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Abstract 

An important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D 
structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, 
we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly 
distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equiva‑
lence classes and an effective equivalence test. Based on extensive computational experiments, we show that our 
algorithm is significantly faster than existing implementations within SMSD, CDK and RDKit. We provide our Java 
implementation as an easy-to-use, open-source package (via GitHub) which is compatible with CDK. It fully supports 
the distinction of different isotopes and molecules with radicals.
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Background
The analysis of molecules is an important part of chem-
informatics. As atoms and bonds can be combined in 
a multitude of ways, a huge number of different mol-
ecules can be formed. Databases like PubChem, KEGG, 
or ChEBI store millions of molecules. Querying whether 
some molecule is included in such a database requires to 
test whether this molecule is equivalent to some exist-
ing one, i.e. whether they share the same structural and 
chemical properties. For example, it is not at all obvious 
that the two molecules (PubChem CID: 50934716 and 
6397461), visualized in Fig.  1, are equivalent in 2D (not 
regarding stereochemistry). In this paper, we study the 
problem of testing whether two molecules are equivalent.

In an abstract mathematical way, molecules can be 
represented as graphs with atoms as nodes and bonds as 
edges. Chemical properties of atoms can be modelled as 
integral or real-valued node labels. To test whether two 
molecules are equivalent thus means to test whether the 
two associated labelled graphs are isomorphic.

The general graph isomorphism problem is neither 
known to be in P nor to be NP-complete [1, 2]. In a 
recent breakthrough paper, Babai presented a quasipol-
yonomial-time algorithm for the graph isomorphism 
problem in general graphs [3]. This algorithm runs in 
time O(npolylog(n)) where n is the number of nodes and 
polylog(n) is some polynomial in log(n) . For many special 
cases, stronger results are known. For example, for planar 
graphs, the problem can be solved in polynomial time [4]. 
A lot of molecules like DNA, RNA, or fullerenes can be 
represented as planar graphs. However, it is known that 
other molecule classes like inorganics or linked polymer 
networks cannot [2, 5]. In pioneering work, Luks pre-
sented a polynomial-time isomorphism algorithm for 
graphs of bounded degree [6]. Since bond and atom types 
are bounded, this immediately implies the polynomial-
time solvability of molecular equivalence via standard 
transformations from molecular, labelled graphs to sim-
ple graphs [2]. The corresponding polynomials are, how-
ever, of high degree so that algorithms require different 
techniques to be usable in practice.

There are many algorithms to test whether two labelled 
graphs are isomorphic. One possibility is to first trans-
form molecule graphs into simple graphs without node 
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labels, and then to solve the classical graph isomorphism 
problem [7]. In contrast, many other approaches, like 
ours, work directly on labelled graphs. McKay’s famous 
nauty algorithm [8] is based on the idea of finding a 
canonical form of a graph G, i.e. a labelled graph C(G) 
that is isomorphic to G, often referred to as canonical 
labelling, such that every graph that is isomorphic to G 
has the same canonical form. Then testing whether two 
graphs are isomorphic reduces to merely checking equal-
ity of their corresponding canonically labelled graphs, 
which is easy. The hard part is to compute the canoni-
cal labellings. The nauty package is freely available; 
although known to have exponential runtime on some 
inputs, it performs very well in practice. The probably 
first practically usable algorithm goes back to Ullmann 
[9], who used recursive backtracking to solve the isomor-
phism problem (actually, his approach even solves the 
NP-complete subgraph isomorphism problem). A sub-
stantially improved version appeared in [10]. The general 
idea of iteratively extending a partial solution using cer-
tain feasibility criteria has been employed in several vari-
ants of VF/VF2/VF2 Plus/VF2++ algorithm [4, 11–13]. 
Experimental studies showed that the VF2++ algorithm 
is very efficient in practice [4]. It seems to be the fastest 
available code up to now.

In the context of cheminformatics, algorithms for test-
ing molecule equivalence are implemented in widely-
used software packages like RDKit [14], CDK [15] and 
SMSD [16]. These tools work well with a multitude of 
molecules. However, they do not always respect all chem-
ical properties, like deuterium and radicals (see Figs.  2, 
3). Other algorithms implemented in CDK and SMSD do 
respect these properties but suffer from large running 
times.

