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Co-barcoded reads originating from long DNA fragments (mean length >30 kbp)
maintain both single base level accuracy and long-range genomic information. We
propose a pipeline, stLFRsv, to detect structural variation using co-barcoded reads.
stLFRsv identifies abnormal large gaps between co-barcoded reads to detect potential
breakpoints and reconstruct complex structural variants (SVs). Haplotype phasing by
co-barcoded reads increases the signal to noise ratio, and barcode sharing profiles
are used to filter out false positives. We integrate the short read SV caller smoove
for smaller variants with stLFRsv. The integrated pipeline was evaluated on the well-
characterized genome HG002/NA24385, and 74.5% precision and a 22.4% recall rate
were obtained for deletions. stLFRsv revealed some large variants not included in the
benchmark set that were verified by long reads or assembly. For the HG001/NA12878
genome, stLFRsv also achieved the best performance for both resource usage and the
detection of large variants. Our work indicates that co-barcoded read technology has
the potential to improve genome completeness.

Keywords: : human genome, co-barcoded reads, structural variation, complex variants, breakpoints

INTRODUCTION

Structural variants (SVs) represent genome variants larger than 50 bp consisting of deletions,
insertions, inversions, duplications, and translocations (Feuk et al., 2006; Alkan et al., 2011). SVs
contribute more genomic sequence differences than single-nucleotide polymorphisms (SNPs) or
small indels between genomes (Pang et al., 2010). Some of these SVs are pathogenic variants
associated with specific diseases (Singleton et al., 2003; Jongmans et al., 2006; Rovelet-Lecrux et al.,
2006). Despite the importance of SVs, profiling them has been challenging.

For the last 20 years, several technologies have allowed SV annotation to improve and have
helped to generate a well-characterized human genome reference sequence to facilitate the
development of SV identification tools (Zook et al., 2019[Preprint]). Among these technologies,
sequencing is a primary category that includes long read, short read, and co-barcoded read
sequencing. Each sequencing technique has unique advantages and disadvantages that contribute
to the discovery of SV profiles among populations.

Long reads or single-molecule sequencing reads usually have mean length greater than 10 kbp.
These longer reads identify breakpoints more easily and may span nearby repetitive regions of
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several kilobases (Jain et al., 2018). However, long reads are prone
to insertion and deletion errors, and the base level accuracy
is comparatively low, which leads to low accuracy for small
variant (less than 200 bp) detection (Wang et al., 2019). The
single-molecule circular consensus sequencing protocol, which
improves base level accuracy, produces high-quality reads that
average >10 kbp (Wenger et al., 2019). However, this protocol is
not applicable to large-scale projects because of throughput and
cost limitations.

Short reads are accurate at the base level and cost-effective.
Their uniform depth and insert size can be successfully used
to identify deletions and copy number variation (Layer et al.,
2014; Talevich et al., 2016). Deletions are easier to detect than
insertions. However, more complex variants are rarely detected
with short reads because their breakpoints are usually in close
proximity to regions lacking unique short read alignment.

To compensate for the lack of long-range information, co-
barcoded read sequencing was developed. Co-barcoded reads
are the product of novel protocols for library construction
and next-generation sequencing (NGS) sequencing technology.
There are two mature technologies in this category, Linked-
Reads by 10× Genomics (Zheng et al., 2016; Zhang et al.,
2017) and single-tube long fragment read (stLFR) by BGI (Wang
et al., 2019). In both cases, all the short reads that originate
from the same long DNA molecule will share a common
barcode. Thus, they retain long-range genome information while
maintaining base level accuracy. Only nanograms of input DNA
is needed, making co-barcoding feasible for many applications.
The inferred average DNA fragment length for co-barcoded reads
is approximately 30 kbp, which makes it possible to sequence
across even larger repetitive regions near SV breakpoints. stLFR
uses a combinatorial process to generate up to 3.6 billion unique
barcodes, enabling practically nonredundant co-barcoding with
50 million barcodes per sample. Compared with Linked-Reads,
stLFR can achieve a much lower barcode conflict rate (how many
long DNA molecules share one barcode), which is beneficial for
downstream analyses.

