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Abstract Neonates, infants, and children differ from adults

in many aspects, not just in age, weight, and body composi-

tion. Growth, maturation and environmental factors affect

drug kinetics, response and dosing in pediatric patients.

Almost 80 % of drugs have not been studied in children, and

dosing of these drugs is derived from adult doses by adjusting

for body weight/size. As developmental and maturational

changes are complex processes, such simplified methods may

result in subtherapeutic effects or adverse events. Kidney

function is impaired during the first 2 years of life as a result of

normal growth and development. Reduced kidney function

during childhoodhas an impact not only on renal clearance but

also on absorption, distribution, metabolism and nonrenal

clearance of drugs. ‘Omics’-based technologies, such as

proteomics and metabolomics, can be leveraged to uncover

novel markers for kidney function during normal develop-

ment, acute kidney injury, and chronic diseases. Pharmaco-

metric modeling and simulation can be applied to simplify the

design of pediatric investigations, characterize the effects of

kidney function on drug exposure and response, and fine-tune

dosing in pediatric patients, especially in those with impaired

kidney function. One case study of amikacin dosing in neo-

nateswith reducedkidney function is presented.Collaborative

efforts between clinicians and scientists in academia, industry,

and regulatory agencies are required to evaluate new renal

biomarkers, collect and share prospective pharmacokinetic,

genetic and clinical data, build integrated pharmacometric

models for key drugs, optimize and standardize dosing

strategies, develop bedside decision tools, and enhance labels

of drugs utilized in neonates, infants, and children.

Key Points

Changes in kidney function during childhood modify

not only renal clearance but also absorption,

distribution, metabolism and nonrenal clearance of

drugs, affecting pharmacokinetics, response, and

dosing of drugs.

New renal biomarkers are needed. ‘Omics’-based

technologies, such as proteomics and metabolomics,

can be leveraged to uncover novel markers for

kidney function during normal development, acute

kidney injury, and chronic diseases.

Pharmacometric modeling and simulation can be

applied to simplify design of pediatric investigations,

characterize effects of kidney function on drug

exposure and response, and fine-tune dosing in

pediatric patients, especially in those with impaired

kidney function.

Collaborative efforts are required to evaluate new renal

biomarkers, optimize and standardize dosing strategies,

develop bedside decision tools, and enhance labels of

drugs utilized in neonates, infants, and children.
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1 Introduction

Administering drugs in neonates, infants, and children is

challenging. Up to 80 % of drugs prescribed in pediatric

patients have not been formally tested in this population,

and are therefore not labeled for use in neonates, infants,

and children (‘off-label use’) [1, 2]. Clinical research

involving children is more difficult than in adults for sev-

eral reasons [3–6]: (1) a small number of pediatric patients

are eligible for clinical trials; (2) the ethical hurdles of

conducting studies with placebo/control arms in sick chil-

dren; (3) cumbersome procedures for obtaining informed

consent and, if appropriate, informed assent; (4) lack of

suitable infrastructure to conduct pediatric clinical studies;

(5) limited market size, and thus economically less

attractive for pharmaceutical companies; and (6) technical

challenges of collecting laboratory, imaging, or clinical

data in pediatric patients.

A majority of drug dosing regimens for use in neonates,

infants, and children are derived from adult data by

adjusting for body weight/size. Such a simple extrapolation

from adults to pediatric individuals may not be appropriate.

Why? Children are not ‘small adults’. They differ from

adults in many aspects, not just in age and body weight: (1)

body composition changes in neonates, infants, and chil-

dren [7–9]; (2) organ maturation and development can

affect pharmacokinetics and response of drugs, especially

in children younger than 2 years of age [10, 11]; and (3)

therapeutic window (TW), also called therapeutic index

(i.e. exposure range with optimal efficacy/safety balance)

may change over time in children. As a result of organ

maturation and development, kidney function changes

during the first 2 years of life, which in turn will affect both

drug exposure and response in neonates and infants [12–

14].

Various factors can affect kidney function in neonates,

infants, and children: (1) development and maturation of

kidneys as described earlier [10]; (2) underlying kidney

diseases and comorbidities [15]; (3) medications and other

therapeutic interventions, such as hypothermia in neonates

[16–21]; and (4) environmental and genetic factors [22]

(Fig. 1).

The focus of this article is to (1) review physiological

differences between neonates, infants, children, and adults;

(2) review markers for assessing and monitoring kidney

function; (3) understand factors that affect kidney function

and its impact on drug exposure and response in pediatric

patients; (4) introduce quantitative approaches, such as

pharmacometric modeling and simulation, to simplify

designs of studies in pediatric patients, characterize effects

of the kidney on drug exposure and response, and fine-tune

dose strategies in pediatric patients, especially in those

with impaired kidney function; and (5) outline opportuni-

ties to facilitate development and optimize utilization of

therapeutics in neonates, infants, and children. The

majority of our examples and related discussion will focus

on neonates and young infants, who are particularly subject

to pharmacokinetic changes due to rapid growth, devel-

opment, and maturation of organs, including the kidneys.

Most studies using quantitative approaches such as phar-

macometric modeling and simulation are conducted in this

age range.

