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Abstract

Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant
economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We
have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT)
proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical
to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the
group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy
adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the
microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has
generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma
membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to
published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters
to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome
evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed
in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported
purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA
biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism
and protein synthesis.
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Introduction

Microsporidian parasites are highly reduced eukaryotes that

have an obligate intracellular lifestyle based upon the exploitation

of other eukaryotic cells [1]. The life cycle of microsporidians

alternates between a dispersive spore stage that is resistant to

environmental stress, and intracellular replicative stages that can

only take place inside the cytoplasm of an infected host cell.

Despite lineage-specific variations [1], the general infectious cycle

starts with spore germination and the injection of the parasite

through a specialised polar tube into the cytoplasm of a suitable

host cell. The active vegetative cell (meront) then undergoes binary

fission, and after several rounds of multiplication, differentiates

(sporogony) into spores that can exit the host by either cell lysis or

exocytosis to infect adjacent cells and tissues or a new host [2,3].

Microsporidians are a large group of parasites with over 1200

described species infecting most animal groups including econom-

ically important fish, insect pollinators and silkworms [1,2,4,5].

Microsporidians are also increasingly recognised as a significant

threat to human health, affecting not only patients with HIV/

AIDS but also the young and old in the developing world [6].

A hallmark feature shared by microsporidians and bacterial

obligate intracellular pathogens is a dramatic genomic reduction

coupled with loss of metabolic pathways during the transition from

a free-living to an obligate intracellular lifestyle [7]. Genome

analyses suggest that all microsporidians have lost the tricarboxylic

acid (TCA) cycle and oxidative phosphorylation pathways for ATP
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production although, with a single exception [5,8], they have

retained the pathway for glycolysis [2,7,9,10,11]. Published data

for Nosema grylli and Trachipleistophora hominis suggest that

glycolysis may be mainly active in the spore stage [10,12] and

hence actively replicating parasites living inside host cells may

require an alternative source of ATP. In the case of Encephali-
tozoon cuniculi this energy gap is potentially filled by the

expression of nucleotide transport (NTT) proteins on the parasite

cell surface, where they can be used to import ATP from the host

cytoplasm [7,13]. The same type of transport proteins are also

used by important, phylogenetically diverse bacterial intracellular

pathogens, including Rickettsia and Chlamydia, to import host-

generated ATP to support their own reduced metabolism

[14,15,16,17]. The broad taxonomic distribution of NTT proteins

suggests that intracellular pathogens are using lateral gene transfer

to exchange transporter genes [13,18], providing a general

strategy for exploiting host cells. Genes for NTT-like transport

proteins have been identified in all microsporidian genomes and

were recently identified in the genome of the fungal endoparasite

Rozella allomyces [11,19]. Phylogenomic analyses demonstrate

that Rozella and microsporidia share a common ancestor,

confirming microsporidia as fungi and suggesting [11,19] that

the acquisition of NTT transporters was a key step for the

foundation of a major clade of endoparasitic fungi.

In addition to the loss of mitochondrial ATP-generating

pathways, the microsporidians studied so far also lack the enzymes

needed for the de novo synthesis of the building blocks of DNA

and RNA [7]. Loss of the early steps of purine and pyrimidine

biosynthesis, which are costly in terms of ATP, has occurred

repeatedly among parasitic protozoa, which have devised a variety

of ways of securing and interconverting purines and pyrimidines of

host origin [20]. Intracellular bacteria also show loss of pathways

for de novo synthesis of purines and pyrimidines. These bacterial

pathogens use their NTT proteins to import a range of different

nucleotides in addition to ATP, including GTP, UTP and CTP. In

the case of Protochlamydia amoebophila, a bacterial symbiont of

the protozoan Acanthamoeba, these substrates appear to provide

all of the starting materials needed to make DNA and RNA

[14,15]. Competition studies on the four NTT transporters of E.
cuniculi expressed in Escherichia coli indicate that ATP transport

is reduced by an excess of some nucleotides, but the actual

transport of substrates other than ATP and ADP was not directly

investigated [13]. In addition to using its NTT transporters to

exploit its host, E. cuniculi also targets an NTT transporter to its

highly reduced mitochondrion (mitosome) to provide ATP for an

organelle that can no longer make its own [13]. Like the other

microsporidians for which genome sequences are available [11],

E. cuniculi and T. hominis have lost all genes for members of the

mitochondrial carrier family of proteins [7,10]: one member of this

family is used by canonical mitochondria to transport ATP and

ADP [21]. The mitosomes of E. cuniculi contain mitochondrial

heat shock protein Hsp70, which requires ATP for its functions in

protein import [22] and Fe/S cluster biosynthesis [23,24]. Other

microsporidians, including T. hominis [25], also contain ATP-

requiring mitochondrial Hsp70 proteins in their mitosomes, but it

is not known if the organelles of these species use NTT transport

proteins to import ATP.

In the present study we have investigated the evolution, cellular

locations and substrate specificities of the nucleotide transport

(NTT) proteins of T. hominis [10], a microsporidian that is

distantly related to E. cuniculi [26]. Our results demonstrate that

the use of surface-located NTT transport proteins is a general

strategy adopted by microsporidians to exploit host cells.