Analysis pipelines that detect SVs with co-barcoded reads fall
into three categories based on how they use barcode information.
The first category identifies novel adjacency by detecting
abnormal numbers of common barcodes shared between two
genomic loci or bins (Spies et al., 2017; Xia et al., 2018; Marks
et al., 2019). The second tests the distribution of sequenced short
segments on large DNA molecules (Elyanow et al., 2018; Marks
et al., 2019). The third uses barcode information to extract data
for local assembly (Meleshko et al., 2019[Preprint]; Zhou et al.,
2019[Preprint]).

Here, we present stLFRsv, a co-barcoded read-based SV
analysis pipeline that falls into the first category and integrates
the short read SV detector smoove (Brent, 2018).

METHODS

Large SVs leave apparent large gaps in long fragments based on
co-barcoded read alignment (Figure 1). The distribution of read
pairs on long fragments is approximately random, and the gap

sizes between read pairs vary in a wide range. Large gaps appear
in long fragments by chance. However, large SVs are likely to
lead to large gap aggregation. Thus, stLFRsv detects large gaps
in fragments to identify large variants. In contrast, smoove is
a pipeline that uses LUMPY as its core to detect paired-end
discordance and other short read signals that indicate variants
(Layer et al., 2014). We use smoove to find small and mid-
sized variants. There may be overlap between the two variant
sets, and thus, we merge them before generating the results
(Figure 2A). The detection process for stLFRsv is described in
the following steps.

Cluster Segment Ends
We calculate an empirical gap size distribution and select a size
G as cut-off such that the probability of gap sizes smaller than G
is P (Supplementary Figure 2). Usually, P is set as 98%, which
is reasonable based on statistics. When we break a long fragment
at a gap larger than G, we get two sub-fragments. We define the
starting and terminal positions of a sub-fragment as the left and
right ends. Each end has its position on the reference. We then
divide the reference sequence into consecutive bins. Each bin has
a size of B bp based on the data profile, which holds left and right
ends and serves as left and right end clusters. Additionally, B is
selected in the same way as G with P set to 65%, which aims
to achieve a fine cluster performance and maintain reasonable
precision for end positions. All end clusters with at least one end
are retained for the next step (Figure 2B).

Pair Up Ends
Every two end clusters are checked for common barcodes to
determine whether they could form a high-quality end pair
(Figure 2C). These end pairs with common barcodes are
potential novel adjacencies and are further checked as follows.
First, the sub-fragment lengths for each barcode are collected to
estimate the probability f (d) that one barcode is observed at both
locations locA and locB with a distance of d. f (d) is defined as
follows:

f
(
d
)
=

∑
l>d

P
(
l
)
∗
l− d
l+ B

in which l is the sub-fragment length, P(l) is the probability of
length l, and B is the size for clustering mentioned above. Second,
the high-quality end pairs with a distance of d are decided by
the following three rules. (1) The number of shared barcodes of
two end clusters is higher than the theoretical value calculated by
f (d). (2) The barcode counts of each end cluster are N standard
deviations higher than average depth (using N = 3 by default
in the pipeline). (3) The barcode counts of each end cluster are
significantly higher than neighboring clusters with P-values less
than p_th by Wilcoxon signed-rank test (using default p_th = 0.1
in the pipeline).

There are four types of end pairs according to the types of
the two end clusters. If the potential novel adjacency does not
involve an orientation change, the end pair is a right–left or
left–right. Otherwise, it is either a left–left or right–right type
(Figure 1). If an end cluster is in pair with multiple clusters
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FIGURE 1 | Long DNA fragments (colored lines) are constructed by read pairs (small solid blocks) that share the same barcode. When aligned to the reference
genome, long DNA fragments covering large structural variations are broken into sub-fragments by large gaps. The blue arrows indicate the directions of genome
sequences (big hollow blocks). (A) Deletion. (B) Inversion. (C) Tandem duplication. (D) Insertion.

and one of the pairs is very likely to be the two ends of a
sub-fragment, we unpair them.

