random groups is as follows. For each of the n groups, we choose N/n 
neurons (where N is the total number of neurons in the network) uniformly at random 

without replacement. If n does not divide N, we assign the remaining neurons to groups 

uniformly at random.

When using specialized groupings (see Figs. 3b,c and Supplementary Figs. 2a–d) for a 

particular target movement, we obtain groups by applying k-means clustering (where k is the 

desired number of groups) to 10 gain patterns that we obtain from 10 prior independent 

training sessions (using neuron-specific control) on the same target and which correspond to 

the minimum error for each training session. We thus apply k-means clustering to a matrix 

of size N × 10, where row i has the gain values for neuron i from the 10 independent training 

sessions to the same target. Applying k-means clustering then generates groupings in which 

neurons in the same group tend to have similar gain values following training using neuron-

specific modulation.

1.10 Simulation details

We now give a brief summary about our simulations for Figures 1–8. See the Supplementary 

Math Note for our mathematical derivations and see our Full Simulation Details for further 

information. We also provide sample MATLAB code at http://modeldb.yale.edu/246004. Also 

see our Life Sciences Reporting Summary for additional information.

Refer to Web version on PubMed Central for supplementary material.

We train neuronal gains on the same task as the one that we showed in Fig. 1d using 3 

alternative models. For one model, we use a ramping input to the neuronal activity in Eqn. 

(1) as a model of preparatory activity prior to movement onset [11, 4]. We use the same 

ramping input function as the one that was used in Ref. [11]. It is exp(t/τon) for t < 0 s and 

exp(−t/τoff) after movement onset (t ≥ 0), with an onset time of τon = 400 ms and an offset 

time of τoff = 2 ms. Gain changes that result from learning now also affect the neuronal 

activity at t = 0 (i.e., at movement onset).
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We also train a ‘chaotic’ [34] variant of our model (see Methods Section 1.3, where we 

describe how we construct such a model), and we use the first 0.5 s of neuronal activity.

Finally, we use an alternative learning rule (see Eqns. (10) and (11)) in which learning stops 

automatically when the difference between network output errors in successive training 

iterations becomes sufficiently small (see Methods Section 1.7).

For Figs. 3b,c, we generate 5 different target outputs and run 10 independent training 

sessions for each target. For the random groupings (see Methods Section 1.9), we use 

different independently-generated random groups for each simulation. For the specialized 

groups (see Methods Section 1.9), for a given number of groups, we use the same grouping 

in all simulations.

We now explain how we determine specialized groups that are shared by multiple 

movements (i.e., we use the same grouping for learning multiple movements); see the plots 

in Fig. 3c and Supplementary Figs. 2b–d. We apply k-means clustering (where k is the 

desired number of groups) across all of the gain patterns that we obtain using neuron-

specific modulation for each of the movements. That is, we apply k-means clustering to a 

matrix of size N × 10 · q, where N is the number of neurons and q is the number of 

movements (and, equivalently, the number of gain patterns).

For the task that we just described above, we consider various different numbers of groups 

(using random groupings) for networks with N = 100, N = 200, and N = 400 neurons. We 

again perform 10 independent training sessions for each network, target, and number of 

groups. We fit the readout weights so that each scenario generates the same network output 

when all gains are set to 1. The readout weights remain fixed throughout training. We plot 

these results in Fig. 3d and Supplementary Figs. 2e–h.

When we use multiple readout units, we generate 10 different initial and target outputs for 

each readout unit. We run independent training sessions for these 10 sets of target outputs 

and calculate mean errors across the 10 training sessions. For a given number of readout 

units, we use the same sets of initial and target outputs for all 3 network sizes and each 

number of random modulatory groups. We thus fit readout weights so that each scenario 

generates the same output with all gains set to 1. The readout weights remain fixed 

throughout training. We use 60,000 (instead of 18,000) training iterations to ensure error 

saturation.