Acquisition of an ancestral transporter gene at the base of the

microsporidian radiation was followed by lineage-specific events of

gene duplication, which in the case of T. hominis has generated

four paralogous NTT transporters. All four T. hominis NTT

proteins are located predominantly to the plasma membrane of

replicating parasites. In contrast to E. cuniculi, we found no

evidence for a mitosomal location for any of the T. hominis NTT

transporters, consistent with lineage-specific differences in trans-

porter and mitosome evolution. All of the T. hominis proteins

transported purine nucleotides when expressed in E. coli, but did

not transport pyrimidine nucleotides. Analysis of the enzyme

repertoire predicted from the T. hominis genome suggests that

imported purine nucleotides could be transformed into all of the

critical purine-based building-blocks required for DNA and RNA

biosynthesis as well as providing essential energy for cellular

metabolism and protein synthesis by replicating intracellular

parasites.

Results/Discussion

Trachipleistophora hominis and other microsporidians
cannot make nucleotides de novo but retain a suite of
enzymes for their interconversions

Nucleotides are the building blocks of DNA and RNA, and also

play key roles as signalling molecules and carriers of energy and

electrons. They can be made by de novo synthesis pathways in

free-living Bacteria, Archaea and eukaryotes [27]. In contrast, the

loss of the ability to synthesize nucleotides de novo appears to be a

general feature of microsporidia [11], including T. hominis (Fig. 1,

Table S1), that is shared with obligate intracellular bacteria such as

Chlamydiae and Rickettsiae [15,28]. Comparing the manually-

curated enzyme complements of T. hominis, E. cuniculi and

Nosema ceranae with representative intracellular bacteria (Fig. 1,

Table S1) identified a similar core of enzymes for the transfor-

mation of purine and pyrimidine nucleotides between different

phosphorylation and oxidation states to meet different metabolic

requirements. There are minor differences between microsporid-

ians in the enzymes detected by genome analyses (Fig. 1, Table

S1), which may reflect differences in the range of substrates that

Author Summary

Microsporidians are highly reduced obligate intracellular
eukaryotic parasites that cause significant disease in
humans, animals and commercially relevant insects.
Despite their medical and economic interest the mecha-
nisms whereby microsporidians exploit the cells they infect
are mainly unknown. We have characterised a conserved
family of nucleotide transport proteins that we demon-
strate have key roles in parasite biology. Microsporidians
cannot synthesize the primary building blocks needed to
make DNA and RNA for themselves, so they must import
the starting materials from the infected host. We show that
the microsporidian Trachipleistophora hominis, originally
isolated from an HIV/AIDS patient, may achieve this by
using four nucleotide transport proteins located in the
plasma membrane of replicating intracellular parasites. In
functional assays we demonstrate that all four proteins can
transport radiolabelled adenine and guanine nucleotides.
Genome analysis suggests that the imported nucleotides
could be transformed by T. hominis into all of the critical
purine-based building-blocks needed for DNA and RNA
biosynthesis during parasite intracellular replication, as
well as providing essential energy for parasite cellular
metabolism and protein synthesis.
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Figure 1. Purine and pyrimidine metabolism in Encepthalitozoon cuniculi, Nosema ceranae and Trachipleistophora hominis. Enzymes
predicted from analysis of published genomes [7,10,52] to be present in all three microsporidians are highlighted in green and those for which the
genes were detected only in T. hominis in yellow. Other colours are as indicated in the key. Dashed lines with arrows indicate enzymes or pathways
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can be used by individual microsporidians. For example, T.
hominis is predicted to possess a dCMP deaminase (EC 3.5.4.12)

potentially capable of converting dCMP into dUMP, that appears

to be missing from the genomes of E. cuniculi and N. ceranae
(Fig. 1, Table S1). T. hominis also has a gene for uridine kinase

(EC 2.7.1.48) which can potentially convert uridine plus ATP into

UMP and ADP, that is missing from E. cuniculi and N. ceranae
(Fig. 1, Table S1). We did not detect any T. hominis, E. cuniculi
or N. ceranae enzymes or pathways that could potentially convert

between adenine and guanine nucleotides, or between purine and

pyrimidine (cytosine, uracil and thymidine) nucleotides. This

suggests that T. hominis and other microsporidians need to import

both types of purine nucleotides and at least one type of

pyrimidine nucleotide, or substrates that can be used to make

them, to complete DNA and RNA biosynthesis during intracel-

lular replication.