Pair Down Candidates
Because the DNA molecules are partially sequenced, sub-
fragment ends do not gather densely around a novel adjacency.
They may spread in several bins and give rise to multiple end
pairs. According to the gap size distribution mentioned above, a
size ofNmerge is chosen with P set to 93%. To reduce redundancy,

for each end pair, we recursively compare its common barcode
number with that of pairs in the same type within a range
of Nmerge, retain a representative end pair with the highest
common barcode number, and refine the positions (Figure 2D).

Split by Haplotypes
Approximately 60% of reads can be haplotype solved, which
means that those reads along with their barcodes are placed onto
one of the haplotypes of each phasing block (Figure 2E). Thus,
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FIGURE 2 | Workflow and algorithm. (A) Structural variation detection workflow. (B) Cluster segment ends by bins: left end cluster and right end cluster. (C) Pair up
ends by shared barcodes. (D) Pair down candidates by removing those nearby. (E) Split into haplotypes by phasing barcodes on phasing blocks. (F) Use barcode
sharing heatmap pattern as a filter, and anchor the variation on the genome. Each point in the heatmap represents the shared barcode number at the corresponding
X-axis and Y-axis positions by color depth.

the merged end pairs are checked and screened by the phasing
info of their common barcodes. First, each end pair is assigned to
a haplotype according to the haplotype of the common barcodes.
The end pair without sufficient phased common barcodes will
be assigned to one haplotype randomly. Then, the end pairs
assigned to the same haplotype and sharing the same end cluster
are gathered and sorted by the number of common barcodes in
descending order. Finally, only the pair with the most common
barcodes will be kept, because for one end cluster, a true novel
adjacency only forms one end pair on the same haplotype.

Filter
Noisy signals often result in false novel adjacencies. The following
noise filters can mitigate this problem.

Common Barcode Heatmap
The first filter uses the common barcode heatmap around each
novel adjacency region (Figure 2F). A novel adjacency increases
the number of common barcodes. This increase shows specific

patterns in the regions in close proximity to the novel adjacency
on the heatmap. Because this is not a graphic detector, we digitize
the heatmap to reveal patterns. Horizontal and vertical directions
intersect at the breakpoints on the heatmap, which forms four
regions. For a deletion, insertion, or duplication, there is only
one region showing typical adjacency barcode sharing. For an
inversion, there are two regions with symmetric sharing. We
collect bin-to-bin barcode sharing numbers in each region and
use the Wilcoxon signed-rank test to verify the expected patterns
between each two of the four regions.

Common Barcode Phase
This filter uses the phase info of the common barcodes. For each
novel adjacency, if the proportion of phased common barcodes
is greater than 75%, the numbers of barcodes phased to each of
the two haplotypes are checked using Fisher’s exact test against
ideal (1|0), (0|1), and (1|1) zygosity cases. For a true novel
adjacency, only one case should be significantly matched with a
distinct P-value.
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Anchor the Breakpoints
If a novel adjacency is formed by a pair of ends that are distant
from each other on the reference, we would like to know whether
this rearrangement results in a short interruption or a long-
range SV.

Due to the limited DNA fragment lengths, the numbers of
shared barcodes decrease gradually in bins further from the novel
adjacency. When end pairs are placed on the target genome,
they all present as a left end and a right end. If we check the
common barcode numbers between the bin holding the right end
and the bin holding the left end and each of the bins following
the left, the common barcode numbers should show a gradual
decline. We calculate the fading rates and the counts by which the
observed numbers exceed the expected numbers according to the
distribution f (d) described above. The process is similar to that of
the left end. For each end pair, we have two lists of deviations and
fading rates. The end pairs are then tested by a Wilcoxon signed-
rank test to detect the asymmetry of fading in both directions
and a sudden loss of barcode sharing in one direction. If there
is evidence of asymmetry or short-range extension, we infer
that a short sequence from a distance was inserted into one
direction and assign a low confidence score. Otherwise, a high
confidence score is assigned. This estimation is more accurate for
haplotype-solved novel adjacencies.