To create libraries of learned movements, we train a network of 400 neurons and 40 random 

groups (see Methods Section 1.9) on each of 100 different target movements independently. 

(In other words, this generates 100 different gain patterns, with one for each movement.) For 

library sizes of l ∈ {1,2,…,20}, we choose 100 samples of l movements (from the learned 

gain patterns and their outputs) uniformly at random without replacement for each l. We 

then fit the set of l movements in each of the 100 sample libraries using least-squares 

regression for each of 100 hitherto-untrained novel target movements. We constrain the 

fitting coefficients cj from the least-squares regression by requiring that cj ≥ 0 for all j and 

∑ j = 1
l c j = 1 . We calculate the fit error (i.e., the error between the fit and the target), the 
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output error (i.e., the error between the output and the target), and the error between the fit 

and the output for each of the 100 novel target movements, each of the 100 library samples, 

and each l.

We train the same 200-neuron weight matrix that we used in Fig. 1 on the same task as the 

one that we showed in Figs. 1d–f, except with a baseline rate of r0 = 5 Hz in Eqn. (2). We 

also repeat the simulations that we performed in Fig. 4 for the baseline rate r0 = 5 Hz.

In each of these simulations, we use a network of 400 neurons and 40 random modulatory 

groups (see Methods Section 1.9). We construct ‘slow’ (2.5 s) target movements with σ = 

550 ms and ℓ = 250 ms in Eqn. (5). We then construct a ‘fast’ (0.5 s) variant of each 

movement. Each movement variant has 500 evenly-spaced points (see Methods Section 1.4). 

We sample the fast variant using 100 evenly-spaced points, and we then augment 400 

instances of 0 values to the final 2 s of the movement to ensure that both movement variants 

have the same length.

For Fig. 6b, we fit readout weights using least-squares regression, such that with all gains set 

to 1, the network output generates the fast variant. We then train gain patterns using our 

learning rule in Eqns. (8) and (9) so that the network output generates the slow-movement 

variant. (The initial condition x0 and readout weights remain fixed.) We use 60,000 training 

iterations, and we run 10 independent training sessions for each of 10 different target 

movements.

For Fig. 6c, we perform the task that we described in the paragraph above using a gradient-

descent training procedure with gradients that we obtain from back-propagation [54]. 

Together with learning the gain pattern for the slow variant, we jointly optimize a single set 

of readout weights (shared by both the fast-movement and slow-movement variants) (see 

Methods Section 1.5) as part of the same training procedure. The gains are still fixed at 1 for 

the fast variant. The cost function for the training procedure is equal to the squared 

Euclidean 2-norm between actual network outputs and the corresponding target outputs both 

at fast and slow speeds plus the Euclidean 2-norm of the readout weights, where the latter 

acts as a regularizer. We run gradient descent for 500 iterations, which is well after the cost 

has stopped decreasing.

For each of the 10 trained movements that we described earlier in this section, we extract the 

mean minimum error across all simulations for both the outputs obtained via our learning 

rule (see Supplementary Fig. 5a) and the outputs obtained via back-propagation (see 

Supplementary Fig. 5b). We then linearly interpolate between the learned gain patterns for 

the fast and slow outputs, and we calculate the error between the output and the target 

movement at the interpolated speed. (See the top panel of Fig. 6d.)

For Figs. 6d–f, we train networks to generate a pair of target movements in response to a 

corresponding pair of orthogonal initial conditions at fast and slow speeds and also at each 

of 5 intermediate, evenly-spaced speeds in between these extremes. To do this, we 

parametrize the gain pattern of speed index s (with s ∈{1, …,7}) as a convex combination of 

a gain pattern gs=1 for fast movements and a gain pattern gs=7 for slow movements, with 
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interpolation coefficients of λs (with gs = λsgs=1 + (1 − λs)gs=7, λ1 = 1, and λ7 = 0). We 

optimize (using back-propagation, as discussed above) over gs=1, gs=7, the 5 interpolation 

coefficients λs (with s ∈ {2, …,6}), and a single set of readout weights. For a given speed s, 
we use the gain pattern gs for both movements. We call the collection of gain patterns gs for 

s ∈ {1,…, 7} the gain manifold for speed control (or the ‘speed manifold’, as a shorthand).

