
Schüler et al. J Cheminform (2020) 12:73
https://doi.org/10.1186/s13321-020-00480-1

RESEARCH ARTICLE

MET: a Java package for fast molecule
equivalence testing
Jördis‑Ann Schüler*  , Steffen Rechner  and Matthias Müller‑Hannemann 

Abstract 

An important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D
structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper,
we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly
distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equiva‑
lence classes and an effective equivalence test. Based on extensive computational experiments, we show that our
algorithm is significantly faster than existing implementations within SMSD, CDK and RDKit. We provide our Java
implementation as an easy-to-use, open-source package (via GitHub) which is compatible with CDK. It fully supports
the distinction of different isotopes and molecules with radicals.

Keywords:  Molecule isomorphism, Molecule equivalence, Molecular graph

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The analysis of molecules is an important part of chem-
informatics. As atoms and bonds can be combined in
a multitude of ways, a huge number of different mol-
ecules can be formed. Databases like PubChem, KEGG,
or ChEBI store millions of molecules. Querying whether
some molecule is included in such a database requires to
test whether this molecule is equivalent to some exist-
ing one, i.e. whether they share the same structural and
chemical properties. For example, it is not at all obvious
that the two molecules (PubChem CID: 50934716 and
6397461), visualized in Fig. 1, are equivalent in 2D (not
regarding stereochemistry). In this paper, we study the
problem of testing whether two molecules are equivalent.

In an abstract mathematical way, molecules can be
represented as graphs with atoms as nodes and bonds as
edges. Chemical properties of atoms can be modelled as
integral or real-valued node labels. To test whether two
molecules are equivalent thus means to test whether the
two associated labelled graphs are isomorphic.

The general graph isomorphism problem is neither
known to be in P nor to be NP-complete [1, 2]. In a
recent breakthrough paper, Babai presented a quasipol-
yonomial-time algorithm for the graph isomorphism
problem in general graphs [3]. This algorithm runs in
time O(npolylog(n)) where n is the number of nodes and
polylog(n) is some polynomial in log(n) . For many special
cases, stronger results are known. For example, for planar
graphs, the problem can be solved in polynomial time [4].
A lot of molecules like DNA, RNA, or fullerenes can be
represented as planar graphs. However, it is known that
other molecule classes like inorganics or linked polymer
networks cannot [2, 5]. In pioneering work, Luks pre-
sented a polynomial-time isomorphism algorithm for
graphs of bounded degree [6]. Since bond and atom types
are bounded, this immediately implies the polynomial-
time solvability of molecular equivalence via standard
transformations from molecular, labelled graphs to sim-
ple graphs [2]. The corresponding polynomials are, how-
ever, of high degree so that algorithms require different
techniques to be usable in practice.

There are many algorithms to test whether two labelled
graphs are isomorphic. One possibility is to first trans-
form molecule graphs into simple graphs without node

Open Access

Journal of Cheminformatics

*Correspondence: joerdis‑ann.schueler@informatik.uni‑halle.de
Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von‑Seckendorff‑Platz 1, 06120 Halle, Germany

http://orcid.org/0000-0002-2594-7909
https://orcid.org/0000-0003-3445-8645
https://orcid.org/0000-0001-6976-0006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00480-1&domain=pdf

Page 2 of 12Schüler et al. J Cheminform (2020) 12:73

labels, and then to solve the classical graph isomorphism
problem [7]. In contrast, many other approaches, like
ours, work directly on labelled graphs. McKay’s famous
nauty algorithm [8] is based on the idea of finding a
canonical form of a graph G, i.e. a labelled graph C(G)
that is isomorphic to G, often referred to as canonical
labelling, such that every graph that is isomorphic to G
has the same canonical form. Then testing whether two
graphs are isomorphic reduces to merely checking equal-
ity of their corresponding canonically labelled graphs,
which is easy. The hard part is to compute the canoni-
cal labellings. The nauty package is freely available;
although known to have exponential runtime on some
inputs, it performs very well in practice. The probably
first practically usable algorithm goes back to Ullmann
[9], who used recursive backtracking to solve the isomor-
phism problem (actually, his approach even solves the
NP-complete subgraph isomorphism problem). A sub-
stantially improved version appeared in [10]. The general
idea of iteratively extending a partial solution using cer-
tain feasibility criteria has been employed in several vari-
ants of VF/VF2/VF2 Plus/VF2++ algorithm [4, 11–13].
Experimental studies showed that the VF2++ algorithm
is very efficient in practice [4]. It seems to be the fastest
available code up to now.

In the context of cheminformatics, algorithms for test-
ing molecule equivalence are implemented in widely-
used software packages like RDKit [14], CDK [15] and
SMSD [16]. These tools work well with a multitude of
molecules. However, they do not always respect all chem-
ical properties, like deuterium and radicals (see Figs. 2,
3). Other algorithms implemented in CDK and SMSD do
respect these properties but suffer from large running
times.