The genome of Trachipleistophora hominis contains
genes for four putative nucleotide transport (NTT)
proteins

The T. hominis genome contains genes for four nucleotide

transport (NTT) proteins [10]. All four proteins are predicted to

contain secondary structure elements typical of characterised NTT

proteins [29], including 11 to 12 predicted alpha-helical

transmembrane domains (TMDs) (Figure S1) and associated

intracellular and extracellular loop regions. Based upon published

data it is not possible to predict the range of substrates that can be

transported by any particular NTT directly from primary

sequence comparisons, although all four E. cuniculi proteins

and most of the NTT proteins characterised to date for bacteria

are able to transport ATP [13,15,17,28,30,31]. Four charged

residues (K155, E245, E385 and K527 [31]) are strongly

conserved among bacteria, in Rozella allomyces, in most published

microsporidian sequences including all four E. cuniculi NTT

sequences, and in T. hominis ThNTT2 (uniprot L7JXU1) and

ThNTT4 (uniprot L7JS26) (Figure S1). All four residues were

previously shown to be important for the transport mechanism of

the Arabidopsis plastid ADP/ATP transporter AATP1 [31] and

mutation of K527 also reduced Pi transport by the Protochlamydia
amoebophila ADP/ATP transporter NTT1 (residue K446 in the

P. amoebophila sequence [30]). The predicted amino acid

sequences of ThNTT1 (uniprot L7JRV4; I155, N245, Y385)

and ThNTT3 (uniprot L7JTX7; I155, V245 and Y385) have non-

conservative changes at three of the four alignment positions, but

there are conserved amino acids of the correct identity within 3 or

4 residues in both sequences (Figure S1). Based upon published

information for Arabidopsis [31] and Protochlamydia [15] the

conserved lysine (K527) is thought to be important for the

transport of nucleoside triphosphates, but not for transport of

nucleoside diphosphates.

To investigate the evolution of the T. hominis proteins relative

to those from other microsporidians, R. allomyces, and bacterial

outgroups, we carried out a detailed phylogenetic analysis (Fig. 2).

The common endoparasitic ancestor of R. allomyces and

microsporidia is most parsimoniously inferred to have had a

single NTT gene [19]. Based upon the absence of any deep

symmetrical split in the tree of microsporidian NTTs (Fig. 2), it

appears likely that the common ancestor of microsporidians also

possessed a single NTT gene. The variable number of NTT genes

detected in the contemporary microsporidian genomes investigat-

ed appears to be the product of repeated events of lineage-specific

gene duplication. Hence the common ancestor of T. hominis and

Vavraia culicis probably had four paralogous NTT genes; by

contrast, their close relative Spraguea lophii has six NTT genes

[32]. The common ancestor of the three Nematocida isolates had

only two genes for NTT transport proteins. The common ancestor

of Encephalitozoon and Nosema species probably had four NTT

genes, one of which was subsequently lost by Nosema spp.

According to classical theory [33] gene duplication can have a

number of potential advantages. For example, an increased gene

dosage effect could increase the amount of NTT protein

produced, or relaxed selection on individual gene copies might

allow functional divergence of NTT proteins in terms of their

substrate specificities, expression patterns or cellular location. It

is interesting to note that T. hominis ThNTT4 is more conserved

than the other T. hominis paralogues (Fig. 2, Figure S1), and

groups closely with related NTT sequences from V. culicis and

S. lophii; one possibility is that ThNTT4 carries out the ancestral

NTT function for the clade [34]. This protein was also the only

ThNTT homologue detected in a recent investigation of the

spore proteome of T. hominis [10]. Two of the other T. hominis
NTT genes (ThNTT1 and ThNTT3) and their respective V.
culicis orthologues are more divergent and have lost or shifted

the position of broadly-conserved residues (Figure S1) previously

implicated in transport function [31], suggesting relaxed

selection and possibly functional divergence within the T.
hominis/V. culicis clade. Bacterial NTT proteins have been

studied in greater detail than those of microsporidians and there

is evidence that gene duplication events have allowed functional

divergence in the transport mechanism and substrate specificities

of individual proteins [14,15]. The published functional data for

the four E. cuniculi NTT proteins demonstrates that they can all

transport ATP when expressed in E. coli and, although other

substrates have not been directly evaluated for transport,

competition experiments with different nucleotides yielded

broadly similar inhibition profiles for all four E. cuniculi NTT

proteins [13].

The most compelling evidence for functional specialisation

affecting E. cuniculi NTT proteins comes from their different

cellular locations. Three of the E. cuniculi NTT proteins are

located on the surface of the parasite but the fourth (E. cuniculi
EcNTT3) is targeted to its mitosomes. Orthologues of E. cuniculi
EcNTT3 were also found in E. romaleae, E. hellem and E.
intestinalis, but were not detected in Nosema species or other

microsporidians. Note that it is unclear whether the cellular

localizations and transport specificities of these genes can be

transferred to other microsporidian NTTs, because the gene

duplications giving rise to the four E. cuniculi NTTs do not date

back to the last common ancestor of microsporidia. In particular,

the observation that the other three E. cuniculi NTT paralogues

are surface-located, a feature shared with bacterial NTT

homologues [15], suggests that the targeting of E. cuniculi
EcNTT3 to the mitosome is a derived state that might be

restricted to the Encephalitozoon lineage. Computational analyses

detected no obvious differences between E. cuniculi EcNTT3 and

surface-located E. cuniculi NTT paralogues that might explain the

that appear to be entirely or partly missing in the genome sequences of all three microsporidians [7,10,52]. A list of enzymes and EC numbers for the
microsporidians and representative intracellular bacteria is given in Table S1. The metabolic schemes for purine and pyrimidine biosynthesis were
adapted from KEGG [27].
doi:10.1371/journal.ppat.1004547.g001
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observed differential targeting [13], and genetic manipulation of

microsporidians to identify the specific residues involved is still not

possible. Mitosomal targeting in general is not well understood in

microsporidia, and even for model mitochondria the precise

targeting signals are known for only a subset of organelle proteins

[35,36]. In order to investigate the locations of the four T. hominis
NTT proteins we therefore made specific antibodies and carried

out detailed immuno-localisation experiments.