We train (using back-propagation) a 400-neuron network with 40 random modulatory 

groups (see Methods Section 1.9) to generate each of 10 different movement shapes at 7 

different, evenly-spaced speeds (ranging from the fast variant to the slow variant) using a 

fixed initial condition x0. To jointly learn gain patterns that control movement shape and 

speed, we parametrize each gain pattern as the element-wise product of a gain pattern that 

encodes shape (which we use at each speed for a given shape) and a gain pattern that 

encodes speed (which we use at each shape for a given speed). We again parametrize (see 

our simulation details for Fig. 6) the gain pattern that encodes speed index s (with s ∈ {1,…, 

7}) as a convex combination of two common endpoints, gs=1 (which we use for the fast-

movement variants) and gs=7 (which we use for the slow-movement variants). We thus 

optimize over 10 gain patterns for movement shape, 2 gain patterns each for fast and slow 

movement speeds, 5 speed-interpolation coefficients, and a single set of readout weights.

In Fig. 7c, we calculate the mean error between the network output and the target over the 10 

target movements when generating gain patterns for movement speed by linearly 

interpolating between the trained fast (gs=1) and slow (gs=7) gain patterns.

We use the 10 trained gain patterns for movement shapes, as well as the speed manifold 

from Fig. 7 (see our simulation details for Fig. 7). Using our learning rule from Eqns. (8) 

and (9), we train the 10 coefficients c1,…,c10 (see Fig. 8a) to construct a new gain pattern 

that, together with the speed manifold, generates a new target movement at the fast and slow 

speeds. Specifically, we replace the gains gi (for i ∈ {1,…,N}) with the coefficients ci (for i 
∈ {1,…, 10}) in Eqns. (8) and (9). We use the mean of the errors at the fast and slow speeds 

in the learning rule. To generate the network output at the fast and slow speeds, respectively, 

we calculate the element-wise product between the newly-constructed gain pattern and the 

fast and slow gain pattern, respectively, on the speed manifold. We independently train, 

using 10,000 training iterations, the coefficients c1,…,c10 on each of the 100 target 

movements that we used for Fig. 4. As a control, we calculate the mean error between the 

network output and the target over the 100 target movements when choosing one of the 100 

newly-learned gain patterns uniformly at random without replacement. (See the grey curve 

in Fig. 8c.)

Additionally, instead of learning to combine gain patterns using the method that we 

described in the previous paragraph, we determine coefficients c1,…,c10 using a least-

squares regression by fitting the 10 learned movements to each of the 100 target movements 

at the fast and slow speeds simultaneously and requiring that cj ≥ 0 for all j and ∑ j = 1
10 c j = 1 .

(See the black dashed curve in Fig. 8c.)

In Fig. 8d, we plot the Pearson correlation coefficient between pairs of target movements 

versus the Pearson correlation coefficient between corresponding pairs of learned 
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coefficients c1,…,c10. In our visualization, we plot only 1,000 of the 4,950 data points. (We 

choose these points uniformly at random.)

1.11 Statistics

The only statistical test that we use is a (nonparametric) paired Wilcoxon signed rank one-

sided test in Supplementary Fig. 1e. No statistical methods were used to pre-determine 

sample sizes for our simulations, but our sample sizes are similar to those reported in 

previous studies (e.g., see [10, 11]). There was no randomization in our study because it was 

a computational study (we had no samples/organisms/participants in our study).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Controlling network activity through neuron-specific gain modulation.
(a) Example of a reaching task, with illustrative electromyograms (EMGs) of muscle activity 

for two reaches (in orange and black). (b) Schematic of our model (see the text and Methods 

Section 1.10). (c) (Left) Changing the slope of the input–output gain function uniformly for 

all neurons from (black) 1 to (blue) 2 has pronounced effects on (right) neuronal firing rates. 