Many scientists in cheminformatics use canonical 
Simplified Molecular Input Line Entry Specification 
(SMILES) [17, 18] or InChI (International Chemical 

Identifier) [19, 20] to represent molecules as strings [21, 
22]. To test whether two molecules are equivalent, it suf-
fices to check whether the associated strings are identi-
cal. To create such strings, a canonical labelling problem 
has to be solved. SMILES or InChI strings can be cre-
ated by CDK or RDKit [15, 21]. Several limitations of the 
SMILES format exist, most importantly, that there is no 
standard way to generate a canonical representation [22]. 
We will later compare these approaches with ours.

Contribution To improve the current situation, we 
developed and implemented an algorithm for testing 
molecule equivalence in 2D. Our software is called MET 
(Molecule Equivalence Tester) and is available at https​
://www.githu​b.com/jasch​ueler​/MET/. Our software is 
designed and has been engineered to 

1.	 consider chemical properties like deuterium and rad-
icals in the equivalence test,

2.	 be highly competitive with the isomorphism algo-
rithms from CDK and SMSD as well as with estab-
lished SMILES and InChI methods, and

3.	 be compatible with CDK such that it can be easily 
integrated into existing CDK applications.

For testing molecular equivalence, our key contribution 
is to define highly distinctive node labels encoding both 
chemical properties and the local structural neighbour-
hood of an atom up to a certain depth. In order to achieve 

Fig. 1  Molecule a is the image from the PubChem database for the 
molecule with the CID 50934715. Molecule b is the image from the 
PubChem database for the molecule with the CID 6397461. Both 
molecules are equivalent in 2D
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Fig. 2  Example: ionisation of ammonia by electron impact 
reaction. These two molecules are recognized as equivalent by the 
isomorphism test of CDK 
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Fig. 3  Structure a cyclohex-1-ene, structure b cyclohex-1-ene with 
three replaced hydrogens by deuterium. These two molecules are 
recognized as equivalent by SMSD 

https://www.github.com/jaschueler/MET/
https://www.github.com/jaschueler/MET/
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excellent performance, we have carefully engineered the 
appropriate choice of properties and the neighbourhood 
depth.

In the following section, we describe our method and 
the associated techniques. Afterwards, we experimentally 
evaluate our algorithm and show that it largely outper-
forms existing implementations from CDK, SMSD, and 
RDKit.

Methods
Let us start by formally defining the equivalence of 
molecules.

Preliminaries: molecule equivalence
In our application, we model a molecule as a graph 
G = (V ,E) with node set V and edge set E. Each node v 
has an associated node label ℓ(v) ∈ R

s of s (integral or 
real) numbers, each of which represents a certain atom 
property. A very simple choice of node labels would be, 
for example, to simply use the atomic number of the 
corresponding atom (in which case s would be one). 
Later, we will explain in detail how  more sophisticated 
chemical and structural properties can be encoded into 
labels. We define that two molecules G1 = (V1,E1) and 
G2 = (V2,E2) are equivalent if and only if there is an iso-
morphism f between G1 and G2 i.e. a bijective function 
f : V1 → V2 such that

•	 {f (u), f (v)} ∈ E2 if and only if {u, v} ∈ E1 , and
•	 ℓ1(v) = ℓ2(f (v)) for each node v ∈ V1.

The first condition ensures that both graphs have the 
same structure while the second guarantees that also the 
node labels are compatible.

High‑level description
Our algorithmic approach works as follows. The algo-
rithm gets as input two molecules. For simplicity, we 
assume that these are given by their CDK representations. 
Alternatively, one may pass these molecules by some 
standard file description, for example, in SDF format. 
Our algorithm consists of two phases. 

1.	 In the first phase, the algorithm converts both mole-
cules into labelled graphs. In doing so, each molecule 
is transformed into a graph G = (V ,E) with node set 
V and edge set E. For each atom, we introduce a node 
v ∈ V  and for each bond, we introduce an edge e ∈ E . 
In doing so, we create two graphs G1 = (V1,E1) and 
G2 = (V2,E2) . In the second step, we create node 
labels ℓ1 : V1 → R

s and ℓ2 : V2 → R
s . It is crucial 

that two nodes gain identical labels if and only if their 
associated atoms have identical properties. Our key 

contribution is to compute highly distinctive node 
labels.

2.	 In the second phase, we first run quick pre-test to 
check whether G1 and G2 are certainly not isomor-
phic. If this pre-test does not preclude the isomor-
phism, we use an isomorphism algorithm to decide 
whether the labelled graphs are isomorphic.