2 Method

Relevant articles in the PubMed and EMBASE databases

were identified using the following keywords: ‘neonates’,

‘infant’, ‘children’, ‘pediatric’, ‘drug development’,

‘pharmacokinetics’, ‘kidney function’, ‘modeling’, ‘simu-

lation’, ‘drug dosing’, and ‘pharmacometrics’. Our search

was limited to English-language studies published in peer-

reviewed journals. Additional publications were identified

from review articles.

3 Physiological Differences Between Adults
and Children

Neonates, infants, and children differ from adults in many

aspects, not just in age, body weight and composition:

capacity of drug-metabolizing enzymes and kidney func-

tion change due to organ maturation and development,

resulting in altered drug exposure and response, especially

in children younger than 2 years of age. Stages of growth

are illustrated in Fig. 2 [23].

3.1 How Does Body Size and Composition Change

in Neonates, Infants, and Children?

Neonates, infants, and children represent a heterogeneous

population with nonlinear growth in size and bodyweight

from less than 500 g to more than 100 kg. Most changes in

body composition take place during the first 2–3 years of

life. Body weight doubles within 5 months, and triples

within 1 year, while body length increases by 50 % during

the first year, and doubles within 4 years. Proportions of

body weight contributed by fat, protein, intracellular and

extracellular water significantly change during childhood.

Total body water (TBW) (i.e. the sum of intracellular and

extracellular water) constitutes 80 % of body weight in

preterm neonates and 75 % in term neonates. It decreases

to adult values at 4 months and remains relatively constant

from this age onwards [24] (Fig. 3).
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3.2 How Does Development and Maturation

of Organs Affect Drugs in Neonates, Infants,

and Children?

Changes due to development and maturation of organs can

affect various aspects of drug pharmacokinetics, especially

in neonates and infants. Potential key changes in absorp-

tion, distribution, metabolism, and elimination of drugs

during the first years of life are presented in Table 1 [10,

25–27].

Absorption is decreased in neonates and infants, and

increases progressively during childhood, mainly due to

altered gastric pH, gastric emptying, and intestinal transit

time [10, 28]. Colonization of the gastrointestinal tract by

bacteria varies with age, route of delivery (vaginal vs.

cesarean section), type of feeding, and concurrent drug

therapy. This process influences metabolism of bile salts

and drugs by intestinal cytochrome P450 (CYP) as well as

intestinal motility and absorption [29]. An adult pattern of

microbial products is established around 5–12 months of

age [30, 31].

Distribution is modified essentially due to changes in

body composition and protein-binding capacity. The

amount of TBW is higher in neonates and infants [7].

Kidney 
func�on 

Gene�c/ 
Environmental  

factors 

Matura�on/ 
Development 

Medica�on/ 
Treatments 

edica�o
r m n

Disease/ 
Comorbidi�es 

Fig. 1 Factors affecting kidney

function in neonates, infants,

and children

Preterm neonates Infants 
(> 28 days to  
23 months) 

Adolescents 
(12 to 18 years) 

Children 
(2 to 11 years) 

Term neonates 
(0 to 28 days) 

Fig. 2 Stages of growth.

Modified from the National

Heart, Lung, and Blood Institute

[23]
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Although the percentage of TBW does not change con-

siderably after 1 year of age, there is continuous decrease

in extracellular water from infancy to young adulthood. It

should be noted that drug-binding capacity to plasma

proteins is decreased in neonates and infants, resulting in

an increased volume of distribution of water-soluble drugs

[32]. Other factors such as altered regional blood flow and

immaturity of the blood-brain barrier can also affect dis-

tribution of drugs in neonates, infants, and children.

Metabolism of many drugs is dependent on hepatic

blood flow and activity of drug-metabolizing enzymes and

transporters. Hepatic blood flow is reduced in neonates, and

increases with increasing cardiac output over time. Due to

ontogeny, the capacity of drug-metabolizing enzymes and

transporters changes in neonates and infants. Activity of

phase I enzymes is reduced in neonates [11], increases

progressively during the first 6 months of life, may exceed

adult rates for a few years, slows during adolescence, and

80 
70 

61 65 60 

0%

20%

40%

60%

80%

100%

premature (2kg) Full-Term (3.5kg) 1 year (10kg) 10 year (30kg) Adult  (70kg)

mineral

fat

protein

water

Fig. 3 Body composition and

growth. Adapted from Bechard

et al. [24]

Table 1 Effects on drug pharmacokinetics related to organ maturation and development in children

Neonate/infant Effect on drug pharmacokinetics

Absorption : Gastric pH Variable effect on rate and extent of absorption

: Gastric emptying

: GI transit time

; Gastric enzyme activity

; Bile salt ; Absorption of some drugs

Changes in intestinal flora : Absorption of some drugs

Skin permeability : Absorption of some drugs

Distribution : TBW

: ECW

; Body fat

; Muscle mass

: Apparent Vd for water-soluble drugs

; Apparent Vd for drugs that bind to muscle and/or fat

; Albumin levels

; a1-acid glycoprotein

; Fraction bound for drugs highly bound to albumin

; Fraction bound for drugs highly bound to a1-acid glycoprotein, resulting in an increased

apparent Vd and/or increased toxicity

Metabolism ; Oxidative enzyme activity (CYP)a

; Glucuronidation (UGT)a
; Drug metabolism, plasma clearance with : in apparent half-life in neonates and young

infants

: Plasma drug clearance and ; in half-life of specific drugs

Elimination ; Kidney function (filtration,

reabsorption, secretion)