Figure 2. The evolution of microsporidian nucleotide transport proteins is characterized by an initial horizontal acquisition of a
single gene followed by lineage-specific gene duplications. A phylogeny of NTT proteins for the microsporidian/Rozella clade of
endoparasitic fungi and representative bacterial intracellular pathogens including Chlamydia and Rickettsia. The tree suggests a single common origin
for NTT proteins in Rozella and microsporidians followed by the lineage- and clade-specific gene duplications that define microsporidian NTT protein
evolution. The different clades of microsporidians were defined previously [26]. A similar pattern of repeated gene duplication is evident in the tree
for bacterial proteins. Values at nodes are Bayesian posterior probabilities.
doi:10.1371/journal.ppat.1004547.g002
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All four T. hominis NTTs are located in the plasma
membrane at the host-parasite interface

The intracellular localisation of the four T. hominis ThNTTs

was analysed using quantitative immuno-electron microscopy.

Thawed cryo-sections of T. hominis-infected RK cells were

labelled with antisera raised against each of the four ThNTTs

and the gold-label quantified using methods that ensure precise

and unbiased quantification [37]. The specificity of each ThNTT

was determined quantitatively in vegetative stages (meronts) by

assessing the extent to which the specific peptides (for ThNTT1, 2

and 3) or polypeptide (for ThNTT4) that were used to generate

the antisera blocked the individual antibody signals in parallel

replicate experiments [38,39] (see Material and Methods and

Figure S2). The predominant localisation of all four ThNTTs was

in the plasma membrane of the parasite (Fig. 3, Figure S2).

Specific labelling was virtually absent over the mitosome but was

detectable within intracellular membranes (for ThNTT3 and 4),

which were mainly composed of tubulovesicular and cisternal

profiles. These compartments may comprise elements of the Golgi

complex and endoplasmic reticulum, but the absence of compart-

ment-specific markers for these studies make their exact assign-

ment problematic at present. Nevertheless, it appears possible that

the specific signal over these internal membranes represents

ThNTTs in transit through the secretory pathway.

The antibodies were also used on T. hominis-infected rabbit

kidney cells prepared for immunofluorescence analysis (IFA) to

gain an overview of the ThNTT distribution in replicating

parasites. The distribution of staining for antibodies raised for

ThNTT1, ThNTT3 and ThNTT4 demonstrate a localisation on

the surface of the growing parasites (Fig. 4), consistent with the

plasma membrane location revealed by the EM data. As illustrated

in Fig. 4k, the antibodies against ThNTT4 and ThHsp70 did not

give signals for structures inside the developing thick walled spores

contained in the sporophorous vesicles (SPV) that are a

characteristic feature of the T. hominis intracellular lifecycle

[40,41]. We suspect that this is due to a lack of permeability of the

developing spore wall to antibodies because both proteins are

detected in spore digests analysed using proteomic methods [10].

The lack of label in the outer envelope of the SPV is consistent

with our EM data where no signal was detected for ThNTT4 in

the electron-dense outer layer surrounding the parasites (Fig. 3)

from which the SPV envelope is thought to originate [41]. We

were unable to detect any specific staining in IFA of parasites using

the antibody against ThNTT2 despite employing different fixation

procedures and making a second polyclonal antibody against

segments of several predicted extracellular loops of ThNTT2 as

previously described [13] (Table S3 in Text S1). Our failure to

obtain IFA data for ThNTT2 despite successful EM experiments

for this protein may reflect differences in sample preparation

influencing epitope accessibility: the immuno-EM approach

includes opening up the compartments by sectioning whereas

IFA involves permeabilization of cell membranes and depends on

penetration of the antibody prior to labelling.

In summary, we could localise all T. hominis NTTs to the

plasma membrane of vegetative cell stages that are growing and

replicating inside the host. In contrast to published data for E.
cuniculi [13], there was no evidence for a mitosomal localisation of

any of the four T. hominis NTTs. It has been demonstrated that

the mitosomes of E. cuniculi and T. hominis contain proteins of

the essential Fe/S cluster biosynthesis pathway [23,24,25], which

in model organisms requires ATP for several steps [24]. It is

possible that the mitosomes of T. hominis use other transport

proteins to import ATP, but candidates for this role are difficult to

predict solely from genome analyses [10] and there is as yet no

proteomics data for T. hominis mitosomes. In classical mitochon-

dria, the transport of metabolites across the inner membrane is

highly selective in order to maintain the electrochemical proton

gradient used for ATP synthesis. Since the mitosomes of T.
hominis no longer make ATP it is also possible that selection for an

impermeable inner membrane has been sufficiently relaxed to

allow passive transport of ATP through the inner membrane

translocase (TIM) channel [10] of the mitosome protein import

pathway. Interestingly, a similar conundrum exists for ATP supply

to the mitosome of the extracellular parasite Giardia lamblia [42].