In the following, we give a detailed description of both 
phases.

Phase one
In the first phase, we transform the CDK molecule rep-
resentations (regardless of stereochemistry) to labelled 
graphs. For this purpose, we replace each atom by a node 
and each bond by an edge. To conserve the chemical 
properties of each atom, each node gets a label, on which 
we will focus next.

Atom properties
Our software is designed to let the user choose the chemical 
properties that should be respected during the equivalence test. 
In our applications, we consider the following atom properties:

•	 atomic number
•	 count of hydrogens and deuterium
•	 formal charge
•	 count of single electrons (radicals)
•	 count of single bonds, double bonds and triple bonds

Additional properties can easily be integrated into our 
algorithm, as long as they can be represented as real or 
integral numbers. For example, chemical properties like 
radius or partial charges can be represented as real num-
bers and might be helpful, if available.

Table 1 shows the atom properties of the example mol-
ecule in Fig. 4.

Based on the selected properties, each node v gets an 
associated label ℓ(v) = (p1, p2, . . . , ps) , where each pi 
represents a certain atom property. It is crucial that two 
nodes gain identical labels if and only if their associated 
atoms have identical properties.

Neighbourhood descriptors
In addition to the chemical properties, each node v gets 
an additional structural property d(v) called neighbour-
hood descriptor. This is a (real or integral) number that 
encodes information on the local neighbourhood of this 
node. We intend to give nodes identical neighbourhood 
descriptors if 

(a)	 they have the same set of chemical properties, and
(b)	 their local neighbourhood is identical.
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To compute the neighbourhood descriptors, we itera-
tively define for each node v an integer di(v) that char-
acterizes its local neighbourhood up to a depth of i. 
Initially, we define

Here, hash denotes a generic hash function that maps 
tuples of (real or integral) numbers to integers. Conse-
quently, the initial descriptor d0(v) contains information 
only on each node itself. For 1 ≤ i ≤ k (where the maxi-
mum depth k is a parameter on which we focus soon), we 
define

d0(v) := hash(ℓ(v)).

di(v) :=
∑

(v,w)∈E

di−1(w).

Having calculated di(v) for 0 ≤ i ≤ k , we use

as the neighbourhood descriptor of the node v.
Table 2 demonstrates the calculation of the neighbour-

hood descriptors on the example shown in Fig. 5.
We briefly point to some instructive observations.

•	 As the nodes C and D are supposed to have identical 
chemical properties, and they additionally have the 
same neighbourhood structure, they gain identical 
values of di for all i ≥ 0 . Consequently, they gain the 
same neighbourhood descriptor d (not shown in the 
example).

•	 The nodes G and H are supposed to have different 
chemical properties (thus d0(G)  = d0(H) ) but their 
neighbourhood structure is exactly symmetric (thus 
di(G) = di(H) for all i ≥ 1 ). Nevertheless, they will 
get different neighbourhood descriptors.

•	 The nodes A and E have identical chemical proper-
ties (thus d0(A) = d0(E) ). Furthermore, their direct 
neighbourhood is symmetric (thus d1(A) = d1(E) ). 
However, their local neighbourhood differs when 
considering a depth of two or more.

Maximum depth
It is an important question of how to choose the maxi-

mum neighbourhood depth k. On the one hand, a large 
value of k will include more information on the local 

d(v) := hash(d0(v), d1(v), . . . , dk(v))
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Fig. 4  Molecule 2-chloroprop-1-enamide for the explanation of the 
classical atom properties

Table 1  list of classical atom properties for the molecule in Fig. 4

Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6

Atomic number 6 6 6 17 8 7

Count of hydrogens 2 0 0 0 0 2

Count of deuterium 0 0 0 0 0 0

Formal charge 0 0 0 0 0 0

Count of single electrons 0 0 0 0 0 0

Count of single bonds 0 2 2 1 0 1

Count of double bonds 1 1 1 0 1 0

Count of triple bond 0 0 0 0 0 0

AB E F

C

D

G

H

Fig. 5  Example graph. The nodes A and E, C and D, as well as B and F 
are supposed to have identical chemical properties and marked with 
the same colours

Table 2  Example of the calculation of the neighbourhood 
descriptor based on Fig. 5

The values in d0 are self-chosen and do not follow a special semantic

d0 d1 d2 d3

A 5 8 27 39

B 3 19 14 65

C 7 3 19 14

D 7 3 19 14

E 5 8 25 41

F 3 17 14 59

G 10 3 17 14

H 2 3 17 14
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neighbourhood of each node, and will thus potentially 
decrease the running time of the isomorphism algo-
rithm. On the other hand, calculating the neighbourhood 
descriptors for each node of a molecule graph G = (V ,E) 
requires a running time of O(k · |E|) . Thus, we might 
want to choose k as a small constant. Later, in the experi-
mental results section, we will study the influence of k on 
the running time in a benchmark experiment.