Map Quality
The read mapping qualities are checked within the range of
Nmerge around the two ends of each pair, and the pairs are
screened out if the low-quality ratio is above a set cut-off. A low
confidence score will be given if the percentage of reads with low
mapping quality is greater than 50.

Read Pairs
For regular paired-end sequencing data, the insert size of a read
pair is important evidence for SV detection. The read pairs with
an abnormal insert size are also checked for a novel adjacency.
There is a corresponding relationship between the adjacency
end orientation and the paired-end map orientation: right–left
vs. forward–reverse, left–right vs. reverse–forward, left–left vs.
reverse–reverse, and right–right vs. forward–forward. Four types
of abnormal read pairs are counted to evaluate whether they
match or conflict with the adjacency type. Additionally, if there
is a match, the resolution of the adjacency will be refined from an
Nmerge size to a normal paired-end insert size.

Black and Control Lists
Candidate pairs are filtered out in the problematic regions of the
reference. These regions are defined as black regions, which are
formed based on the reference profile and usually involve repeat
sequences, mis-assembled areas, and gaps. Moreover, another set
of regions defined as control regions is also used to filter the
candidates. The control regions contain segmental duplications,
high population frequency, and other systematic SV regions
caused by the aligner, sequencer, library method, etc.

Finally, a comprehensive confidence score is generated based
on the confidence scores from the filters. Then the adjacencies

with high comprehensive confidence scores will be passed to
downstream steps.

Merge
We extract variants below a cut-off size from smoove results and
those above this cut-off from stLFRsv results and combine them
by merging those with significant overlap (at least 70% overlap
with respect to the longer SVs) to form the final output.

RESULTS

stLFR Co-barcoded Read Data of HG002
Data Preparation
The HG002 cell line sample was processed according to the stLFR
protocol (Wang et al., 2019) and sequenced to 100× coverage.
The average number of read pairs per barcode was 51. The
inferred weighted fragment length was 83 kbp. The inferred mean
number of fragments per barcode was 1.15. The distributions
of read pair numbers, weighted fragment lengths, and fragment
number per barcode are illustrated in Supplementary Figure 1.
We down-sampled the data to 50× and 30× and called variants
separately to provide guidance for applications. stLFRsv was
assessed on the HG002 genome in manual parameter mode
against the following four SV callers: Long Ranger, NAIBR,
smoove, and GROC-SVs (Spies et al., 2017; Elyanow et al., 2018;
Marks et al., 2019). The results from co-barcoded reads were
also compared with SVs from 100× Nanopore long reads. The
commands used to run the following pipelines are shown in
Supplementary Table 1.

Structural Variation
The workflow of structural variation detection is illustrated in
Figure 2A. Co-barcoded reads were aligned to hs37d5 by BWA-
MEM2 (Li, 2013[Preprint]; Vasimuddin et al., 2019). Phasing
was performed by HapCUT2 after SNPs were called using
GATK (McKenna et al., 2010; Edge et al., 2017). The GIAB
v0.6.2 structural variation set includes 7,172 insertions and
5,336 deletions. We used Truvari to align pipeline calls to the
GIAB call set1. For Long Ranger, the alignment was performed
by Lariat. For other software, the alignment results by BWA-
MEM2 were used.