We show results for three example neurons. (d) The mean error in network output decreases 

during training with neuron-specific modulation. In the inset, we show five snapshots of 

network output (indicated by arrowheads) as learning progresses. (e) (Left) Neuronal gain 

changes during training for 2 example neurons (grey and black) and 10 training sessions to 

the same target. (Right) Histogram of gain values after training. The blue curve is a Gaussian 

fit with a standard deviation of σ ≈ 0.157. (f) Network outputs (grey curves) with all gains 

set to 1 and a new learned gain pattern for 10 noisy initial conditions compared to both 

targets (black and orange). (We use a 200-neuron network for all simulations in this figure.)
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Figure 2. Learning through gain modulation in different models.
(a) Mean error over 10 independent training sessions for our original model that we used in 

Fig. 1d (red); the model with a biologically motivated ramping input (blue); the model when 

using the alternative learning rule Eqn. (10), in which learning automatically stops at a 

sufficiently small error (purple); and when using a ‘chaotic’ recurrent network model (grey) 

(see Methods Section 1.10). Shading indicates one standard deviation. (b) The firing rates of 

4 example neurons before (i.e., with all gains set to 1) and after training the neuronal gains 

in (left) our original model, (centre left) our model with a ramping input, (centre right) our 

model with the alternative learning rule, and (right) the model when using a ‘chaotic’ 

network. (We use 200-neuron networks for all simulations in this figure.)
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Figure 3. Controlling network activity through coarse, group-based gain modulation.
(a) We identically modulate neurons within each group (see Methods Section 1.9). Target 

outputs can involve multiple readout units. (b) Mean error during training for 20 random, 20 

specialized, and 200 (i.e., neuron-specific) groups. (See Methods Section 1.10 for more 

details.) (c) Mean minimum errors after training using specialized groups. We use the same 

grouping for learning multiple different movements. (d) Mean minimum errors for different 

numbers of random groups with networks of 100, 200, and 400 neurons. (The N on the 

horizontal axis indicates neuron-specific modulation.) In panels (b)–(d), we use a single 

Stroud et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



readout unit. (e) (Top) Mean minimum error as a function of the number of random groups 

when learning each of (left) 2, (centre) 3, and (right) 4 readouts for the same networks as in 

panel (d). (Bottom) The corresponding mean errors during training for the case of 40 groups. 

The inset is a magnification of the initial training period for the case of 2 readout units. (f) 
Outputs producing the median error for the case of 4 readout units using 40 groups in the 

400-neuron network.
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Figure 4. Gain patterns can provide motor primitives for novel movements.
(a) Schematic of a learned library of gain patterns (g1,…,gl, which we colour from purple to 

blue) and a combination c1F(g1) +…+ clF(gl) of their outputs (which we denote by F) that 

we fit (red dashed curve) to a novel target (grey curve). (Upper right) The output F(c1g1 +…

+ clgl) (which we show in orange) of the same combination of corresponding gain patterns 

also closely resembles the target. We use a 400-neuron network with 40 random modulatory 

groups (see Methods Section 1.10). (b) Example target, fit, and output (grey, red dashed, and 

orange curves, respectively) producing the 50th-smallest output error over 100 randomly 

generated combinations (see Methods Section 1.10) of l library elements using l = 2, l = 4, l 
= 8, and l = 16. (c) Fit error versus output error for 100 randomly generated combinations of 

l library elements for l = 1,…, 20. We show the identity line in grey. Each point represents 

the 50th-smallest error between the output and the fit across 100 novel target movements. 