Phase two
In the second phase, we test whether two labelled graphs 
G1 and G2 with node labels ℓ1 and ℓ2 are isomorphic.

Pre-test
Before starting the actual isomorphism test, we run a 

fast pre-test to quickly detect whether the graphs are cer-
tainly not isomorphic. For this purpose, we compare the 
number of atoms, bonds, hydrogens, deuterium, formal 
charge and single electrons of both molecules, which all 
must be equal. In addition, we construct the label sets 
{ℓ(v) : v ∈ V1} and {ℓ(v) : v ∈ V2} and test whether both 
sets are identical. If not, we can be sure that the two mol-
ecules are not equivalent.

Equivalence test After the pre-test, we try to find an 
isomorphism between G1 and G2 . In this paper, we tested 
two algorithms:

•	 First, we tested the VF2++ algorithm included in the 
Lemon library [13, 23]. Recent work showed that this 
algorithm is very fast on large instances [4]. However, 

this algorithm is implemented in C++. This is a small 
disadvantage for native Java application, like our imple-
mentation, as calling this algorithm requires system 
calls and thus reduces the portability of the Java code.

•	 Second, we tested our own implementation of a 
generic backtracking algorithm, which we will describe 
in a moment. In contrast to VF2++, this algorithm is 
implemented in native Java and is thus more portable. 
As a drawback, our algorithm has been less engineered 
and might therefore be less efficient than VF2++.

We now give a rough description of our isomorphism algo-
rithm. The algorithm gains as input two graphs G1 and G2 
with associated node labels ℓ1 and ℓ2.

Candidate sets
For each node v ∈ V1 , the algorithm maintains a candi-

date set

of nodes in G2 that may be assigned to the node v. Vice 
versa, the algorithm maintains for each node w ∈ V2 in 
G2 the candidate set

of nodes in G1 that may be assigned to w.
Backtracking
The heart of the isomorphism algorithm is the following 

backtracking algorithm (see Algorithm 1).

can1(v) := {w ∈ V2 : ℓ1(v) = ℓ2(w)}

can2(w) := {v ∈ V1 : ℓ1(v) = ℓ2(w)}
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 The algorithm selects a node v ∈ V1 with a minimum-
sized candidate set and tries to assign v to one of its can-
didate nodes, say to w ∈ can1(v) . By assigning v to w, we 
may reduce several candidate sets (see Algorithm 2):

•	 Obviously, v and w can be removed from every can-
didate set in which they were included so far.

•	 For each edge {u, v} ∈ E1 , there must be an edge 
{z,w} ∈ E2 . Thus, for each edge {u, v} ∈ E1 , we can 
remove from can1(u) each node that is not adjacent 
to w.

•	 Symmetrically, we can remove from can2(z) each 
node that is not adjacent to v.

•	 Furthermore, the candidate sets of v and w can be 
cleared.

In doing so, we reduce the candidate sets of the nodes. 
(Note that candidate sets will only be reduced, never 
increased by the assignment of two nodes.)

Recursion
After assigning two nodes to each other, we recursively 

try to find an assignment to the remaining nodes. This 
may or may not be successful.

•	 If we successfully assigned each node from G1 to 
some node from G2 , we successfully determine that 
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both graphs are isomorphic. We return with a posi-
tive answer and the isomorphism function f.

•	 If we did not succeed in recursively assigning the 
remaining nodes, we undo our latest modifications 
on the candidate lists, backtrack and try to assign to v 
the next node from its candidate set. After all candi-
date nodes have been tested this way (and we did not 
return with a positive answer), we know that G1 and 
G2 cannot be isomorphic.

Note that the isomorphism f : V1 → V2 is easily 
obtained by this procedure.

The efficiency of our algorithm highly depends on the 
sizes of the candidate sets. Recall that, the larger the 
maximum depth k, the smaller the candidate sets will be, 
as the node labels become more distinctive.