; Clearance and accumulation of renally excreted drugs

GI gastrointestinal, TBW total body water, ECW extracellular water, Vd volume of distribution, UGT uridine diphosphate glucuronosyltrans-

ferase, CYP cytochrome P450, : indicates increase, ; indicates decrease
a Apparent increase in activity for selected drug-metabolizing enzymes in older children/adolescents
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approaches adult rates by late puberty [33]. Similar age-

dependent changes are observed for the phase II enzymes,

uridine diphosphate glucuronosyltransferase (UGT), sul-

fotransferase, glutathione-S-transferase (GST), and N-

acetyltransferase (NAT) [10]. It is important to realize that

different isoenzymes within a family of enzymes can

mature at different rates during the first years of life.

Elimination of a majority of drugs from the body occurs

primarily via the kidney. Nephrogenesis starts at weeks 5–6

of gestation and is completed around weeks 34–35 of

gestation. This process of nephrogenesis is followed by

postnatal changes in intrarenal blood flow, but kidney

function is still impaired compared with that of adults. This

is due to a combination of factors: (1) immature glomerular

filtration and tubular function; (2) reduced kidney perfu-

sion pressure; and (3) inadequate osmotic load to produce

full counter-current effects. Glomerular filtration rate

(GFR) increases rapidly in neonates because of a postnatal

drop in kidney vascular resistance and an increase in renal

blood flow. GFR continues to increase gradually,

approaching adult levels by 12 months of age (Fig. 4), then

exceeding adult rates during preschool years to finally

reach adult values at prepubertal age [10, 34–39]. A tran-

sient increase has been explained by some authors to be

based on a larger increase of kidney weight compared with

body weight in preschool-age children. This might be

explained by an augmented increase of glomerular and

tubular cell size and an increased number of capillaries [40,

41].

Other factors influencing developmental changes in

kidney excretion are prematurity, kidney/urologic fetal

malformations, and concomitant medications. Preterm

infants are particularly susceptible because of ongoing

nephrogenesis [42]. A twofold increase of vancomycin

clearance, a drug almost exclusively excreted by the kid-

ney, from week 24 of postmenstrual age (PMA) to week 34

is described [43]. Neonates born small for gestational age

(SGA) were found to have a 16 % reduction in drug

clearance compared with preterm neonates who are

appropriate for gestational age (AGA) [44]. Drugs such as

betamethasone or indomethacin have been shown to alter

the normal pattern of postnatal kidney maturation in pre-

term neonates [45].

3.3 What Do We Know About the Therapeutic

Window of Drugs in Pediatric Patients?

Developmental changes can modify pharmacokinetic pro-

files of drugs (e.g. increase high peak-to-trough ratios or

variability in exposure), which may impact the efficacy/

safety balance [46]. Developmental changes may also

directly impact drug response without modifying pharma-

cokinetic profiles in children [11, 47–50]. Changing

expression of receptors during the first years of life can

affect efficacy/safety response of drugs in children [51]. A

study of sotalol in the treatment of supraventricular

tachycardia showed that neonates exhibited a higher sen-

sitivity towards QTc interval prolongation compared with

older children (Fig. 5) [52]. Augmented response to war-

farin and cyclosporine in children [48, 49], increased sen-

sitivity to d-tubocurarine, an antagonist of nicotinic

neuromuscular acetylcholine receptors, in neonates and

infants compared with children, adolescents, and adults

[53], and different sensitivity to bronchodilators because of

a lack of smooth muscles in the airways in neonates [54]

are other examples that illustrate that developmental

changes can impact the TW of drugs in neonates, infants,

and children.

3.4 What Do We Know About Pharmacogenetics

in Pediatric Patients?

As in the adult population, polymorphism in drug-metab-

olizing enzymes, drug-transport systems, and drug targets

can be associated with clinically relevant differences in

drug disposition and/or efficacy/safety profile. Polymor-

phisms, also known as single nucleotide polymorphisms

(SNPs), are defined as genetic variations occurring in at

least 1 % of the population. An increasing number of

studies are being published that describe differences in

drug response as a result of individual genetic background,

but most of these reports include only adult individuals [55,

56]. A few studies have shown the impact of pharma-

cogenomics in pediatric patients and highlighted differ-

ences between children and adults [55, 57].