Many scientists in cheminformatics use canonical
Simplified Molecular Input Line Entry Specification
(SMILES) [17, 18] or InChI (International Chemical

Identifier) [19, 20] to represent molecules as strings [21,
22]. To test whether two molecules are equivalent, it suf-
fices to check whether the associated strings are identi-
cal. To create such strings, a canonical labelling problem
has to be solved. SMILES or InChI strings can be cre-
ated by CDK or RDKit [15, 21]. Several limitations of the
SMILES format exist, most importantly, that there is no
standard way to generate a canonical representation [22].
We will later compare these approaches with ours.

Contribution To improve the current situation, we
developed and implemented an algorithm for testing
molecule equivalence in 2D. Our software is called MET
(Molecule Equivalence Tester) and is available at https​
://www.githu​b.com/jasch​ueler​/MET/. Our software is
designed and has been engineered to

1.	 consider chemical properties like deuterium and rad-
icals in the equivalence test,

2.	 be highly competitive with the isomorphism algo-
rithms from CDK and SMSD as well as with estab-
lished SMILES and InChI methods, and

3.	 be compatible with CDK such that it can be easily
integrated into existing CDK applications.

For testing molecular equivalence, our key contribution
is to define highly distinctive node labels encoding both
chemical properties and the local structural neighbour-
hood of an atom up to a certain depth. In order to achieve

Fig. 1  Molecule a is the image from the PubChem database for the
molecule with the CID 50934715. Molecule b is the image from the
PubChem database for the molecule with the CID 6397461. Both
molecules are equivalent in 2D

NH3 NH3

e

2e

A) B)

Fig. 2  Example: ionisation of ammonia by electron impact
reaction. These two molecules are recognized as equivalent by the
isomorphism test of CDK 

H H

H

H

H

H

H

H

H
H

H H

H

D

H

H

D

H

D
H

a b

Fig. 3  Structure a cyclohex-1-ene, structure b cyclohex-1-ene with
three replaced hydrogens by deuterium. These two molecules are
recognized as equivalent by SMSD 

https://www.github.com/jaschueler/MET/
https://www.github.com/jaschueler/MET/

Page 3 of 12Schüler et al. J Cheminform (2020) 12:73 	

excellent performance, we have carefully engineered the
appropriate choice of properties and the neighbourhood
depth.

In the following section, we describe our method and
the associated techniques. Afterwards, we experimentally
evaluate our algorithm and show that it largely outper-
forms existing implementations from CDK, SMSD, and
RDKit.

Methods
Let us start by formally defining the equivalence of
molecules.

Preliminaries: molecule equivalence
In our application, we model a molecule as a graph
G = (V ,E) with node set V and edge set E. Each node v
has an associated node label ℓ(v) ∈ R

s of s (integral or
real) numbers, each of which represents a certain atom
property. A very simple choice of node labels would be,
for example, to simply use the atomic number of the
corresponding atom (in which case s would be one).
Later, we will explain in detail how more sophisticated
chemical and structural properties can be encoded into
labels. We define that two molecules G1 = (V1,E1) and
G2 = (V2,E2) are equivalent if and only if there is an iso-
morphism f between G1 and G2 i.e. a bijective function
f : V1 → V2 such that

•	 {f (u), f (v)} ∈ E2 if and only if {u, v} ∈ E1 , and
•	 ℓ1(v) = ℓ2(f (v)) for each node v ∈ V1.

The first condition ensures that both graphs have the
same structure while the second guarantees that also the
node labels are compatible.

High‑level description
Our algorithmic approach works as follows. The algo-
rithm gets as input two molecules. For simplicity, we
assume that these are given by their CDK representations.
Alternatively, one may pass these molecules by some
standard file description, for example, in SDF format.
Our algorithm consists of two phases.

1.	 In the first phase, the algorithm converts both mole-
cules into labelled graphs. In doing so, each molecule
is transformed into a graph G = (V ,E) with node set
V and edge set E. For each atom, we introduce a node
v ∈ V and for each bond, we introduce an edge e ∈ E .
In doing so, we create two graphs G1 = (V1,E1) and
G2 = (V2,E2) . In the second step, we create node
labels ℓ1 : V1 → R

s and ℓ2 : V2 → R
s . It is crucial

that two nodes gain identical labels if and only if their
associated atoms have identical properties. Our key

contribution is to compute highly distinctive node
labels.

2.	 In the second phase, we first run quick pre-test to
check whether G1 and G2 are certainly not isomor-
phic. If this pre-test does not preclude the isomor-
phism, we use an isomorphism algorithm to decide
whether the labelled graphs are isomorphic.

In the following, we give a detailed description of both
phases.

Phase one
In the first phase, we transform the CDK molecule rep-
resentations (regardless of stereochemistry) to labelled
graphs. For this purpose, we replace each atom by a node
and each bond by an edge. To conserve the chemical
properties of each atom, each node gets a label, on which
we will focus next.