The genome of this parasite lacks genes for mitochondrial ATP

generation and mitochondrial carrier family proteins, and it also

lacks genes for NTT proteins [43]. Nevertheless, its mitosomes can

still make Fe/S clusters [44,45] suggesting that ATP is available to

support this pathway inside the organelle.

Trachipleistophora hominis NTTs transport adenine and
guanine nucleotides, but not pyrimidine nucleotides,
when expressed in E. coli

To identify the transported substrates of the four T. hominis
NTTs we expressed the proteins in Escherichia coli and carried out

transport experiments in whole cells [13] with nine different 32P-

labeled nucleotides. ThNTT1-4 transported ATP and GTP over

background levels measured for E. coli containing the vector only

(Fig. 5A). ThNTT1, 2 and 4 transported GTP with higher rates

than ATP, but the differences were not statistically significant; by

contrast, ThNTT3 transported ATP slightly faster than GTP

(Fig. 5A). The import of ATP and GTP by ThNTTs expressed in

the plasma membrane of intracellular T. hominis could provide

purine-based substrates for DNA and RNA biosynthesis as well as

energy for protein synthesis during parasite replication. 32P-

labeled CTP, TTP and UTP were not taken up as the

accumulation levels were similar to the E. coli vector-only control.

Uptake experiments using radiolabelled 32P-labeled nucleoside

diphosphates demonstrated a significant preference for transport

of GDP over ADP for all four ThNTTs expressed in E. coli.
Import of ADP and GDP would provide substrates for the ATP-

activated ribonucleoside diphosphate reductase (EC 1.17.4.1) that

provides an essential link between parasite RNA and DNA

biosynthesis (Fig. 1, Table S1). Based upon our analysis of its

genome (Fig. 1, Table S1), T. hominis should be able to synthesise

all of the purine-based components of DNA and RNA given the

import of both adenine and guanine nucleotides. Our analyses

suggest that E. cuniculi, N. ceranae (Fig. 1, Table S1) and

potentially other microsporidians will have a similar requirement

and capacity. Accumulation of 32P2labeled CDP or UDP in the

NTT expressing strains was similar to the E. coli control, showing

that these pyrimidine diphosphates were not transported (Fig. 5B).

It is clear that the NTTs of T. hominis transport purine

nucleotides, but not pyrimidine nucleotides. The apparent absence

of genes for enzymes to make pyrimidine nucleotides de novo from

the T. hominis, E. cuniculi and N. ceranae genomes suggests that

additional, currently unknown transport processes, are needed to

complete DNA and RNA biosynthesis during parasite intracellular

replication.

Conclusions
Microsporidians infect most animal groups, often with devas-

tating consequences for the host animal [1,2,5]. Given the major

loss of genes affecting most metabolic pathways revealed by

genome analyses [7,11], surface-located transport proteins are of

critical importance for completing the microsporidian life cycle

once inside an infected host cell. Consistent with this idea,
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comparative analyses suggest that expansion of specific transporter

families was contemporaneous with loss of metabolic capacity at the

origin of the microsporidian radiation [10,11]. We have investigated

the evolution, intracellular location and substrate specificities of

nucleotide transport (NTT) proteins, homologues of which are

conserved on all microsporidian genomes. Gaps in the predicted

microsporidian metabolome suggest that these transporters poten-

tially play essential roles supporting microsporidian DNA and RNA

metabolism (Fig. 1, Table S1), as well as providing energy for cellular

metabolism and protein synthesis for a cellular stage that may no

longer make its own [5]. Consistent with predictions from analyses of

the T. hominis enzyme repertoire that both types of purine

nucleotide must be imported, we detected transport of adenine

and guanine nucleotides by all four ThNTTs (Fig. 5). Further work

is now needed to characterise the detailed mechanisms of transport

used by the ThNTTs. It has already been demonstrated that the

mitosome-located E. cuniculi EcNTT3 is an exchanger of adenine

nucleotides exporting ADP in exchange for ATP to supply an

organelle unable to make its own ATP [13]. This mechanism (Class I

NTT proteins [15]) has already been demonstrated for some NTTs

of bacterial intracellular pathogens with a reduced energy metab-

olism - often called energy parasites - including Rickettsia prowazekii
and Chlamydia trachomatis [15]. The loss of the ability to make

mitochondrial ATP and the apparent down-regulation of glycolytic

enzymes in replicating cells of T. hominis [10] suggests that one or

more of the T. hominis NTTs might also use this transport

mechanism. However, the requirement for net nucleotide import to

support DNA and RNA biosynthesis that is predicted by our genome

analyses also suggests that at least one of the ThNTTs could mediate

a unidirectional proton-energised import of purine nucleotides. This

mechanism (Class II [15]) has also been described for NTT

transporters from intracellular bacteria that lack de novo nucleotide

biosynthesis, including Chlamydia trachomatis [14] and Protochla-
mydia amoebophila [15]. The similarities in the predicted enzyme

repertoires of E. cuniculi and N. ceranae suggest that the

requirement for host produced ATP and net nucleotide import of

both types of purine nucleotides may be a general feature of

microsporidians. Although NTT-like proteins in some bacteria [15]

have been shown to transport purine and pyrimidine nucleotides, we

did not detect any transport of the tested pyrimidine nucleotides by

the NTTs of T. hominis under the assay conditions we used (Fig. 5).