In children with kidney or heart transplants, expression

of CYP3A5 affects clearance, dose requirement, and

immunosuppressive effects of tacrolimus. Children

expressing CYP3A5 (those carrying the A nucleotide,

Fig. 4 Typical maturation of GFR as a function of PNA, expressed as

a percentage of adult GFR. Adapted from Goyal [41]. GFR

glomerular filtration rate, PNA postnatal age

Kidney Function and Drug Dosing in Pediatric Patients 1187



defined as the *1 allele) have a higher dose requirement

than non-expressers (those homozygous for the G nucleo-

tide, defined as the *3 allele) [58, 59]. In children with

asthma and the CYP3A4*22 allele, fluticasone treatment is

associated with better asthma control than in those with the

wild-type allele [60]. Pharmacogenetic effects on drug

exposure and response can also impact efficacy/safety

profiles of drugs in pediatric patients. Cisplatin ototoxicity

has been associated with variants in the GST gene family

[61, 62]. It is estimated that 10 % of the population have

heterozygous mutations in the thiopurine S-methyltrans-

ferase (TPMT) gene, leading to decreased levels of the

enzyme, while as many as 1 in 300 have homozygous

mutations with very low levels of function of the enzyme

[63]. SNPs in the TPMT gene are associated with an

increased risk of developing severe and life-threatening

TPMT-mediated myelotoxicity or hepatotoxicity in chil-

dren treated with conventional dose of thiopurines [63, 64].

SNPs in the TPMT gene are also associated with a risk of

developing severe, potentially life-threatening bone mar-

row toxicity when treated with conventional doses of

azathioprine or mercaptopurine [65]. Studies have found a

strong association between HLA-B*1502 and carba-

mazepine-induced severe cutaneous adverse reactions [66–

68]. In such cases, drug labels should include treatment

strategies based on pharmacogenetic factors; see example

labels for 6-mercaptopurine [69], azathioprine (TPMT

variants) [70], and carbamazepine (HLA-B*1502 allele)

[71, 72]. Atomoxetine and pimozide are drugs with specific

genotype-based dose recommendations for children [56,

73]. Other examples of dose recommendations can be

found on the PharmGKB website (http://www.pharmgkb.

org).

Pediatric patients present unique pharmacogenetic

challenges as neonates, infants, and children have the

additional complexity of ontological phenotypes that

impact their responses to drugs. Thus, the role and

involvement of pharmacogenetics may differ between adult

and pediatric patients, and dosing strategies developed in

adults may be inaccurate in neonates, infants, and/or chil-

dren. An example is the role of CYP2C9 and VKORC1

genetic variations in warfarin treatment [74]. In adult

patients, such genetic variations are key contributors to

intersubject variability in warfarin exposure, whereas in

pediatric patients, age and body size have a more pro-

nounced impact on intersubject variability in warfarin

exposure than genetic variations [57, 74, 75].

4 Kidney Function and its Impact on Drugs
in Pediatric Patients

This section reviews (1) factors that can alter kidney

function; (2) effects of impaired kidney function on drug

exposure (pharmacokinetics) and response; and (3) mea-

sures for assessing and monitoring kidney function and

markers for detecting kidney injury/disease in pediatric

patients.

4.1 Which Factors Affect Kidney Function

in Pediatric Patients?

In neonates, infants, and children, multiple factors affect

kidney function: (1) development and maturation of the

kidneys as described earlier [10]; (2) acute kidney injury

(AKI), underlying kidney diseases and comorbidities [15];

(3) medications, renal replacement therapy (RRT) and

other therapeutic interventions, such as hypothermia in

neonates [16–19, 76, 77]; and (4) environmental and

genetic factors [22].
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Fig. 5 Narrower therapeutic

window can alter efficacy/safety

balance of drugs in

children/neonates (b) compared

with that in adults (a). Example

of sotalol [52]
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4.1.1 Chronic Kidney Disease (CKD)

Although CKD is seen less frequently in pediatric patients

than in adult patients, it is not a rare disease as the overall

prevalence is 75 cases per million children [78]. In adults,

diabetic nephropathy and hypertension are the main causes

of CKD, whereas in pediatric patients, congenital disease

and glomerular disorders are frequent causes of CKD [79–

81].

4.1.2 AKI

In ‘developed countries’ the most prevalent causes of an

AKI associated with abrupt decrease in kidney function

include sepsis, congenital heart disease, and renal ischemia

[79, 82, 83]. Prospective studies report AKI incidence rates

of 4.5 and 2.5 % in children admitted to intensive care

units [82, 83]. In ‘less developed countries’, acute tubular

necrosis secondary to gastroenteritis and primary kidney

diseases such as hemolytic uremic syndrome and acute

glomerulonephritis are more likely involved. Neonates,

especially preterm newborns, are susceptible to acquiring a

kidney disease due to immature function of their kidneys,

rapid hemodynamic changes at birth, and increased risk of

hypovolemia as a result of insensible water losses and

exposure to nephrotoxic drugs [84].

4.1.3 Medications/Treatments

Nonsteroidal anti-inflammatory drugs (NSAIDs) [85–88],

aminoglycosides (gentamicin, amikacin, tobramycin,

netilmicin) [89–97] and glycopeptide antibiotics (van-

comycin, teicoplanin) [98–101], amphotericin B [102,

103], antiviral agents [104, 105], angiotensin-converting

enzyme (ACE) inhibitors [106, 107], calcineurin inhibitors

[108], radiocontrast media [109], and cytostatic drugs

[110–114] can be nephrotoxic and cause AKI in neonates,

infants, and children [17, 115]. Direct pathophysiological

mechanisms of nephrotoxicity include constriction of

intrarenal vessels, acute tubular necrosis, acute interstitial

nephritis, and, more infrequently, tubular obstruction [17].