Atom properties
Our software is designed to let the user choose the chemical
properties that should be respected during the equivalence test.
In our applications, we consider the following atom properties:

•	 atomic number
•	 count of hydrogens and deuterium
•	 formal charge
•	 count of single electrons (radicals)
•	 count of single bonds, double bonds and triple bonds

Additional properties can easily be integrated into our
algorithm, as long as they can be represented as real or
integral numbers. For example, chemical properties like
radius or partial charges can be represented as real num-
bers and might be helpful, if available.

Table 1 shows the atom properties of the example mol-
ecule in Fig. 4.

Based on the selected properties, each node v gets an
associated label ℓ(v) = (p1, p2, . . . , ps) , where each pi
represents a certain atom property. It is crucial that two
nodes gain identical labels if and only if their associated
atoms have identical properties.

Neighbourhood descriptors
In addition to the chemical properties, each node v gets
an additional structural property d(v) called neighbour-
hood descriptor. This is a (real or integral) number that
encodes information on the local neighbourhood of this
node. We intend to give nodes identical neighbourhood
descriptors if

(a)	 they have the same set of chemical properties, and
(b)	 their local neighbourhood is identical.

Page 4 of 12Schüler et al. J Cheminform (2020) 12:73

To compute the neighbourhood descriptors, we itera-
tively define for each node v an integer di(v) that char-
acterizes its local neighbourhood up to a depth of i.
Initially, we define

Here, hash denotes a generic hash function that maps
tuples of (real or integral) numbers to integers. Conse-
quently, the initial descriptor d0(v) contains information
only on each node itself. For 1 ≤ i ≤ k (where the maxi-
mum depth k is a parameter on which we focus soon), we
define

d0(v) := hash(ℓ(v)).

di(v) :=
∑

(v,w)∈E

di−1(w).

Having calculated di(v) for 0 ≤ i ≤ k , we use

as the neighbourhood descriptor of the node v.
Table 2 demonstrates the calculation of the neighbour-

hood descriptors on the example shown in Fig. 5.
We briefly point to some instructive observations.

•	 As the nodes C and D are supposed to have identical
chemical properties, and they additionally have the
same neighbourhood structure, they gain identical
values of di for all i ≥ 0 . Consequently, they gain the
same neighbourhood descriptor d (not shown in the
example).

•	 The nodes G and H are supposed to have different
chemical properties (thus d0(G) = d0(H) ) but their
neighbourhood structure is exactly symmetric (thus
di(G) = di(H) for all i ≥ 1 ). Nevertheless, they will
get different neighbourhood descriptors.

•	 The nodes A and E have identical chemical proper-
ties (thus d0(A) = d0(E) ). Furthermore, their direct
neighbourhood is symmetric (thus d1(A) = d1(E) ).
However, their local neighbourhood differs when
considering a depth of two or more.

Maximum depth
It is an important question of how to choose the maxi-

mum neighbourhood depth k. On the one hand, a large
value of k will include more information on the local

d(v) := hash(d0(v), d1(v), . . . , dk(v))

H2C

C

Cl

C

NH2

O

1)

2) 3)

4)

6)

5)

Fig. 4  Molecule 2-chloroprop-1-enamide for the explanation of the
classical atom properties

Table 1  list of classical atom properties for the molecule in Fig. 4

Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6

Atomic number 6 6 6 17 8 7

Count of hydrogens 2 0 0 0 0 2

Count of deuterium 0 0 0 0 0 0

Formal charge 0 0 0 0 0 0

Count of single electrons 0 0 0 0 0 0

Count of single bonds 0 2 2 1 0 1

Count of double bonds 1 1 1 0 1 0

Count of triple bond 0 0 0 0 0 0

AB E F

C

D

G

H

Fig. 5  Example graph. The nodes A and E, C and D, as well as B and F
are supposed to have identical chemical properties and marked with
the same colours

Table 2  Example of the calculation of the neighbourhood
descriptor based on Fig. 5

The values in d0 are self-chosen and do not follow a special semantic

d0 d1 d2 d3

A 5 8 27 39

B 3 19 14 65

C 7 3 19 14

D 7 3 19 14

E 5 8 25 41

F 3 17 14 59

G 10 3 17 14

H 2 3 17 14

Page 5 of 12Schüler et al. J Cheminform (2020) 12:73 	

neighbourhood of each node, and will thus potentially
decrease the running time of the isomorphism algo-
rithm. On the other hand, calculating the neighbourhood
descriptors for each node of a molecule graph G = (V ,E)
requires a running time of O(k · |E|) . Thus, we might
want to choose k as a small constant. Later, in the experi-
mental results section, we will study the influence of k on
the running time in a benchmark experiment.

Phase two
In the second phase, we test whether two labelled graphs
G1 and G2 with node labels ℓ1 and ℓ2 are isomorphic.