Seventy-nine large deletions were identified by stLFRsv.
Thirty-seven of these were validated by the GIAB call set with
the quality flag “PASS.” Among the 42 unmatched deletions,
12 overlap with the GIAB deletion records but were failed
by Truvari because of the overlap ratio. Twenty-six of the
unmatched deletions overlap with the GIAB deletions with
markers other than “PASS” (Supplementary Table 2). One
is located at Chr12:11,216,856–Chr12:11,247,708 (Figure 3C).
Several confusing signals were observed at the start of this
deletion in both the co-barcoded reads and Nanopore long-read
mapping results. Thus, the Nanopore assembly sequence was
compared with the reference sequence. The result shows that
there are two approximately 20 kbp segment duplications near

1https://github.com/spiralgenetics/truvari
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FIGURE 3 | Large variations do not match the GIAB benchmark in HG002. (A) Heatmap for a deletion on Chr3. (B) Heatmap for an inversion on Chr12.
(C) Heatmap for a deletion on Chr12. (D) Long read alignment supports the inversion in (B). (E) Long read alignment supports the deletion in (A). (F) Assembly
alignment to reference by Blast for the deletion in (C). (G) Heatmap for a deletion on Chr19 and long read alignment. (H) Heatmap and structure for an inversion on
Chr11 and assembly alignment.

the start and the end of this region. The downstream region is
highly matched with the hs37d5 decoy sequence, which explains
the detection of this deletion (Figure 3F).

Four deletions do not overlap any GIAB record. Two were
marked with “COMMON” by the control list, and the other
two were marked with “PASS.” Only the “PASS” two were
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confirmed in the Nanopore long reads results. One is located
at Chr3:75,567,000–75,595,500 and supported by Nanopore long
reads (Figures 3A,E). The other is located at Chr19:21,822,000–
21,835,500 and inferred as a heterozygous variant by long
reads (Figure 3G).

Only three GIAB deletions larger than 10 kbp were not
detected by stLFRsv, and the heatmaps for these deletions are
shown in Supplementary Figure 3A. Two of these are in the
N-regions of the reference on ChrX, and they were filtered out by
the Black list. The third deletion is a heterozygous deletion and
was undetected because the length of the DNA fragment between
this deletion and the following homozygous deletion is too short
for co-barcode SV detection.

In addition to deletions, stLFRsv identified 55 inversions,
duplications, and translocations (Supplementary Table 3). Most
of these are shared by multiple genomes, which indicate
problematic reference regions or repeat sequences on the
reference and were marked on the Control list. Some of
them are caused by the alignment characteristics of short
reads that could not be confirmed by Nanopore long reads.
Others may indicate the difference between the reference
and the population. For example, two inversions were also
observed in HG001/NA12878 and some other samples. One
has a typical inversion structure on the heatmap and was
found at Chr12:17,922,000–Chr12:18,013,500 (Figures 3B,D).
It was classified to be a homozygous variant and confirmed
by Nanopore reads. The other has a more complex dual-
inversion structure in which a sub-fragment of an inverted
fragment reversed again and was confirmed by long read
assembly (Figure 3H).

Furthermore, deletions (>10 kbp) that were not detected
by stLFRsv but were detected by other co-barcoded read-
based SV callers are listed in Supplementary Table 4. There
are 40 deletions in total, 12 from Long Ranger, 5 from
GROC-SVs, and 23 from NAIBR. Approximately 50% of
these deletions were observed in stLFRsv but were filtered
by the region filter (Black list). None were validated by
the GIAB call set with a quality flag “PASS” except the
three deletions mentioned above (Supplementary Figure 3A).
Twenty-eight of these deletions are likely the result of improper
short read alignments, and another eight do not overlap
with GIAB call set records. One deletion at Chr8:8,032,452–
Chr8:8,045,361 was chosen to evaluate the difference between
the regular aligner BWA-MEM2 and the co-barcode aware
aligner Lariat (aligner of Long Ranger pipeline). As shown
by the heatmaps in Supplementary Figure 3B, although the
improper alignments causing a deletion call in a complex region
were corrected to a certain degree, Long Ranger still marked
it as a reliable deletion. Despite its preferable performance
in NGS “dead zone” genes (Mandelker et al., 2016; Marks
et al., 2019), the co-barcode-aware aligner does not seem
to provide significant improvements on large and complex
genomic regions.