Drugs without nephrotoxic effect may increase exposure to

potentially nephrotoxic agents by exhibiting drug–drug

interactions and altering drug-metabolizing enzymes or

transporters.

RRT is a particular case of ‘acquired’ changes in the

clearance of drugs. The use of RRT associated with AKI and

CKD was 15 per million children in the US in 2008 [116].

Drugs can be removed during RRT by diffusion (he-

modialysis) or convection (hemofiltration). Molecular

weight and size, protein binding, volume of distribution and

electrostatic charge are key characteristics affecting drug

dialyzability [117–119]. Drugs with high protein binding

([80 %), lipophilic drugs, cationic drugs (retained by

anionic protein charges in blood), and drugs with high

molecular weight are poorly dialyzable [117, 118, 120–124].

4.1.4 Genetic Factors

The influence of variants in genes encoding for receptors,

for example angiotensin II receptor 1 or toll-like receptor 9

(TLR-9), and peptides, for example vasopressin, involved

in the pathogenesis of kidney disease have been discussed

[22, 125–129]. Polymorphisms of genes encoding for

proteins involved in drug elimination could predispose to

drug nephrotoxicity. An association between ABCB1

polymorphisms, encoding for the P-glycoprotein (P-gp),

and tacrolimus-associated nephrotoxicity in pediatric

patients following liver transplant is reported, suggesting

that genotyping to find such polymorphisms may have the

potential to individualize tacrolimus therapy and enhance

drug safety [130]. SNPs in the genes encoding for CYP3A

enzymes and the nicotinamide adenine dinucleotide phos-

phate–CYP oxidoreductase (POR), a protein that functions

as an electron donor for CYP monooxygenase enzymes

[131], have been shown to influence tacrolimus dose

requirements. Individuals carrying the CYP3A4*22

T-variant allele have a lower tacrolimus dose requirement

than individuals with the CYP3A4*22 CC genotype, and

this effect appears to be independent of CYP3A5 genotype

status [132–134]. Individuals carrying the POR*28

T-variant allele have a higher tacrolimus dose requirement

than POR*28 CC homozygotes in CYP3A5-expressing

individuals [135–137]. Their influence on the risk of

nephrotoxicity is still inconsistent but they may also relate

to tacrolimus-induced chronic nephrotoxicity [138]. Fur-

thermore, the role of polymorphism in the organic cation

transporter 2 (OCT 2) gene to cisplatin-induced nephro-

toxicity has been reported [139].

4.2 How Does Impaired Kidney Function Impact

Drug Pharmacokinetics and Response

in Pediatric Patients?

Impaired kidney function affects not only renal clearance

but also absorption, distribution, metabolism, and nonrenal

clearance of drugs (Table 2) [122, 140–147].

Modification of distribution due to edema and decreased

protein-binding capacity may be especially significant in

children treated with highly hydrophilic drugs (such as

aminoglycosides). An already large TBW compartment

inherent of being a young child combined with a higher

TBW due to kidney disease could result in a severe

increased volume of distribution. The problem is often

underestimated and may therefore go undetected. Even if a

decrease in protein capacity induces an increase of the free

Kidney Function and Drug Dosing in Pediatric Patients 1189



fraction, the total drug concentration stays within the

acceptable therapeutic range.

4.3 How to Assess Kidney Function and Detect

Kidney Injury/Disease in Pediatric Patients?

Exact determination of kidney function is problematic in

children. Measurement of GFR markers, such as inulin,

iohexol, 51Cr-EDTA or 99mTc-diethylenetriaminepen-

taacetic acid is difficult in pediatric patients due to ethical

and practical reasons [158–161].

Equations based on serum creatinine measurements

have been developed to estimate GFR. In adults, the most

widely used equations for estimating GFR are the

Cockroft–Gault formula, the Modification of Diet in Renal

Disease (MDRD), and the Chronic Kidney Disease Epi-

demiology Collaboration (CKD-EPI). These equations tend

to overestimate GFR in children and should not be used in

pediatric populations [162]. Several equations have been

developed for pediatric patients: Schwartz, Counahan–

Barratt, Leger, the Bedside Chronic Kidney Disease in

Children (CkiD), Morris, Shull, Traub, Rudd, Dechaux,

Table 2 Impact of impaired kidney function on absorption, distribution, metabolism and excretion (ADME) of drugs

Pathophysiological

changes

Effects on drugs Impact

Absorption Formation of ammonia

in the presence of

gastric urease/buffers/

acid

Decreased absorption of drugs that are best

absorbed in an acidic environment, prolonged

gastric emptying, and delayed drug absorption

[145–147]

Increased variability in bioavailability in subjects

with kidney impairment compared with subjects

with normal kidney function

Increase in gastric pH Increased amounts of active drugs in systemic

circulation, higher bioavailability of acid-labile

compounds and reduced bioavailability of weak

acids [145–147]

Decrease in first-pass

hepatic metabolism

and biotransformation

Increased amount of drug removed during hepatic

first-pass as more unbound drugs are available at

the site of hepatic metabolism [145–147]