Pre-test
Before starting the actual isomorphism test, we run a

fast pre-test to quickly detect whether the graphs are cer-
tainly not isomorphic. For this purpose, we compare the
number of atoms, bonds, hydrogens, deuterium, formal
charge and single electrons of both molecules, which all
must be equal. In addition, we construct the label sets
{ℓ(v) : v ∈ V1} and {ℓ(v) : v ∈ V2} and test whether both
sets are identical. If not, we can be sure that the two mol-
ecules are not equivalent.

Equivalence test After the pre-test, we try to find an
isomorphism between G1 and G2 . In this paper, we tested
two algorithms:

•	 First, we tested the VF2++ algorithm included in the
Lemon library [13, 23]. Recent work showed that this
algorithm is very fast on large instances [4]. However,

this algorithm is implemented in C++. This is a small
disadvantage for native Java application, like our imple-
mentation, as calling this algorithm requires system
calls and thus reduces the portability of the Java code.

•	 Second, we tested our own implementation of a
generic backtracking algorithm, which we will describe
in a moment. In contrast to VF2++, this algorithm is
implemented in native Java and is thus more portable.
As a drawback, our algorithm has been less engineered
and might therefore be less efficient than VF2++.

We now give a rough description of our isomorphism algo-
rithm. The algorithm gains as input two graphs G1 and G2
with associated node labels ℓ1 and ℓ2.

Candidate sets
For each node v ∈ V1 , the algorithm maintains a candi-

date set

of nodes in G2 that may be assigned to the node v. Vice
versa, the algorithm maintains for each node w ∈ V2 in
G2 the candidate set

of nodes in G1 that may be assigned to w.
Backtracking
The heart of the isomorphism algorithm is the following

backtracking algorithm (see Algorithm 1).

can1(v) := {w ∈ V2 : ℓ1(v) = ℓ2(w)}

can2(w) := {v ∈ V1 : ℓ1(v) = ℓ2(w)}

Page 6 of 12Schüler et al. J Cheminform (2020) 12:73

 The algorithm selects a node v ∈ V1 with a minimum-
sized candidate set and tries to assign v to one of its can-
didate nodes, say to w ∈ can1(v) . By assigning v to w, we
may reduce several candidate sets (see Algorithm 2):

•	 Obviously, v and w can be removed from every can-
didate set in which they were included so far.

•	 For each edge {u, v} ∈ E1 , there must be an edge
{z,w} ∈ E2 . Thus, for each edge {u, v} ∈ E1 , we can
remove from can1(u) each node that is not adjacent
to w.

•	 Symmetrically, we can remove from can2(z) each
node that is not adjacent to v.

•	 Furthermore, the candidate sets of v and w can be
cleared.

In doing so, we reduce the candidate sets of the nodes.
(Note that candidate sets will only be reduced, never
increased by the assignment of two nodes.)

Recursion
After assigning two nodes to each other, we recursively

try to find an assignment to the remaining nodes. This
may or may not be successful.

•	 If we successfully assigned each node from G1 to
some node from G2 , we successfully determine that

Page 7 of 12Schüler et al. J Cheminform (2020) 12:73 	

both graphs are isomorphic. We return with a posi-
tive answer and the isomorphism function f.

•	 If we did not succeed in recursively assigning the
remaining nodes, we undo our latest modifications
on the candidate lists, backtrack and try to assign to v
the next node from its candidate set. After all candi-
date nodes have been tested this way (and we did not
return with a positive answer), we know that G1 and
G2 cannot be isomorphic.

Note that the isomorphism f : V1 → V2 is easily
obtained by this procedure.

The efficiency of our algorithm highly depends on the
sizes of the candidate sets. Recall that, the larger the
maximum depth k, the smaller the candidate sets will be,
as the node labels become more distinctive.

Experiments, results, and discussion
To quantify the performance of our implementation in
comparison to existing methods, we designed a bench-
mark experiment.

Benchmark experiment
In each of the following experiments, we partitioned

a certain SDF file with molecules into its equivalence
classes, i.e. into maximum sized subsets of molecules in
which all molecules are pairwise equivalent. Each equiva-
lence class has a designated member called it‘s represent-
ative. Our general process is sketched as follows.

1.	 We read one molecule after the other from the input
file and construct the associated graph G = (V ,E)
with node labels ℓ.

2.	 To insert G into its equivalence class, we use the
property set {ℓ(v) : v ∈ V)} to compile a list of rep-
resentatives that have the same property set and thus
maybe equivalent to G. Let LG denote this list.

3.	 For each representative R ∈ LG , we test whether G is
equivalent to R. To this end, we use one of the follow-
ing algorithms/approaches:

•	MET: using the isomorphism algorithm described
in the Methods section,

•	VF2++: using the VF2++ algorithm from the
Lemon library [4],

•	CDKMCS, MCSPlus, Vlib, Default from the
SMSD package [16],

•	CDK: SMILES: using CDK to create canonical
SMILES [15],

•	RDKit: SMILES: using RDKit to create canon-
ical SMILES [21],

•	CDK: InChI: using CDK to create an InChI rep-
resentation [15].