When merging deletions from stLFRsv and smoove, the size
cut-off was set to 10 kbp by stLFRsv based on the data profiles.
The deletion evaluation results are shown in Table 1. The down-
sampled results are in Supplementary Table 5. Because few

insertions were found by any of the four callers, we did not
evaluate insertion results.

Unlike stLFRsv, Long Ranger, and GROC-SVs combine the
co-barcode information with a local assembly strategy, which
enables them to detect SVs around short sequences with high-
quality alignments, such as the deletion on Chr2 shown in
Supplementary Figure 3A, but with lower sensitivity. In contrast,
NAIBR is based on a model using paired-end discordance
along with co-barcode information. This model leads to higher
sensitivity, especially for SVs with small size or around N-regions,
such as the deletions on ChrX shown in Supplementary
Figure 3A, but it also suffers from more false-positive SVs.

Testing Built-in Parameter Setting on Multiple HG002
Libraries
If not specified, stLFRsv offers an auto parameter mode to
estimate parameters according to the following data profiles:
distribution of DNA fragment length and inter-read-pair gap
length. As mentioned in section “Methods,” “Large-gap” size
G to break fragment into sub-fragment, bin size B to cluster
sub-fragment borders, and merging size Nmerge to merge bins
into a single breakpoint are chosen based on inter-read-pair gap
length distribution. These three parameters then determine the
sensitivity of the pipeline and the accuracy of the breakpoint
locations. In contrast, the sizes of inversion and duplication that
stLFR is able to identify are dictated by the DNA fragment length
distribution. Long DNA fragments only detect large inversions
and duplications. The detectable deletion size should be larger
than the “large-gap” size G.

For the HG002 cell line sample, we constructed four stLFR
libraries to assess the influence of the data profile. Only high-
quality reads (>4 read pairs per segment and >8 read pairs
per barcode) were retained for statistical analysis. The data
statistics and inferred parameters for these four HG002 libraries
are illustrated in Table 2 and Supplementary Figure 4. It is
highly recommended, according to our tests, not only for stLFRsv
but also for other co-barcoded read-based SV callers that stLFR
data should have a high-quality read ratio >70%, average read
pairs per segment >25, and barcode conflict <1.7 for good
detection performance.

Comparison With Nanopore Long Reads
We obtained 100× Nanopore long reads of HG002 from Oxford
Nanopore Technologies. The distribution of read length and
percent identity are presented in Supplementary Figure 1.
The alignment was performed with Minimap2 using default
parameters (Li, 2018). SVs were detected by Sniffles with
default parameters, and increasing the support read number
can reduce both false positives and true positives (Sedlazeck
et al., 2018). The deletion evaluation is also listed in Table 1.
The insertion evaluation is shown in Supplementary Table 6.
We assembled long reads by NECAT for variation validation
(Chen et al., 2020).

For deletions, Nanopore long reads achieve a high sensitivity
in every size level along with a number of false-positive deletions.
stLFRsv attains approximately the same level of sensitivity with
a lower false-positive rate for large deletions. For insertions,
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TABLE 1 | Deletion evaluation on whole genome against GIAB HG002 benchmark.