(d)Median errors of the 100 randomly-generated combinations of l library elements versus 

the number of library elements.
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Figure 5. Examining effects of more strongly nonlinear neuronal dynamics by using a baseline 
rate of r0 = 5 Hz.
(a) Relative firing rate of 20 excitatory and 20 inhibitory neurons in a 200-neuron network 

with r0 = 20 Hz in Eqn. (2). (b) Relative firing rate of the same neurons as those in panel (a), 

but with r0 = 5 Hz. (c) The dotted curves show the relative firing rates of all neurons over 

time when using the nonlinear gain function (see Eqn. (2)) with (black) r0 = 20 Hz and 

(blue) r0 = 5 Hz versus the relative firing rates that result from using the linear gain function 

f(xi; gi) = gixi. We set each neuronal gain gi to 1, and we plot the identity line in grey. (d) 

Mean error over 10 independent training sessions with r0 = 20 Hz (black) and with r0 = 5 Hz 

(blue) for the task in Fig. 1d (see Methods Section 1.10). Shading indicates one standard 

deviation. In the inset, we show network outputs with all gains set to 1 and the new learned 

gain pattern with r0 = 5 Hz for 10 noisy initial conditions (grey curves). We show the two 

targets in black and orange (see Methods Section 1.10). (e) Histogram of gain values after 

training with r0 = 5 Hz. The black curve is a Gaussian distribution with a mean of 1 and a 

standard deviation of σ ≈ 0.157 (i.e., the distribution that we obtained with r0 = 20 Hz in 

Fig. 1e). (f) Gain patterns as motor primitives with r0 = 5 Hz. We generate these results in 

the same manner as our results in Fig. 4d, except that now we use r0 = 5 Hz. We obtain 

qualitatively similar results to our observations for the baseline rate r0 = 20 Hz.
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Figure 6. Gain modulation can control movement speed.
(a) Schematic of gain patterns for fast (0.5 s) and slow (2.5 s) movement variants. (Here and 

throughout the figure, we show the former in blue and the latter in orange.) We train a 400-

neuron network using 40 random modulatory groups for all simulations (see Methods 

Section 1.10). (b) (Top) We train a network to extend its output from a fast to a slow-

movement variant using our reward-based learning rule. (Bottom) Example firing rates of 50 

excitatory and 50 inhibitory neurons for both fast and slow speed variants. (c) The same as 

panel (b), but now we use a back-propagation algorithm to train the neuronal gains (see 

Methods Section 1.10). (d) (Top) Interpolation between fast and slow gain patterns does not 

reliably generate target outputs of intermediate speeds when trained only at the fast and slow 

speeds. We show an example output (orange) that lasts a duration of 1.5 s and the associated 

target (grey). (Bottom) Linear interpolation between the fast and slow gain patterns 

successfully generates target outputs when trained at 5 intermediate speeds. We train 1 set of 

gain patterns (see panel (e)) on two target outputs associated with 2 different initial 

conditions (see Methods Section 1.10). (We plot these results with the same axis scale as in 

the top panel.) (e) The 7 optimized gain patterns for all 40 modulatory groups when training 

at 7 evenly-spaced speeds. (f) Both outputs when linearly interpolating at 5 evenly-spaced 

speeds between the fast and slow gain patterns from panel (e).
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Figure 7. Joint control of movement shape and speed through gain modulation.

(a) One can jointly learn the gain patterns gi
s for (left box) movement speed and g j

m for (right 

box) movement shape so that the product of two such gain patterns produces a desired 

movement at a desired speed. In the rightmost panel, we show example outputs for two 

movement shapes at 3 interpolated speeds between the fast and slow gain patterns. (See the 

main text.) (b) We show the 7 optimized gain patterns for controlling movement speed (i.e., 

gi
s for i ∈ {1,…,7} from panel (a)) for the 40 modulatory groups when training on 10 
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different movement shapes. (c) We plot the mean error over all 10 movements when linearly 

interpolating between the fast and slow gain patterns for controlling movement speed from 

panel (b). We use the same vertical axis scale as in Fig. 6d. In the inset, we plot the same 