Experiments, results, and discussion
To quantify the performance of our implementation in 
comparison to existing methods, we designed a bench-
mark experiment.

Benchmark experiment
In each of the following experiments, we partitioned 

a certain SDF file with molecules into its equivalence 
classes, i.e. into maximum sized subsets of molecules in 
which all molecules are pairwise equivalent. Each equiva-
lence class has a designated member called it‘s represent-
ative. Our general process is sketched as follows. 

1.	 We read one molecule after the other from the input 
file and construct the associated graph G = (V ,E) 
with node labels ℓ.

2.	 To insert G into its equivalence class, we use the 
property set {ℓ(v) : v ∈ V )} to compile a list of rep-
resentatives that have the same property set and thus 
maybe equivalent to G. Let LG denote this list.

3.	 For each representative R ∈ LG , we test whether G is 
equivalent to R. To this end, we use one of the follow-
ing algorithms/approaches:

•	MET: using the isomorphism algorithm described 
in the Methods section,

•	VF2++: using the VF2++ algorithm from the 
Lemon library [4],

•	CDKMCS, MCSPlus, Vlib, Default from the 
SMSD package [16],

•	CDK: SMILES: using CDK to create canonical 
SMILES [15],

•	RDKit: SMILES: using RDKit to create canon-
ical SMILES [21],

•	CDK: InChI: using CDK to create an InChI rep-
resentation [15].

	  If G and R are found to be equivalent, we add G 
to R’s equivalence class and continue with the next 
molecule. Note that each of the algorithms may 
give a different result.

4.	 If G is equivalent to none representative in LG , we 
create a new equivalence class represented by G.
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Fig. 6  Influence of the neighbourhood depth parameter k on the running time of the algorithms MET and VF2++ 
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Experimental environment All experiments were con-
ducted on a Debian GNU/Linux 10 system with 38 CPU 
cores and 250 GB main memory. We used Java on ver-
sion 12, CDK 2.3, RDKit 2018.09.1 (Ubuntu package) and 
SMSD 2.2.0.

Parameter tuning and optimization
In the first four experiments, we tried to find an optimum 
value of the neighbourhood depth parameter k. In addi-
tion, we evaluated which graph isomorphism algorithm 
works best in the second phase of our algorithm.

Experiment 1 In a first experiment, we studied the 
influence of the neighbourhood depth parameter k on the 
running time of the MET and VF2++ algorithms. For this 
purpose, we ran our benchmark experiment for several 
values of k and measured the associated total running 
time. As the input data set, we used the set of 95 945 527 
molecules that are listed in the PubChem database 
(October 2019), excluding molecules that solely consist of 
hydrogen or deuterium. Figure 6 shows the result of this 
experiment. We summarize some essential observations.

•	 We observe that a very small value of k induces a 
large running time. This is not surprising, as, with 
small k, the node descriptors carry little information 
on the local neighbourhood of each atom. The total 
running time reaches a minimum at k = 6.

•	 Increasing the value of k beyond 6 does not signifi-
cantly decrease the running time. Instead, the run-
ning time stays nearly constant for k ≥ 6 . We con-

clude that a value of k = 6 might be a reasonable 
value for our type of application.

	 Our observations agree with the results from related 
experiments on molecular fingerprints for small 
organic molecules [24, 25], where it has been found 
that a diameter of 4 or 6 gives the best performance.

•	 We further observe that the MET algorithm slightly 
outperforms VF2++ for all values of k. This may 
have several reasons. For example, since VF2++ is 
implemented in C++, we need to call it using the 
Java Native Interface, which induces additional over-
head. In any case, we conclude that MET is slightly 
superior to VF2++.

In further experiments, we use k = 6 as the maximum 
neighbourhood depth.

Experiment 2 Next, we further studied in more 
detail whether MET or VF2++ work best in the second 
phase of the equivalence test. In contrast to the previ-
ous experiment, we now consider data sets of different 
molecule sizes. For this purpose, we partitioned the 
PubChem data set into seven groups of molecules of 
approximately similar size.