Bowel wall edema Decreased absorption [145, 147, 148]

Distribution Formation of edema and

ascites

Increases apparent volume of distribution of

highly water-soluble or protein-bound drugs

[145–147]

Lower plasma concentrations after a given dose

Decrease in albumin

concentration

Decreased affinity for drug reduces protein

binding in patients with uremia, substantially

increasing the unbound fraction of acidic drugs

[149]

More abundant drug available at the site of drug

action or toxicity

Metabolism Accumulation of uremic

toxins

Impaired glucuronidation to polar, water-soluble

metabolites due to decreased clearance of

glucuronide from plasma [150, 151]

Reduced removal of soluble metabolite

Altered intestinal, hepatic, and renal transporters,

intestinal P-gp, MRP-2 and OATP [143, 148,

152–154]

Accumulated active drug

Higher incidence of adverse drug

events
Altered hepatic and renal metabolic enzymes such

as CYP expression [148, 150, 151, 154–156]

The rate of reduction and hydrolysis reactions and

microsomal oxidation are reduced

Altered disposition of drugs metabolized by liver

through changes in plasma protein binding while

unbound intrinsic/metabolic clearance declines

with creatinine clearance [157]

Elimination Decrease in GFR Reduced clearance of drugs eliminated primarily

by glomerular filtration [141, 142, 144]

Increased plasma concentration and prolonged

half-life in drugs that are eliminated primarily

by glomerular filtration

Decrease in protein

binding

Decreased filtration of drugs, and this may result

in an increased amount secreted by renal tubules

[141, 142, 144, 157]

Prolonged excretion of drugs eliminated by active

organic ion transport systems in renal tubules in

patients with CKD; may become saturated upon

multiple drug administrations

P-gp P-glycoprotein, MRP-2 multidrug resistance protein 2, OATP organic anion-transporting polypeptide, CYP cytochrome P450, GFR

glomerular filtration rate, CKD chronic kidney disease
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Ghazali–Barratt and van den Anker formulas [163–170].

The most commonly used equations in children are the

Schwartz formula, Leger, CkiD, and Counahan–Barrat

formulas. The Schwartz formula, the most extensively

validated formula, is based on serum creatinine and was

first validated with data from 186 children, then with data

from 2192 children in 14 subsequent validation studies.

The Schwartz and Leger equations appear to overestimate

GFR in children with decreasing kidney function when

compared with measured inulin clearance [171–174]. The

CKiD and Counahan–Barrat equations have been devel-

oped in children with a median GFR of 40–45 ml/min/

1.73 m2, and tend to underestimate kidney function in

children with a GFR[60 ml/min [175]. It should be noted

that serum creatinine is influenced by muscle mass, gender,

diet, and tubular secretion. In children, serum creatinine

may also be affected by diseases such as neuromuscular

disease and anorexia nervosa [176]. At birth, the serum

creatinine values measured in the neonate reflect maternal

serum creatinine values because the placenta allows free

transfer of creatinine between the mother and her unborn

infant. Primarily in preterm infants the serum creatinine

values increase during the first days of life, reaching a peak

concentration around 5–7 days after birth before a gradual

decrease in values are seen [177–179]. The highest values

are seen in the most premature infants [180, 181]. As

already shown in the rabbit kidney model, this increase in

serum creatinine values is caused by an increased tubular

reabsorption of creatinine in these preterm infants [182,

183]. Therefore, serum creatinine is a poor marker for GFR

in neonates as it does not fulfill the assumptions of a purely

filtered substance from which to calculate GFR. This

underlines the need for, and evaluation of, newer, earlier

markers for kidney function.

Serum creatinine can be measured with different ana-

lytical methods: alkaline picrate method, Jaffe method

classic and compensated, and an enzymatic method trace-

able to isotope dilution mass spectrometry (IDMS) [184,

185]. Interlaboratory variation is high with some of these

methods [186, 187]; studies have reported median method

group variation coefficients of 6.4 % at a concentration of

80 lml/L [188]. Variation in serum creatinine values lead

to variation in derived calculations of kidney function.

Discrepancies are more pronounced in children aged

1–5 years [189]. Standardization initiatives have been

launched to reduce interlaboratory variation in creatinine

assay calibration [190].

In order to compensate for inaccuracy of existing

equations based on serum creatinine, alternative equations

utilizing cystatin C have been developed. Cystatin C is a

nonglycosylated protein produced in cells, not influenced

by gender, body habitus, or composition (Table 3) [191–

195].

Cystatin C does not cross the placental barrier and no

correlation was found between maternal and neonatal

serum cystatin [196]. Its reference value obtained in chil-

dren aged 4–19 years is 0.75 ± 0.09 mg/L [197]; cystatin

C levels are higher at birth (up to 4.2 mg/L) [191], and

decrease in neonates [196] and infants over time [193].

Cystatin C has not been shown to be superior to calculation

of GFR through the Schwartz formula in neonates [198].

Data on cystatin C in children receiving RRT are scarce

[199–202].