It is therefore possible that additional transporters are needed to

provide these substrates. One candidate for this function [46] is a

conserved family of microsporidian proteins [11] that share

significant sequence similarity to E. coli NupG [47]. This is a

nucleoside transporter of the major facilitator superfamily of

transport proteins that can transport both purine (adenosine) and

pyrimidine (uridine) nucleosides when expressed in E. coli or

Xenopus oocytes [47]. Genome analyses (Fig. 1, Table S1) suggest

that any imported uridine could be used by T. hominis to make the

pyrimidine nucleotides needed for nucleic acid biosynthesis.

The observed pattern of lineage- and even species-specific

duplications of NTTs over the microsporidian tree, coupled with

differences in their subcellular localization between T. hominis and

E. cuniculi, suggests that the role of NTTs in parasite biology has

continued to evolve throughout the microsporidian radiation.

Previous work on the NTT proteins of Encephalitozoon cuniculi
demonstrated that some NTT proteins were located on the surface

of parasites inside infected host cells [13]. Here we demonstrate that

all four ThNTTs are located in the plasma membrane of replicating

T. hominis cells, providing the first detailed evidence for NTT

subcellular location. These data suggest that the location of NTT

transporters at the host-parasite interface is a general strategy used

by microsporidians to exploit host cells and compensate for their

own highly reduced metabolism. In contrast to E. cuniculi we found

no evidence that any of the ThNTTs were located to the T. hominis
mitosome: this feature appears to be a derived feature of mitosome

biology that may be restricted to the Encephalitozoon lineage.

Materials and Methods

Phylogenetic analyses
All sequences used in this study are provided (Table S2 in Text

S1). Sequences were aligned using muscle (v3.8.31, [48]) under the

default conditions, and divergent sites were removed using trimAl

(v1.2rev59, [49]) with the ‘‘-automated1’’ function. Bayesian

phylogenetic trees were inferred with Phylobayes (v3.3e, [50])

under the C20 model (‘‘-catfix C20’’) to account for across-site

compositional heterogeneity in the data set. Convergence was

assessed by using the bpcomp command to monitor the maximum

and average discrepancy in bipartitition frequencies between two

independent MCMC chains. The analysis was stopped when the

maximum difference dropped below 0.1, as recommended by the

authors [50]. The sequences, alignment and treefile have been

deposited in Figshare (http://dx.doi.org/10.6084/m9.figshare.

1104386).

Organisms and growth conditions
Trachipleistophora hominis [40] was grown in RK-13 cells at

37uC in Dulbecco’s Modified Eagle Medium (DMEM), containing

Kanamycin 100 mg/ml, Penicillin 100 mg/ml, Streptomycin

100 mg/ml, and Fungizone 1 mg/ml. E. coli Rosetta 2 (DE3)

(Novagen), BL1-AI, C43, pLysS, were grown in LB media (10 g/l

tryptone, 5 g/l yeast extract, 5 g/l NaCl, pH 7.5) for routine

cloning and expression trials. For uptake studies, E. coli Rosetta 2

(DE3) cells were grown in TB media (1.2 g/l peptone, 24 g/l yeast

extract, 72 mM K2HPO4, 17 mM KH2PO4 and 4 ml/l glycerol).

E. coli Rosetta 2 (DE3) was routinely grown in media supplemented

with 34 mg/ml chloramphenicol, and all strains were grown in

media containing 100 mg/ml ampicillin after transformation with

the constructs. Cells were grown at 37uC unless indicated otherwise.