100× long reads 100× co-barcoded reads

Sniffles Long Ranger NAIBR stLFRsv smoove stLFRsv + smoove GROC-SVs

Mapping Minimap2 lariat bwamem2 bwamem2 bwamem2 bwamem2 bwamem2

50–1 k Benchmark 4,719

Total call 9,453 3,583 2 0 972 972 0

TP 4,168 2,304 2 0 724 724 0

FP 5,285 1,279 0 0 248 248 0

FN 551 2,415 4,717 4,719 3,995 3,995 4,719

Precision 44.09% 64.30% 100.00% – 74.49% 74.49% –

Recall 88.32% 48.82% 0.04% – 15.34% 15.34% –

1 k–10 k Benchmark 577

Total call 902 489 155 13 554 556 0

TP 533 391 125 12 434 436 0

FP 369 98 30 1 120 120 0

FN 44 186 452 565 143 141 577

Precision 59.09% 79.96% 80.65% 92.31% 78.34% 78.42% –

Recall 92.37% 67.76% 21.66% 2.08% 75.22% 75.56% –

10 k–30 k Benchmark 31

Total call 60 27 31 56 35 56 9

TP 28 19 24 30 22 30 7

FP 32 8 7 26 13 26 2

FN 3 12 7 1 9 1 24

Precision 46.67% 70.37% 77.42% 53.57% 62.86% 53.57% 77.78%

Recall 90.32% 61.29% 77.42% 96.77% 70.97% 96.77% 22.58%

>30 k Benchmark 9

Total call 55 14 28 23 36 23 13

TP 9 6 8 7 7 7 4

FP 46 8 20 16 29 16 9

FN 0 3 1 2 2 2 5

Precision 16.36% 42.86% 28.57% 30.43% 19.44% 30.43% 30.77%

Recall 100.00% 66.67% 88.89% 77.78% 77.78% 77.78% 44.44%

TABLE 2 | Detection capability and estimated parameters of different HG002 libraries.

Library HG002-1 HG002-2 HG002-3 HG002-4

Input DNA amount 1 ng 1 ng 1.5 ng 1.5 ng

Reads count 2,525,286,352 3,029,968,430 2,172,780,252 2,994,596,020

Average sequencing depth (after duplication removed) 44.34 35.77 46.73 44.38

High-quality read ratio 89.57% 78.03% 79.15% 75.55%

Read pairs per segment 32.33 18.30 18.40 17.21

Barcode conflict (segments per barcode) 1.55 1.41 2.04 1.70

Estimated parameters B (bp) 1,500 1,500 2,500 1,900

Nmerge (B) 4 4 4 4

G (bp) 13,100 13,900 22,200 13,800

Detection capability Deletion (bp) 13,500 13,500 22,500 13,300

Inversion/duplication (bp) 48,100 28,600 46,700 32,200

Nanopore long reads show the same performance as deletion
detection with small insertions but fail for large insertions just
like stLFR and the other three SV callers. This result is consistent
with a previous report (Fang et al., 2019) showing that the
detection of large size insertion may remain a challenge for
alignment-based SV callers.

Resource Usage
The resource utilization of these four callers was collected
by the Linux system tool “time” (Figure 4), and all tests
were performed on a workstation with 48 CPU cores and
256 GB memory. GROC-SVs ran very slowly because of massive
assembly operations. NAIBR showed an extremely high memory
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FIGURE 4 | The resource usage of four pipelines when processing 100×
stLFR reads of HG002 with the given parameters in Supplementary Table 1.
*The resource usage of Long Ranger is estimated by the log file because it is
a fully integrated functional pipeline.

consumption with a low CPU load. Benefitting from the
algorithm focusing only on the sub-fragment divided by large
gaps, stLFRsv achieved the best performance with regard to time
and memory usage while taking full advantage of the multi-
core CPU.

10× Genomics Linked-Reads Data of
HG001
The Linked-Reads data of HG001 downloaded from 10×
Genomics official website was tested on all four co-barcoded
read-based SV callers (for stLFRsv, the 10× Genomics barcode
BX tag was converted to an stLFR-formatted barcode). Because
there is not a well-characterized GIAB call set for HG001, only
the large SVs were compared among the call sets and with the
10× Genomics SV results on the website.

There are 34 reliable large SVs in 10× Genomics Long
Ranger call set, comprising 18 deletions, 12 duplications, and
4 inversions. To validate these SVs, they were checked by the
heatmaps of co-barcode distribution manually and individually.
The results are shown in Figure 5A and Supplementary Table 7.
The performance of the four SV detectors on Linked-Reads data
is consistent with that on stLFR data. stLFRsv has the highest
consistency with each of the other three call sets. NAIBR presents
the most SVs not detected by any other caller, and GROC-
SVs has the least common SVs. Four deletions only detected
by stLFRsv were all marked “COMMON” and also found in
low-quality results in the Long Ranger call set. As for the
duplications, only four duplications were confirmed as reliable
variants, and they were all detected by read depth information
without SV breakpoint details. The other three call sets provide
minimal support for these duplications. All four inversions were
detected by stLFRsv, three of which were marked “COMMON”
and also found in HG002 results. The remaining inversion is
a “DUP-INV” complex SV found only in HG001. As shown in

Figure 5B, a DNA fragment was duplicated and inversely inserted
into another genomic position of the same chromosome. Both
breakpoints were detected by stLFRsv, whereas only one was
reported by Long Ranger.