	 If G and R are found to be equivalent, we add G
to R’s equivalence class and continue with the next
molecule. Note that each of the algorithms may
give a different result.

4.	 If G is equivalent to none representative in LG , we
create a new equivalence class represented by G.

0

2

4

6

8

10

12

Neighbourhood depth k

To
ta

l R
un

ni
ng

 T
im

e
(H

ou
rs

)

2 4 6 8 10 12 14 16 18 20

MET
VF2++

Fig. 6  Influence of the neighbourhood depth parameter k on the running time of the algorithms MET and VF2++ 

Page 8 of 12Schüler et al. J Cheminform (2020) 12:73

Experimental environment All experiments were con-
ducted on a Debian GNU/Linux 10 system with 38 CPU
cores and 250 GB main memory. We used Java on ver-
sion 12, CDK 2.3, RDKit 2018.09.1 (Ubuntu package) and
SMSD 2.2.0.

Parameter tuning and optimization
In the first four experiments, we tried to find an optimum
value of the neighbourhood depth parameter k. In addi-
tion, we evaluated which graph isomorphism algorithm
works best in the second phase of our algorithm.

Experiment 1 In a first experiment, we studied the
influence of the neighbourhood depth parameter k on the
running time of the MET and VF2++ algorithms. For this
purpose, we ran our benchmark experiment for several
values of k and measured the associated total running
time. As the input data set, we used the set of 95 945 527
molecules that are listed in the PubChem database
(October 2019), excluding molecules that solely consist of
hydrogen or deuterium. Figure 6 shows the result of this
experiment. We summarize some essential observations.

•	 We observe that a very small value of k induces a
large running time. This is not surprising, as, with
small k, the node descriptors carry little information
on the local neighbourhood of each atom. The total
running time reaches a minimum at k = 6.

•	 Increasing the value of k beyond 6 does not signifi-
cantly decrease the running time. Instead, the run-
ning time stays nearly constant for k ≥ 6 . We con-

clude that a value of k = 6 might be a reasonable
value for our type of application.

	 Our observations agree with the results from related
experiments on molecular fingerprints for small
organic molecules [24, 25], where it has been found
that a diameter of 4 or 6 gives the best performance.

•	 We further observe that the MET algorithm slightly
outperforms VF2++ for all values of k. This may
have several reasons. For example, since VF2++ is
implemented in C++, we need to call it using the
Java Native Interface, which induces additional over-
head. In any case, we conclude that MET is slightly
superior to VF2++.

In further experiments, we use k = 6 as the maximum
neighbourhood depth.

Experiment 2 Next, we further studied in more
detail whether MET or VF2++ work best in the second
phase of the equivalence test. In contrast to the previ-
ous experiment, we now consider data sets of different
molecule sizes. For this purpose, we partitioned the
PubChem data set into seven groups of molecules of
approximately similar size.

•	 56,410,359 molecules with up to 25 atoms,
•	 35,528,631 molecules with 26 to 45 atoms,
•	 3,773,370 molecules with 46 to 100 atoms,
•	 168,714 molecules with 101 to 150 atoms,
•	 40,251 molecules with 151 to 200 atoms,

Fig. 7  Running time of MET divided by running time of VF2++
(with k = 6 ). Medians are marked as bold horizontal lines

Fig. 8  Ratio of the isomorphism algorithms of MET and VF2++
(phase 2) on the total running time in percent for the groups, with
k = 6

Page 9 of 12Schüler et al. J Cheminform (2020) 12:73 	

•	 22,745 molecules with 201 to 400 atoms, and
•	 1457 molecules with more than 400 atoms.

We ran our benchmark experiment for each group
individually and measured the associated running
times for MET and VF2++. By calculating the quotient
of both running times, we quantify the speed-up of one
algorithm to the other. A quotient of one means that
both algorithms are equally fast, a quotient of less than
one means that MET is faster than VF2++. Figure 7
shows the result of this experiment.

•	 We observe that for each group, MET is superior to
VF2++ in the majority of cases (as the medians lie
below one). However, there are outliers in both direc-
tions.

•	 While MET is superior for the majority of small mol-
ecules, it becomes less efficient when the number of
atoms grows larger.

We conclude that our isomorphism algorithm is very
well suited for molecules with up to 400 atoms, while
VF2++ is comparably efficient but suffers from addi-
tional overhead.

Experiment 3 Based on Experiment 2 we next consid-
ered the ratio between the running time of the equiva-
lence test and the total running time. Therefore, we use
the data set from Experiment 2 and individually meas-
ure the running time of the second phase only. Dividing

this time through the total running time gives the ratio
of the isomorphism algorithm (plus pre-test) on the
total running time. In Fig. 8 we show the result of our
experiment.