Antibody generation
To obtain antibodies targeting exposed epitopes of these

predominantly hydrophobic proteins, we identified two peptide

sequences located in predicted surface-exposed loop regions for

each ThNTT (Figure S1, Table S3 in Text S1). Peptide synthesis,

animal immunisation, antisera extraction and affinity purification

Figure 3. Localisation of individual ThNTT using quantitative immuno-electron microscopy. (A) Frequency distribution of specific gold
label (Ng(sp)) for all four ThNTTs (mean of 3 individual experimental values). The labelling density was assessed by estimating the membrane profile
length of compartments of interest using intersection counting [37,53] and counts of membrane-associated gold particles. The labelling density for
each ThNTT antibody was compared with the corresponding labelling density obtained in a peptide or polypeptide-inhibition control. The
distribution of specific gold label was then calculated by multiplying the fraction of specific labelling over each compartment with the initial gold
particle counts. Error bars represent standard errors of the mean. (B) Thawed cryo-sections of T. hominis-infected RK cells labelled with antisera
against the four ThNTTs. Micrographs are representative of the quantitative data presented above. Membrane-associated gold particles (black arrows)
demonstrate the localisation of all four ThNTTs at the plasma membrane (white arrowheads) of the parasite. The plasma membrane is visible as a
smooth membrane profile covered with an electron dense coating. Partial profiles of cells in meront stages are shown. N = nucleus; bars = 200 nm.
doi:10.1371/journal.ppat.1004547.g003
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Figure 4. Plasma membrane localisation of ThNTT1, ThNTT3 and ThNTT4 demonstrated by fluorescence microscopy. Rat antibody to
the mitosomal marker Hsp70 (a, e and i) labelled discrete structures (mitosomes) inside the parasites (green) whereas rabbit antisera to ThNTT1 (b),
ThNTT3 (f) and ThNTT4 (j) labelled the surface of the parasite (red). The nuclei of rabbit kidney host cells (large nuclei) and parasites (small nuclei)
were labelled with DAPI (blue). c, g and k; DIC images with the three merge channels. d, h and l, enlarged images of individual clusters of T. hominis
showing antibody labelling. White arrow shows aggregation of spores within the host cell. Yellow arrows show the meront or vegetative stage of the
parasite.
doi:10.1371/journal.ppat.1004547.g004
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of all antisera was performed by Agrisera (Sweden). Both peptides

for each ThNTT were used for immunisation of the same rabbit,

and the affinity-purified antisera were tested for their specificity

against E. coli strains expressing the individual ThNTT proteins.

The peptide sequences are given in Table S3 in Text S1. The

peptide antibodies for ThNTT3 gave some non-specific binding in

IFA experiments and antibodies for ThNTT4 gave a high level of

nonspecific background labelling in immuno-electron microscopy,

so we designed a second set of antibodies to regions of ThNTT3 or

ThNTT4 predicted to form exposed loop regions (Figure S1,

Table S3 in Text S1). These regions were synthesised (GenScript

Inc., USA) as a single gene encoding the polypeptide, cloned into

the pQE-40 expression vector (Qiagen) and expressed in E. coli
M15 [pREP4] cells as single dihydrofolate reductase (DHFR)

fusion proteins and processed to make rabbit antibodies (Agrisera,

Sweden) as described previously [13].

Immunofluorescence
Immunofluorescence was performed as described previously

[13,23], and microscopy images were captured using a Leica SP2

confocal microscope.

Electron microscopy
Monolayer RK cells (RK-13) were infected with T. hominis and

grown to near confluence. The cells were fixed in 0.5%

glutaraldehyde in 0.2 M PIPES buffer (pH 7.2) for 15 min at

room temperature, then scraped from the culture dish and pelleted

(15 min at 16.0006 g). The cells were subsequently washed three

times with buffer (5 min per wash) and cryoprotected in 2.3 M

sucrose in PBS overnight at 4uC. Small fragments of the cell pellet

were mounted onto specimen carriers and plunge-frozen in liquid

nitrogen. Eighty nm thick sections were cut at 2100uC (EM FC7

ultracryomicrotome; Leica, Vienna, Austria) and mounted on

carbon/pioloform-coated EM copper grids (Agar Scientific,

Stansted, UK) in drops containing equal volumes of pre-mixed

2.1 M sucrose and 2% w/v methylcellulose. Prior to labelling,

grids were washed in ice-cold distilled water (3 times, 5 min each)

followed by PBS at room temperature. The sections were then

incubated in 0.5% fish skin gelatin (Sigma Aldrich, Poole, UK) in

PBS, and labelled using rabbit antisera raised against the four T.
hominis NTTs, followed by 10 nm protein-A gold (BBI solutions,

Cardiff, UK) and contrasted using 2% w/v methylcellulose/3%

w/v uranyl acetate (mixed 9:1). To assess the specificity of

Figure 5. All four NTT proteins of Trachipleistophora hominis transport purine nucleotides but not pyrimidine nucleotides. Uptake of
[a-32P]-labelled (A) nucleoside triphosphates or (B) nucleoside diphosphates into IPTG-induced E. coli cells containing a pET16b vector encoding the
respective ThNTT genes or no insert (control). For all nine nucleotides the data are represented by the mean and standard error of two independent
experiments.
doi:10.1371/journal.ppat.1004547.g005
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labelling, sections were incubated in parallel with antisera which