•	 56,410,359 molecules with up to 25 atoms,
•	 35,528,631 molecules with 26 to 45 atoms,
•	 3,773,370 molecules with 46 to 100 atoms,
•	 168,714 molecules with 101 to 150 atoms,
•	 40,251 molecules with 151 to 200 atoms,

Fig. 7  Running time of MET divided by running time of VF2++ 
(with k = 6 ). Medians are marked as bold horizontal lines

Fig. 8  Ratio of the isomorphism algorithms of MET and VF2++ 
(phase 2) on the total running time in percent for the groups, with 
k = 6
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•	 22,745 molecules with 201 to 400 atoms, and
•	 1457 molecules with more than 400 atoms.

We ran our benchmark experiment for each group 
individually and measured the associated running 
times for MET and VF2++. By calculating the quotient 
of both running times, we quantify the speed-up of one 
algorithm to the other. A quotient of one means that 
both algorithms are equally fast, a quotient of less than 
one means that MET is faster than VF2++. Figure  7 
shows the result of this experiment.

•	 We observe that for each group, MET is superior to 
VF2++ in the majority of cases (as the medians lie 
below one). However, there are outliers in both direc-
tions.

•	 While MET is superior for the majority of small mol-
ecules, it becomes less efficient when the number of 
atoms grows larger.

We conclude that our isomorphism algorithm is very 
well suited for molecules with up to 400 atoms, while 
VF2++ is comparably efficient but suffers from addi-
tional overhead.

Experiment 3 Based on Experiment 2 we next consid-
ered the ratio between the running time of the equiva-
lence test and the total running time. Therefore, we use 
the data set from Experiment 2 and individually meas-
ure the running time of the second phase only. Dividing 

this time through the total running time gives the ratio 
of the isomorphism algorithm  (plus pre-test) on the 
total running time. In Fig. 8 we show the result of our 
experiment.

•	 We observe that the ratio of the isomorphism 
algorithm of MET is smaller than the algorithm of 
VF2++ for all molecule groups.

•	 Especially, for the molecules with 50–200 atoms the 
algorithm of MET is significantly faster.

This result underlines the result of Experiment 2 and 
thus the suggestive usage of MET for molecules with up 
to 400 atoms.

Experiment 4 In the previous experiment, we tested 
a lot of molecule pairs which are not equivalent. Most 
equivalence test failed during our pre-tests. In this 
experiment, we studied the efficiency of MET and 
VF2++ algorithms on a data set for which we a priori 
know that all molecules are equivalent.

For each group of molecule sizes, we selected a subset 
of equivalence classes as input for our benchmark experi-
ment. In doing so, we made sure that all pairs of tested 
molecules are equivalent. We measured the running time 
of our benchmark experiment on these input files. Fig-
ure 9 shows the result of this experiment.

•	 We observe that both algorithms work approximately 
equally well for very small and very large molecules.

•	 For medium-sized molecules MET is superior to 
VF2++.

Performance comparision
In our final set of experiments, we evaluated how the 
MET algorithm compares to the established equivalence 
tests from SMSD and to the methods based on canonical 
SMILES and InChI from CDK and RDKit.

Experiment 5
As it will become apparent from our experiment, the 

running time of some equivalence algorithms is very 
large. Consequently, we did not run all algorithms on the 
complete data set. In contrast, we just partitioned a small 
subset (23,254 molecules) of the PubChem database 
into its equivalence classes and measured the associated 
running time. Table  3 shows the running times for this 
process.

•	 First, we observe that two algorithms (CDKMCS, 
MCSPlus) from the SMSD do not correctly identify 
all pairs of equivalent molecules. For example, the 
structures of methadone hydrochloride (PubChem 
CID: 14184) and levomethadone hydrochloride 

Fig. 9  Running time of MET divided by running time of VF2++ 
(with k = 6 ) on a data set consisting only of isomers. Medians are 
marked as bold horizontal lines
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(PubChem CID: 22266) in 2D representation are 
evaluated as being different. Interestingly, these mol-
ecules do not contain radicals or isotopes.

•	 Considering the running time, we observe that our 
approach outperforms all algorithms from SMSD 
by several orders of magnitude.  Consequently, we 
exclude these algorithms from further experiments.

•	 We observe that in this small sample the equivalence 
tests based on canonical SMILES and InChI give 
correct results. We further observe that the running 
time of RDKit is noticeable larger than that of CDK.

From this experiment, we conclude that only the SMILES 
and InChI based algorithms from CDK are competitive 
with MET and VF2++. Thus, we will further examine 
those algorithms on the large data set.