•	 We observe that the ratio of the isomorphism
algorithm of MET is smaller than the algorithm of
VF2++ for all molecule groups.

•	 Especially, for the molecules with 50–200 atoms the
algorithm of MET is significantly faster.

This result underlines the result of Experiment 2 and
thus the suggestive usage of MET for molecules with up
to 400 atoms.

Experiment 4 In the previous experiment, we tested
a lot of molecule pairs which are not equivalent. Most
equivalence test failed during our pre-tests. In this
experiment, we studied the efficiency of MET and
VF2++ algorithms on a data set for which we a priori
know that all molecules are equivalent.

For each group of molecule sizes, we selected a subset
of equivalence classes as input for our benchmark experi-
ment. In doing so, we made sure that all pairs of tested
molecules are equivalent. We measured the running time
of our benchmark experiment on these input files. Fig-
ure 9 shows the result of this experiment.

•	 We observe that both algorithms work approximately
equally well for very small and very large molecules.

•	 For medium-sized molecules MET is superior to
VF2++.

Performance comparision
In our final set of experiments, we evaluated how the
MET algorithm compares to the established equivalence
tests from SMSD and to the methods based on canonical
SMILES and InChI from CDK and RDKit.

Experiment 5
As it will become apparent from our experiment, the

running time of some equivalence algorithms is very
large. Consequently, we did not run all algorithms on the
complete data set. In contrast, we just partitioned a small
subset (23,254 molecules) of the PubChem database
into its equivalence classes and measured the associated
running time. Table 3 shows the running times for this
process.

•	 First, we observe that two algorithms (CDKMCS,
MCSPlus) from the SMSD do not correctly identify
all pairs of equivalent molecules. For example, the
structures of methadone hydrochloride (PubChem
CID: 14184) and levomethadone hydrochloride

Fig. 9  Running time of MET divided by running time of VF2++
(with k = 6 ) on a data set consisting only of isomers. Medians are
marked as bold horizontal lines

Page 10 of 12Schüler et al. J Cheminform (2020) 12:73

(PubChem CID: 22266) in 2D representation are
evaluated as being different. Interestingly, these mol-
ecules do not contain radicals or isotopes.

•	 Considering the running time, we observe that our
approach outperforms all algorithms from SMSD
by several orders of magnitude. Consequently, we
exclude these algorithms from further experiments.

•	 We observe that in this small sample the equivalence
tests based on canonical SMILES and InChI give
correct results. We further observe that the running
time of RDKit is noticeable larger than that of CDK.

From this experiment, we conclude that only the SMILES
and InChI based algorithms from CDK are competitive
with MET and VF2++. Thus, we will further examine
those algorithms on the large data set.

Experiment 6 In our final experiment, we compare the
running time of the SMILES and InChI based CDK meth-
ods with that of MET and VF2++. For this purpose, we
ran these algorithms on the large data set from Experi-
ment 2. Table 4 and Figures 10 and 11 show the results.

•	 Considering CDK’s InChI method, we observe that
MET outperforms CDK by a factor of about 2. In
addition, we observe that the CDK method produce
deviating results for 3245 molecule pairs, including 3
pairs for which at least one InChI could not be con-
structed by the CDK method. The remaining deviat-
ing results are false positives from CDK. For example,
the molecules with CID 18671247 and 60160843 gain
the same InChI although they differ in the position
of some double bond. Another example is the mol-
ecules with CID 5151983 and 379953, which differ in
the position of some proton but gain the same InChI.

•	 Considering the SMILES method, we observe that
MET’s running time is just one third of CDK’s. There

Table 3  Running time and number of deviating results
for a small set of molecules (using a neighbourhood depth
of k = 6)

Algorithm Milliseconds Deviating
results

MET 7693 0/692

VF2++ 6488 0/692

SMSD: CDKMCS 18,677 9/692

SMSD: MCSPlus 2,740,136 9/692

SMSD: Vlib 4,940,974 0/692

SMSD: Default 24,902 968 0/692

RDKit: SMILES 54,872 0/692

CDK: SMILES 7399 0/692

CDK: InChI 6 563 0/692

Fig. 10  Running time of MET (with k = 6 ) divided by the running
time of InChI (CDK). Medians are marked as bold horizontal lines

Fig. 11  Running time of MET (with k = 6 ) divided by the running
time of SMILES (CDK). Medians are marked as bold horizontal lines

Table 4  Running time and number of deviating results
for the PubChem data set (using a neighbourhood depth
of k = 6)

Algorithm Milliseconds Deviating results

MET 18,206,705 0/18554268

VF2++ 29,093,114 0/18554268

CDK: SMILES 63,182,381 1190/18554268

CDK: InChI 38,050,677 3245/18554268

Page 11 of 12Schüler et al. J Cheminform (2020) 12:73 	

are 1190 out of 18554268 molecule pairs for which
the SMILES method gives a different result than
MET. These different results are in all cases false neg-
atives from CDK. For example, CDK generates for the
molecules with CID 414487 and 49791694 different
SMILES. In comparison, the PubChem database and
the canonical SMILES generation by RDKit show
the same SMILES for these molecules. Included in
the 1190 pairs are 93 for which CDK could not con-
struct the associated SMILES.