data using a different vertical axis scale. The vertical dashed lines identify the 7 movement 

durations that we use for training. (d) Outputs at 5 interpolated speeds between the fast and 

slow gain patterns for 6 of the 10 movements. (For each simulation, we train a 400-neuron 

network using 40 random modulatory groups (see Methods Section 1.10).)
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Figure 8. Learning gain-pattern primitives to control movement shape and speed.
(a) We are able to learn to combine (left) previously acquired gain patterns for movement 

shapes to generate (centre) a new target movement at both fast and slow speeds 

simultaneously using (right) a fixed manifold in neuronal gain space for controlling 

movement speed (see Methods Section 1.10). (b) We plot the output, at 3 different speeds, 

that produces the 50th-smallest error (across all 100 target movements) between the output 

and the target when summing errors at both fast and slow speeds. (c) Mean network output 

error across all 100 target movements for all durations when learning to combine gain 

patterns (black solid curve). We plot the error for the output from panel (b) in red. As a 

control, we plot the mean error over all target movements when dissociating the learned gain 

patterns from their target movement by permuting (uniformly at random) the target 

movements (see the grey curve). We also plot the mean error over all target movements 

when combining gain patterns using a least-squares fit of the 10 learned movement shapes to 

the target (black dashed curve) (see Methods Section 1.10). (For each example, to generate 

outputs of a specific duration, we linearly interpolate between the fast and slow gain 

patterns.) (d) We plot the Pearson correlation coefficient between each pair of target 

movements versus the Pearson correlation coefficient between the corresponding pair of 

learned combination coefficientsc1, … ,c10.

Stroud et al. Page 31

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Modelling gain modulation in recurrent neuronal networks
	Neuron-specific gain modulation
	Gain modulation in different models
	Coarse, group-based gain modulation
	Gain patterns can provide motor primitives for novel movements
	Nonlinear behaviour
	Gain modulation can control movement speed
	Smoothly controlling the speed of movements
	Joint control of movement shape and speed
	Learning gain-pattern primitives to control movement shape and speed