Experiment 6 In our final experiment, we compare the 
running time of the SMILES and InChI based CDK meth-
ods with that of MET and VF2++. For this purpose, we 
ran these algorithms on the large data set from Experi-
ment 2. Table 4 and Figures 10 and 11 show the results.

•	 Considering CDK’s InChI method, we observe that 
MET outperforms CDK by a factor of about 2. In 
addition, we observe that the CDK method produce 
deviating results for 3245 molecule pairs, including 3 
pairs for which at least one InChI could not be con-
structed by the CDK method. The remaining deviat-
ing results are false positives from CDK. For example, 
the molecules with CID 18671247 and 60160843 gain 
the same InChI although they differ in the position 
of some double bond. Another example is the mol-
ecules with CID 5151983 and 379953, which differ in 
the position of some proton but gain the same InChI.

•	 Considering the SMILES method, we observe that 
MET’s running time is just one third of CDK’s. There 

Table 3  Running time and  number of  deviating results 
for a small set of molecules (using a neighbourhood depth 
of k = 6)

Algorithm Milliseconds  Deviating 
results

MET 7693 0/692

VF2++ 6488 0/692

SMSD: CDKMCS 18,677 9/692

SMSD: MCSPlus 2,740,136 9/692

SMSD: Vlib 4,940,974 0/692

SMSD: Default 24,902 968 0/692

RDKit: SMILES 54,872 0/692

CDK: SMILES 7399 0/692

CDK: InChI 6 563 0/692

Fig. 10  Running time of MET (with k = 6 ) divided by the running 
time of InChI (CDK). Medians are marked as bold horizontal lines

Fig. 11  Running time of MET (with k = 6 ) divided by the running 
time of SMILES (CDK). Medians are marked as bold horizontal lines

Table 4  Running time and  number of  deviating results 
for  the  PubChem data set (using a  neighbourhood depth 
of k = 6)

Algorithm Milliseconds Deviating results

MET 18,206,705 0/18554268

VF2++ 29,093,114 0/18554268

CDK: SMILES 63,182,381 1190/18554268

CDK: InChI 38,050,677 3245/18554268
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are 1190 out of 18554268 molecule pairs for which 
the SMILES method gives a different result than 
MET. These different results are in all cases false neg-
atives from CDK. For example, CDK generates for the 
molecules with CID 414487 and 49791694 different 
SMILES. In comparison, the PubChem database and 
the canonical SMILES generation by RDKit show 
the same SMILES for these molecules. Included in 
the 1190 pairs are 93 for which CDK could not con-
struct the associated SMILES.

From our final experiment, we conclude that MET is a 
significant improvement to existing tools as it does not 
depend on the error-prone construction of canonical 
SMILES or InChIs and is furthermore considerably faster 
than CDK and RDKit.

Conclusion
In this article, we presented an algorithm for detecting 
the equivalence of molecules. Our algorithm exploits 
the chemical and structural properties of molecules to 
transform a molecule to a labelled graph. Our method 
is based on the construction of highly distinctive node 
labels that are used to decrease the running time of a iso-
morphism algorithm. Experimentally, we showed that 
it suffices to consider the local neighbourhood up to a 
depth of six. In its second phase, our algorithm uses a 
generic isomorphism algorithm for labelled graphs. Our 
experiments showed that our generic backtracking algo-
rithm is competitive with the previously fastest imple-
mentation VF2++. In a set of experiments, we showed 
that our algorithm is faster than all algorithms currently 
implemented in SMSD, CDK, and RDKit. In addition, we 
found that our method is more robust than the methods 
included in CDK as it avoids the construction of SMILES 
or InChIs. As our software is compatible with CDK, it can 
easily be used to replace all current algorithms for equiv-
alence testing from CDK or SMSD.

In the future, we plan to integrate our algorithm to the 
molecule fragmentation software ChemFrag [26]. Fur-
thermore, we want to analyse the applicability of our 
algorithm for large molecules like proteins. In addition, 
we are going to consider the related problem whether 
some molecule is part of some larger molecule [27]. For 
this purpose, we need to solve the subgraph isomorphism 
problem, which is known to be NP-complete [1].

Availability and requirements

•	 Project Name: Molecule Equivalence Tester (MET)
•	 Project home page: https​://githu​b.com/jasch​ueler​/

MET/

•	 Operating system(s): GNU/Linux.
•	 Programming language: Java 12
•	 Any restrictions to use by non-academics: None
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