From our final experiment, we conclude that MET is a
significant improvement to existing tools as it does not
depend on the error-prone construction of canonical
SMILES or InChIs and is furthermore considerably faster
than CDK and RDKit.

Conclusion
In this article, we presented an algorithm for detecting
the equivalence of molecules. Our algorithm exploits
the chemical and structural properties of molecules to
transform a molecule to a labelled graph. Our method
is based on the construction of highly distinctive node
labels that are used to decrease the running time of a iso-
morphism algorithm. Experimentally, we showed that
it suffices to consider the local neighbourhood up to a
depth of six. In its second phase, our algorithm uses a
generic isomorphism algorithm for labelled graphs. Our
experiments showed that our generic backtracking algo-
rithm is competitive with the previously fastest imple-
mentation VF2++. In a set of experiments, we showed
that our algorithm is faster than all algorithms currently
implemented in SMSD, CDK, and RDKit. In addition, we
found that our method is more robust than the methods
included in CDK as it avoids the construction of SMILES
or InChIs. As our software is compatible with CDK, it can
easily be used to replace all current algorithms for equiv-
alence testing from CDK or SMSD.

In the future, we plan to integrate our algorithm to the
molecule fragmentation software ChemFrag [26]. Fur-
thermore, we want to analyse the applicability of our
algorithm for large molecules like proteins. In addition,
we are going to consider the related problem whether
some molecule is part of some larger molecule [27]. For
this purpose, we need to solve the subgraph isomorphism
problem, which is known to be NP-complete [1].

Availability and requirements

•	 Project Name: Molecule Equivalence Tester (MET)
•	 Project home page: https​://githu​b.com/jasch​ueler​/

MET/

•	 Operating system(s): GNU/Linux.
•	 Programming language: Java 12
•	 Any restrictions to use by non-academics: None

Acknowledgements
We thank Wolfgang Brandt for initial discussion about the atom properties.
Additionally, we thank Maximilian Goldacker for his technical support.

Authors’ contributions
JS and SR wrote and contributed source code of MET. All authors have con‑
tributed to the content of this paper. All authors read and approved the final
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.. No funding.

Competing interests
The authors declare that they have no competing interests.

Received: 20 August 2020 Accepted: 3 December 2020

References
	1.	 Garey MR, Johnson DS (1979) Computers and intractability: a guide to

the theorey of NP-completeness. W.H. Freeman & Co, New York
	2.	 Faulon J-L (1998) Isomorphism, automorphism partitioning, and canoni‑

cal labeling can be solved in polynomial-time for molecular graphs. J
Chem Inf Comput Sci 38(3):432–444. https​://doi.org/10.1021/ci970​2914

	3.	 Babai L (2016) Graph isomorphism in quasipolynomial time [extended
abstract]. In: Proceedings of the forty-eighth annual ACM symposium on
theory of computing. STOC ’16. Association for Computing Machinery,
New York, NY, USA, pp 684–697. https​://doi.org/10.1145/28975​18.28975​
42

	4.	 Jüttner A, Madarasi P (2018) Vf2++—an improved subgraph isomor‑
phism algorithm. Computational advances in combinatorial optimization.
Discret Appl Math 242:69–81. https​://doi.org/10.1016/j.dam.2018.02.018

	5.	 Faulon J-L, Bender A (2010) Handbook of chemoinformatics algorithms.
Taylor and Francis Group, London

	6.	 Luks EM (1982) Isomorphism of graphs of bounded valence can be
tested in polynomial time. J Comput Syst Sci 25:42–65

	7.	 Chowdary CS, Mitra P (2009) Novel method for improving the exact
matching of the molecular graphs. Int J Recent Trends Eng 1(1):254–259

	8.	 McKay BD (1981) Practical graph isomorphism. Congr Numer 30:45–87
	9.	 Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM

23(1):31–42. https​://doi.org/10.1145/32192​1.32192​5
	10.	 Ullmann JR (2011) Bit-vector algorithms for binary constraint satisfaction

and subgraph isomorphism. J Exp Algorithmics 15:1–61116164. https​://
doi.org/10.1145/16719​70.19217​02

	11.	 Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance evalua‑
tion of the vf graph matching algorithm. In: Proceedings of the 10th
international conference on image analysis and processing. ICIAP ’99.
IEEE Computer Society, USA, p 1172

	12.	 Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomor‑
phism algorithm for matching large graphs. IEEE Trans Pattern Anal Mach
Intell 26(10):1367–1372. https​://doi.org/10.1109/TPAMI​.2004.75