	Discussion
	Methods
	Neuronal dynamics
	Biophysical interpretation of Eqn. (1)
	Construction of the network architecture
	Creating target muscle activity
	Network output
	Measuring error in network output
	A learning rule for neuronal input–output gains
	Alternative learning rule
	Generating groups for group-based gain modulation
	Simulation details
	We train neuronal gains on the same task as the one that we showed in Fig. 1d using 3 alternative models. For one model, we use a ramping input to the neuronal activity in Eqn. (1) as a model of preparatory activity prior to movement onset [11, 4]. We use the same ramping input function as the one that was used in Ref. [11]. It is exp(t/τon) for t < 0 s and exp(−t/τoff) after movement onset (t ≥ 0), with an onset time of τon = 400 ms and an offset time of τoff = 2 ms. Gain changes that result from learning now also affect the neuronal activity at t = 0 (i.e., at movement onset).We also train a ‘chaotic’ [34] variant of our model (see Methods Section 1.3, where we describe how we construct such a model), and we use the first 0.5 s of neuronal activity.Finally, we use an alternative learning rule (see Eqns. (10) and (11)) in which learning stops automatically when the difference between network output errors in successive training iterations becomes sufficiently small (see Methods Section 1.7).
	For Figs. 3b,c, we generate 5 different target outputs and run 10 independent training sessions for each target. For the random groupings (see Methods Section 1.9), we use different independently-generated random groups for each simulation. For the specialized groups (see Methods Section 1.9), for a given number of groups, we use the same grouping in all simulations.We now explain how we determine specialized groups that are shared by multiple movements (i.e., we use the same grouping for learning multiple movements); see the plots in Fig. 3c and Supplementary Figs. 2b–d. We apply k-means clustering (where k is the desired number of groups) across all of the gain patterns that we obtain using neuron-specific modulation for each of the movements. That is, we apply k-means clustering to a matrix of size N × 10 · q, where N is the number of neurons and q is the number of movements (and, equivalently, the number of gain patterns).For the task that we just described above, we consider various different numbers of groups (using random groupings) for networks with N = 100, N = 200, and N = 400 neurons. We again perform 10 independent training sessions for each network, target, and number of groups. We fit the readout weights so that each scenario generates the same network output when all gains are set to 1. The readout weights remain fixed throughout training. We plot these results in Fig. 3d and Supplementary Figs. 2e–h.When we use multiple readout units, we generate 10 different initial and target outputs for each readout unit. We run independent training sessions for these 10 sets of target outputs and calculate mean errors across the 10 training sessions. For a given number of readout units, we use the same sets of initial and target outputs for all 3 network sizes and each number of random modulatory groups. We thus fit readout weights so that each scenario generates the same output with all gains set to 1. The readout weights remain fixed throughout training. We use 60,000 (instead of 18,000) training iterations to ensure error saturation.
	To create libraries of learned movements, we train a network of 400 neurons and 40 random groups (see Methods Section 1.9) on each of 100 different target movements independently. (In other words, this generates 100 different gain patterns, with one for each movement.) For library sizes of l ∈ {1,2,…,20}, we choose 100 samples of l movements (from the learned gain patterns and their outputs) uniformly at random without replacement for each l. We then fit the set of l movements in each of the 100 sample libraries using least-squares regression for each of 100 hitherto-untrained novel target movements. We constrain the fitting coefficients cj from the least-squares regression by requiring that cj ≥ 0 for all j and  We calculate the fit error (i.e., the error between the fit and the target), the output error (i.e., the error between the output and the target), and the error between the fit and the output for each of the 100 novel target movements, each of the 100 library samples, and each l.
	We train the same 200-neuron weight matrix that we used in Fig. 1 on the same task as the one that we showed in Figs. 1d–f, except with a baseline rate of r0 = 5 Hz in Eqn. (2). We also repeat the simulations that we performed in Fig. 4 for the baseline rate r0 = 5 Hz.
	In each of these simulations, we use a network of 400 neurons and 40 random modulatory groups (see Methods Section 1.9). We construct ‘slow’ (2.5 s) target movements with σ = 550 ms and ℓ = 250 ms in Eqn. (5). We then construct a ‘fast’ (0.5 s) variant of each movement. Each movement variant has 500 evenly-spaced points (see Methods Section 1.4). We sample the fast variant using 100 evenly-spaced points, and we then augment 400 instances of 0 values to the final 2 s of the movement to ensure that both movement variants have the same length.For Fig. 6b, we fit readout weights using least-squares regression, such that with all gains set to 1, the network output generates the fast variant. We then train gain patterns using our learning rule in Eqns. (8) and (9) so that the network output generates the slow-movement variant. (The initial condition x0 and readout weights remain fixed.) We use 