‘Omics’-based technologies, such as proteomics and

metabolomics, are uncovering new markers for kidney

injury/disease [203–212]. Neutrophil gelatinase-associated

lipocalin (NGAL) and kidney injury molecule-1 (KIM-1)

are promising candidates to detect kidney injuries in the

early stages. These proteins are expressed by renal tubules,

and clinical investigations have shown that they are mas-

sively expressed in cases of AKI in both adults and chil-

dren [203, 205, 207, 208, 213–217]. NGAL concentrations

seem to correlate with the severity/stage of CKD [204].

The ability to measure these newer markers noninvasively

in urine represents an advantage over current serum

markers, especially in children. Other new biomarkers are

evaluated for (1) AKI: interleukin (IL)-18, liver-type fatty

acid-binding protein (L-FABP), urinary insulin-like growth

factor-binding protein 7 (IGFBP7), and tissue inhibitor of

metalloproteinases-2 (TIMP-2) [206, 218–222]; (2) CKD:

b-trace protein (BTP), L-FABP, and asymmetric

dimethylarginine (ADMA) [223–227]; and (3) nephrotox-

icity: N-acetyl-glucosaminidase (NAG), GST, gamma-

glutamyl transpeptidase (GGT), alanine aminopeptidase

(AAP), and lactate dehydrogenase (LDH) [228–231].

Animal studies have shown modifications of the meta-

bolome in plasma and kidney tissues in renal ischemia/

reperfusion injury. Increase in prostaglandins, higher

catabolism of tryptophan and accumulation of citrulline in

the kidney could be metabolic signatures of intrarenal

inflammation associated with ischemia/reperfusion injury

[209]. Clinical studies in neonates, infants, and older

children are warranted to (1) evaluate potential measures

Table 3 Comparison between the kidney markers serum creatinine

and cystatin C

Characteristics Creatinine Cystatin C

Excretion by kidney Yes No

Reabsorption/secretion by renal tubules Yes No

Level affected by GA Yes No

Level affected by muscle mass Yes No

Level affected by gender Yes No

Influence from maternal plasma level Yes No

GA gestational age
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for kidney function, especially during the first days of life;

(2) test new markers such as NGAL and KIM-1 [232]; and

(3) explore ‘omics’-based methods in order to improve

detection and management of kidney injury/disease in

neonates, infants, and children [233].

5 Quantitative Approaches and Opportunities
in Pediatric Patients with Impaired Kidney
Function

This section introduces quantitative approaches, such as

pharmacometric modeling and simulation, to (1) simplify

designs of studies in pediatric patients; (2) characterize

effects of the kidney on drug exposure/response; (3) fine-

tune dosing in pediatric patients with impaired kidney

function; and (4) facilitate development and optimize uti-

lization of therapeutics in neonates, infants, and children.

5.1 What is Pharmacometrics?

Pharmacometrics is an emerging science of developing and

applying mathematical and statistical methods for charac-

terizing, understanding, and predicting a drug’s pharma-

cokinetics, and its effects on biomarker and clinical

responses over time [234, 235]. With pharmacometric

approaches, biological knowledge can be translated into

compartmental models with mathematical and statistical

components [236]. ‘Population approaches’, introduced by

Sheiner in the 1970s, can be utilized to quantify intersub-

ject variability, at the population level, and test covariate

effects on model parameters such as impact of body weight

or kidney function on drug clearance. Such population

models can also be applied to (1) project individual phar-

macokinetic, biomarker and clinical responses, e.g. by

Bayesian-inference [237–241]; (2) evaluate the impact of

alternative doses on pharmacokinetics, biomarker and

clinical responses; and (3) provide a scientific rationale for

individualized dosing strategies [242–245]. Quantitative

approaches such as pharmacometrics have been suggested

to quantify the impact of kidney function on drugs and the

impact of drugs on kidney function [246–248].

In pediatric patients, body weight reflecting growth, and

age describing maturation, are key covariates. As described

in Fig. 6, different age descriptors need to be considered in

pediatric patients, especially in neonates, including PMA,

gestational age (GA) and postnatal age (PNA), also called

chronological age [249].

Pharmacometric approaches include pharmacostatisti-

cal, exposure-response, and disease progression models

[236, 250, 251]. Systems pharmacology approaches may

represent more complex models, such as physiology-based

pharmacokinetic models (PBPK) consisting of a large

number of compartments to represent different organs or

tissues in the human body [235, 252]. PBPK models may

contain enzyme information from tissues, such as CYPs,

involved in the metabolism of drugs [253–255].

Both pharmacometrics and systems pharmacology have

been successfully applied in adults with impaired kidney

function to (1) evaluate and simplify sampling designs of

studies; (2) characterize and quantify the relationships

between kidney function and drug exposure or effect; (3)

fine-tune dosing strategies; and (4) enhance drug labels

leveraging model-based simulations [148, 256–259]. Such

quantitative approaches have the potential to facilitate

development and optimize utilization of drugs in neonates,

infants, and children, especially those with impaired kidney

function.

5.2 How to Simplify Sampling Designs of Studies

in Pediatric Patients?