10× Genomics Linked-Reads Data of
HX1
A Chinese individual, HX1, was studied and sequenced in several
investigations (Shi et al., 2016; Fang et al., 2019), and a reliable
SV call set of HX1 was established by SMRT-SV (Audano et al.,
2019), a widely used long-read SV caller. Thus, stLFRsv was
also tested on the Linked-Reads data of HX1. As stated in a
previous report (Fang et al., 2019), duplications were barely
detected by co-barcoded reads or long reads, and thus we
only focused on deletions. The SMRT-SV call set has 16 large
deletions (>10 kbp), 10 of which were detected by stLFRsv
(Supplementary Table 8). The failure to detect six deletions may
be the result of imprecise SV positions by stLFRsv. In other
words, the size of these six deletions reported by stLFRsv may
be smaller than 10 kbp, and they were accordingly found in the
intermediate result file. Another deletion at Chr2:111,153,548–
Chr2:111,198,923, which was missed by SMRT-SV but validated
by a previous report (Fang et al., 2019), was also detected by
stLFRsv (Supplementary Figure 3C).

DISCUSSION

We present stLFRsv, a co-barcoded read-based structural
variation detector that identifies large variants with far fewer
false positives than alignment-based detectors using either short
reads or long reads. stLFRsv also shows the best computational
performance among co-barcoded read-based SV callers. When
combined with a standard short read variation caller, stLFRsv
can exploit the co-barcoded reads to reveal the full spectrum
of genome polymorphism. Although stLFR has decreased the
average number of DNA fragments sharing the same barcode
to nearly 1 and increased the coverage in “BAD” genome
regions to a certain degree, co-barcoded reads have limited
resolution for structural variation calling because paired reads
for a long fragment only partially cover the whole sequence
with unknown order and intervening distance. In contrast,
the performance of single-molecule sequencing long reads has
been increasing. In spite of this, discovering both base-level
and very-large-scale variants simultaneously using co-barcoded
sequencing technology will be promising for some clinical
applications especially with lower cost and decreased turnaround
time. Moreover, the greater length of DNA fragments for co-
barcoded sequencing compared with single-molecule sequencing
has the potential to span larger repeat regions and catch SVs
missed by real long reads.

Larger variants other than deletions and insertions are
needed to assess variation detection by co-barcoded reads.
There are three main aspects for our future research. First,
we are analyzing co-barcoded reads for clinical samples to
find pathogenic balanced/unbalanced translocations, deletions,
duplications, and more complex structures. This technique is
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FIGURE 5 | (A) Venn diagram of detected deletions from four structural variant (SV) callers in HG001. (B) The heatmap and structure for a complex inversion in
HG001. The signs of two breakpoints are marked by blue and yellow circles in the heatmap.

likely to provide a more precise description of such variants
compared with current clinical practices by identifying more
reliable breakpoints. Second, another clinical application is to
associate a genetic defect with nearby alleles using co-barcoded
reads, which can provide an inference as to whether an infant
inherited a defect through prenatal cell-free DNA sequencing by
detecting associated nearby alleles. This application benefits from
the outstanding phasing ability of co-barcoded reads. The final
element of future work is to add a local assembly module to
enhance small variation detection (in the range of 50 bp–1 kbp).

With a cost slightly higher than standard short reads, co-
barcoded reads are able to reveal much more useful information
for the underlying genomes.
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validated deletion detected by stLFRsv in HX1.

Supplementary Figure 4 | Weighted fragment length distribution for different
HG002 stLFR libraries.
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