had been pre-mixed with the peptides (for ThNTT1, 2 or 3) or

polypeptide (for ThNTT4) used to generate the antibodies, in

order to inhibit specific antibody binding (peptide-control). For

this purpose, equal volumes of antisera and the corresponding

peptides or polypeptide in PBS were mixed for 30 min at room

temperature and were then applied to sections in parallel with the

native antisera, which were incubated in PBS under the same

conditions. For quantification, labelled sections were sampled

systematic uniform random (SUR; [51]) in three individual

experiments per antibody by taking 16–20 micrographs per

sample with a JEOL 1200 EX transmission electron microscope

operated at 80 kv using either Ditabis imaging plates (DITABIS

Digital Biomedical Imaging Systems AG, Pforzheim, Germany) or

a GATAN Orius 200 digital camera (GATAN, Abingdon, Oxon,

UK). Mitosomes were sampled separately by comprehensive

scanning of all parasites within a randomly selected grid square (22

to 40 micrographs per sample). Tiff files of micrographs were

further analysed using Adobe Photoshop CS6. Square lattice grids

were randomly placed on each micrograph and used to estimate

the length of membrane profiles of compartments of interest by

intersection counting (grid spacing either 262, 618 or 914 nm for

the plasma membrane and nuclear envelope; 914 nm or 1.54 mm

for endo-membranes, including endoplasmic reticulum and Golgi

as well as every other non-categorized internal membrane apart

from nuclear envelope and mitosome membranes). Gold particles

were categorized as being membrane-associated if the particle was

less than 1 particle width away from a membrane profile. The

specificity of immunogold labelling was assessed as described

previously [38,39]. Briefly, the specific labelling density D(sp) (gold

per micron) was estimated by subtracting the labelling density

obtained with the peptide-control D(-) from the initial (raw) density

D(0). Next, the fraction of the specific labelling F(sp) is given by

D(sp)/D(0) and F(sp) is multiplied with the initial labelling counts

over each compartment in order to calculate the specific labelling

distribution. The vegetative meront stages of T. hominis could be

identified as single or multinucleated cells proliferating in RK cells.

Spore stages were distinguished by the presence of a discernible

cell wall and/or the formation of the polar tube. The plasma

membrane was visible as a smooth membrane profile covered with

an electron dense coating in early meront stages and as a more

convoluted membrane profile in later meront stages. Endo-

membranes were defined as membrane structures inside the

cytoplasm including the endoplasmic reticulum, the Golgi and any

other membrane compartment excluding the nuclear envelope

and mitosomal membranes. Mitosomes were identified as double

membrane bound organelles with minor and major axes

measuring between 50 and 300 nm.

Nucleotide uptake assays in E. coli expressing ThNTT
transporters

All four full-length T. hominis NTT genes were cloned into the

expression vector pET16b (Novagen) and the insert was verified by

sequencing. NTT2 was inserted between the NdeI and the BamHI

sites, and NTT1, NTT3 and NTT4 were inserted between the XhoI

and the Bpu1102I sites; the primer sequences are given in Table S4

in Text S1. For uptake experiments, E. coli Rosetta 2 (DE3) pLysS

cells (Novagen) were transformed with recombinant vectors encod-

ing the ThNTT genes, with the empty pET16b vector used as a

control. Cells were grown at 37uC to an OD600 of 0.5 in Terrific

Broth and transporter expression was induced by the addition of

1 mM isopropyl b-d-1-thiogalactopyranoside (IPTG) following

incubation for 16 hours at 18uC. Cells were harvested by

centrifugation (6,000 g, 5 min.), washed twice with PBS (8 g/l

NaCl, 0.2 g/l KCl, 1.44 g/l Na2HPO4, 0.24 g/l KH2PO4, pH 7.4),

and resuspended in PBS to a final OD600 of 5.0. The cells were kept

at 4uC and then pre-incubated for 15 min at 25uC before being used

in the uptake assays. Uptake assays with 32P-radiolabeled purine and

pyrimidine di- and tri-nucleotides (Hartmann) were performed as

described previously for 32P-ATP uptake [13].

Supporting Information

Figure S1 Sequence conservation among representative
nucleotide transport proteins. Sequence alignment of

representative NTT protein sequences (Table S2 in Text S1).

The alignment shows conserved features of the NTT proteins for

E. cuniculi and T. hominis compared to the transport proteins of

selected bacteria. The strength of the green shading is in

proportion to the conservation of residues at individual sites, dark

green columns being most conserved [54]. Secondary structure

predictions using TMHMM [55] for putative transmembrane

domains are shown for T. hominis NTT1 compared with

Chlamydia trachomatis NTT1 and Rickettsia rickettsia NTT3.

The conservation of a 12 transmembrane helix structure is a

general feature of these proteins [56].

(PDF)

Figure S2 Quantitative immuno-electron microscopy
reveals subcellular thntt localisation. Raw labelling density

generated by antisera for the four T. hominis NTTs (D(0)) and the

labelling density obtained after blocking the antisera with the

peptides used to raise the antibodies (D(-)) were used to calculate

the specific density of gold signal (D(sp)). D(sp) = D(0) - D(-) [38].

The bar chart depicts the mean of 3 individual experiments.

Negative values demonstrate the induction of signal over

compartments after using the peptide-inhibited antibodies. Error

bars represent standard errors of the mean.

(PDF)

Table S1 Conservation of enzymes for purine and
pyrimidine metabolism in yeast, Encephalitozoon cu-
niculi, Nosema ceranae and Trachipleistophora hominis,
and E. coli K12 W3110 and representative intracellular
bacteria (Protochlamydia amoebophila UWE25, Chla-
mydia trachomatis D/UW-3/CX, Rickettsia rickettsii
Sheila Smith and Lawsonia intracellularis).

(XLSX)

Text S1 Additional supplementary tables S2 to S4.
Table S2. Source and accession numbers for sequences used in

the tree diagram (Fig. 2) in main text. Table S3. Sequences of the

peptides and recombinant proteins used to generate antibodies.

Table S4. Sequences of primers used in the study.

(XLSX)
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