	13.	 Carletti V, Foggia P, Vento M (2015) VF2 Plus: an improved version of VF2
for biological graphs. In: Graph-based representations in pattern recogni‑
tion. Springer, Switzerland, pp 168–177. https​://doi.org/10.1007/978-3-
319-18224​-7_17

	14.	 Landrum G (2020) The RDKit Documentation. http://www.rdkit​.org/docs/
RDKit​_Book.html. Accessed 03 Nov 2020

	15.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N,
Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT, Guha
R, Steinbeck C (2017) The chemistry development kit (cdk) v2.0: atom
typing, depiction, molecular formulas, and substructure searching. J
Cheminform 9(1):33. https​://doi.org/10.1186/s1332​1-017-0220-4

https://github.com/jaschueler/MET/
https://github.com/jaschueler/MET/
https://doi.org/10.1021/ci9702914
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/j.dam.2018.02.018
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/1671970.1921702
https://doi.org/10.1145/1671970.1921702
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1007/978-3-319-18224-7_17
https://doi.org/10.1007/978-3-319-18224-7_17
http://www.rdkit.org/docs/RDKit_Book.html
http://www.rdkit.org/docs/RDKit_Book.html
https://doi.org/10.1186/s13321-017-0220-4

Page 12 of 12Schüler et al. J Cheminform (2020) 12:73

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	16.	 Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM (2009)
Small molecule subgraph detector (SMSD) toolkit. J Cheminform 1(1):12.
https​://doi.org/10.1186/1758-2946-1-12

	17.	 Weininger D (1988) Smiles, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28(1):31–36. https​://doi.org/10.1021/ci000​57a00​5

	18.	 Weininger D, Weininger A, Weininger JL (1989) Smiles. 2. Algorithm for
generation of unique smiles notation. J Chem Inf Comput Sci 29(2):97–
101. https​://doi.org/10.1021/ci000​62a00​8

	19.	 Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I (2013) Inchi—the
worldwide chemical structure identifier standard. J Cheminform 5(1):7.
https​://doi.org/10.1186/1758-2946-5-7

	20.	 Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) Inchi, the
iupac international chemical identifier. J Cheminform 7(1):23. https​://doi.
org/10.1186/s1332​1-015-0068-4

	21.	 Schneider N, Sayle RA, Landrum GA (2015) Get your atoms in order—an
open-source implementation of a novel and robust molecular canoni‑
calization algorithm. J Chem Inf Model 55(10):2111–2120. https​://doi.
org/10.1021/acs.jcim.5b005​43 PMID: 26441310

	22.	 O’Boyle NM (2012) Towards a universal smiles representation—a standard
method to generate canonical smiles based on the inchi. J Cheminform
4(1):22. https​://doi.org/10.1186/1758-2946-4-22

	23.	 Dezső B, Jüttner A, Kovács P (2011) Lemon—an open source c++ graph
template library. Electron Notes Theor Comput Sci 264(5):23–45. https​://
doi.org/10.1016/j.entcs​.2011.06.003

	24.	 O’Boyle NM, Sayle RA (2016) Comparing structural fingerprints using a
literature-based similarity benchmark. J Cheminform 8(1):36. https​://doi.
org/10.1186/s1332​1-016-0148-0

	25.	 Probst D, Reymond J-L (2018) A probabilistic molecular fingerprint for
big data settings. J Cheminform 10(1):66. https​://doi.org/10.1186/s1332​
1-018-0321-8

	26.	 Schüler J-A, Neumann S, Müller-Hannemann M, Brandt W (2018) Chem‑
frag: chemically meaningful annotation of fragment ion mass spectra. J
Mass Spectrom 53(11):1104–1115. https​://doi.org/10.1002/jms.4278

	27.	 Raymond JW, Willett P (2002) Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. J Comput Aided Mol
Des 16(7):521–533. https​://doi.org/10.1023/A:10212​71615​909

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/1758-2946-1-12
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1186/1758-2946-5-7
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1021/acs.jcim.5b00543
https://doi.org/10.1021/acs.jcim.5b00543
https://doi.org/10.1186/1758-2946-4-22
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1186/s13321-016-0148-0
https://doi.org/10.1186/s13321-016-0148-0
https://doi.org/10.1186/s13321-018-0321-8
https://doi.org/10.1186/s13321-018-0321-8
https://doi.org/10.1002/jms.4278
https://doi.org/10.1023/A:1021271615909

	MET: a Java package for fast molecule equivalence testing
	Abstract
	Background
	Methods
	Preliminaries: molecule equivalence
	High-level description
	Phase one
	Atom properties
	Neighbourhood descriptors

	Phase two

	Experiments, results, and discussion
	Parameter tuning and optimization
	Performance comparision

	Conclusion
	Availability and requirements
	Acknowledgements
	References