60,000 training iterations, and we run 10 independent training sessions for each of 10 different target movements.For Fig. 6c, we perform the task that we described in the paragraph above using a gradient-descent training procedure with gradients that we obtain from back-propagation [54]. Together with learning the gain pattern for the slow variant, we jointly optimize a single set of readout weights (shared by both the fast-movement and slow-movement variants) (see Methods Section 1.5) as part of the same training procedure. The gains are still fixed at 1 for the fast variant. The cost function for the training procedure is equal to the squared Euclidean 2-norm between actual network outputs and the corresponding target outputs both at fast and slow speeds plus the Euclidean 2-norm of the readout weights, where the latter acts as a regularizer. We run gradient descent for 500 iterations, which is well after the cost has stopped decreasing.For each of the 10 trained movements that we described earlier in this section, we extract the mean minimum error across all simulations for both the outputs obtained via our learning rule (see Supplementary Fig. 5a) and the outputs obtained via back-propagation (see Supplementary Fig. 5b). We then linearly interpolate between the learned gain patterns for the fast and slow outputs, and we calculate the error between the output and the target movement at the interpolated speed. (See the top panel of Fig. 6d.)For Figs. 6d–f, we train networks to generate a pair of target movements in response to a corresponding pair of orthogonal initial conditions at fast and slow speeds and also at each of 5 intermediate, evenly-spaced speeds in between these extremes. To do this, we parametrize the gain pattern of speed index s (with s ∈{1, …,7}) as a convex combination of a gain pattern gs=1 for fast movements and a gain pattern gs=7 for slow movements, with interpolation coefficients of λs (with gs = λsgs=1 + (1 − λs)gs=7, λ1 = 1, and λ7 = 0). We optimize (using back-propagation, as discussed above) over gs=1, gs=7, the 5 interpolation coefficients λs (with s ∈ {2, …,6}), and a single set of readout weights. For a given speed s, we use the gain pattern gs for both movements. We call the collection of gain patterns gs for s ∈ {1,…, 7} the gain manifold for speed control (or the ‘speed manifold’, as a shorthand).
	We train (using back-propagation) a 400-neuron network with 40 random modulatory groups (see Methods Section 1.9) to generate each of 10 different movement shapes at 7 different, evenly-spaced speeds (ranging from the fast variant to the slow variant) using a fixed initial condition x0. To jointly learn gain patterns that control movement shape and speed, we parametrize each gain pattern as the element-wise product of a gain pattern that encodes shape (which we use at each speed for a given shape) and a gain pattern that encodes speed (which we use at each shape for a given speed). We again parametrize (see our simulation details for Fig. 6) the gain pattern that encodes speed index s (with s ∈ {1,…, 7}) as a convex combination of two common endpoints, gs=1 (which we use for the fast-movement variants) and gs=7 (which we use for the slow-movement variants). We thus optimize over 10 gain patterns for movement shape, 2 gain patterns each for fast and slow movement speeds, 5 speed-interpolation coefficients, and a single set of readout weights.In Fig. 7c, we calculate the mean error between the network output and the target over the 10 target movements when generating gain patterns for movement speed by linearly interpolating between the trained fast (gs=1) and slow (gs=7) gain patterns.
	We use the 10 trained gain patterns for movement shapes, as well as the speed manifold from Fig. 7 (see our simulation details for Fig. 7). Using our learning rule from Eqns. (8) and (9), we train the 10 coefficients c1,…,c10 (see Fig. 8a) to construct a new gain pattern that, together with the speed manifold, generates a new target movement at the fast and slow speeds. Specifically, we replace the gains gi (for i ∈ {1,…,N}) with the coefficients ci (for i ∈ {1,…, 10}) in Eqns. (8) and (9). We use the mean of the errors at the fast and slow speeds in the learning rule. To generate the network output at the fast and slow speeds, respectively, we calculate the element-wise product between the newly-constructed gain pattern and the fast and slow gain pattern, respectively, on the speed manifold. We independently train, using 10,000 training iterations, the coefficients c1,…,c10 on each of the 100 target movements that we used for Fig. 4. As a control, we calculate the mean error between the network output and the target over the 100 target movements when choosing one of the 100 newly-learned gain patterns uniformly at random without replacement. (See the grey curve in Fig. 8c.)Additionally, instead of learning to combine gain patterns using the method that we described in the previous paragraph, we determine coefficients c1,…,c10 using a least-squares regression by fitting the 10 learned movements to each of the 100 target movements at the fast and slow speeds simultaneously and requiring that cj ≥ 0 for all j and  (See the black dashed curve in Fig. 8c.)In Fig. 8d, we plot the Pearson correlation coefficient between pairs of target movements versus the Pearson correlation coefficient between corresponding pairs of learned coefficients c1,…,c10. In our visualization, we plot only 1,000 of the 4,950 data points. (We choose these points uniformly at random.)
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