Design and conduct of clinical studies in pediatric patients

are difficult due to enrollment constraints (especially

children \6 years of age), blood volume constraints

(especially in neonates and young infants), and other

practical challenges of collecting pharmacokinetic or other

samples [243, 260]. Pharmacometric and systems phar-

macology approaches, including PBPK-based simulations,

can be leveraged to (1) identify starting dose in first-in-

children pharmacokinetic studies and provide rationale for

dose regimen optimization; (2) simplify pharmacokinetic–

pharmacodynamic (PK–PD) sampling scheme (number and

timing of blood collections for pharmacokinetic and/or

PK–PD analyses); and (3) optimize sample size of studies

in neonates, infants, and children [243, 261–267].

Furthermore, PBPK models can also be applied in

neonates, infants, and children to (1) characterize phar-

macokinetic behavior of drugs; (2) identify genetic factors

that influence exposure/response of drugs; (3) assess risk of

drug–drug interactions; and (4) quantify the impact of

impaired kidney function on drugs [268–270]. PBPK

models validated in adults may be expanded to pediatric

patients by incorporating identified differences in drug

pharmacokinetics and response between children and

adults [267, 271].

Time

Post-menstrual age: PMA

Gesta�onal age: GA Post-natal age: PNA

BirthFirst day of last 
menstrual period

Fig. 6 Age terminology during the perinatal period
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5.3 How to Characterize Drug Exposure–Response

and Enhance Drug Labels?

Pharmacometric and systems pharmacology approaches,

utilizing pharmacokinetic, biomarker and/or disease pro-

gression data, can be useful to (1) identify factors that

influence disease progression and responses to interven-

tions; (2) facilitate comparison of concentration–response

relationships across age groups; (3) link PD/biomarker

endpoints to (longer term) clinical outcome measures,

which may then be used as surrogate markers for assessing

efficacy in various age groups; (4) simulate treatment-re-

lated responses in pediatric patients with and without

impaired kidney function [259, 264, 272–274]; and (4)

enhance drug labels for pediatric patients, such as ataza-

navir [275], busulfan [276, 277], levofloxacin [278],

argatroban [279], piperacillin-tazobactam [280], etanercept

[281], and subcutaneous immunoglobulin [282–284].

5.4 How to Fine-Tune Dosing Strategies for Drugs

in Pediatric Patients with Impaired Kidney

Function?

In the absence of specific dosing recommendations for

children with changing kidney function, pediatric doses are

extrapolated from adult data [1]. A priori dosing (prior to any

measurement) in neonates, infants, and children is viewed as

a scaling exercise, assuming a simple linear relationship

between body weight and drug pharmacokinetics. Since

developmental and maturational processes in pediatric

subjects are mostly nonlinear, empirical dosing recom-

mendations may result in over- or underdosing, resulting in

toxicity or therapeutic failure. After initiating therapy, an

adjusted a posteriori dose, based on therapeutic drug moni-

toring (TDM), can be identified [285–289]. A limitation of

TDM in pediatric patients is that, for a majority of drugs,

target concentrations are derived from adult patients rather

than defined based on pediatric data, assuming similar

exposure/response and TW across age groups [290–294].

Pharmacometric approaches can be leveraged to identify

predictive covariates, characterize exposure/response and

TW of drugs, and provide a scientific basis for individual-

ized dosing strategies, including Bayesian-based TDM, in

neonates, infants, and children [242–245, 289, 295, 296].

Model-based approaches can also be applied to fine-tune

RRT strategies in pediatric patients [296–298].

5.5 What are the Opportunities to Facilitate

Development and Optimize Utilization of Drugs

in Pediatric Patients?

Strategic applications of pharmacometrics and systems

pharmacology have the potential to streamline develop-

ment and optimize utilization of drugs in pediatric patients

with and without impaired kidney function. An overview of

opportunities is provided in Table 4.

6 Case Study: How to Fine-Tune Amikacin Dosing
in Neonates with Impaired Kidney Function?

Neonates are known to be at high risk of infection and are

exposed to antibiotic-resistant bacterial pathogens; thus,

antibiotics are the class of medicines most frequently pre-

scribed in neonates. Early appropriate antimicrobial treat-

ment is imperative to optimize response and limit the

spread of resistance [300–302]. In addition, there is an

important lack of uniformity in dosing information to

ensure consistent drug exposure in neonates, leading to

inappropriate prescription of most antibiotics [303]. Phar-

macometric approaches can be used to (1) identify and

quantify covariate effects on pharmacokinetic parameters;

and (2) fine-tune dosing of antibiotics in neonates with and

without impaired kidney function.

In this section, we focus on the application of pharma-

cometrics to evaluate and fine-tune dose strategies of

amikacin in neonates. After penicillins, aminoglycosides

are the most commonly used drugs in the neonatal inten-

sive care unit [304]. Amikacin is used as a short-term

treatment of serious infections caused by strains of

Table 4 Quantitative approaches to enhance development and utilization of drugs in pediatric patients

Opportunity for pharmacometrics and systems pharmacology

Streamline development of therapeutics

for pediatric patients

Simplify design of PK–PD studies by performing model-based trial simulations [243, 261, 264]

Quantify impact of kidney function and RRT on drug exposure/response by applying

pharmacometric and PBPK models [259, 264, 272–274, 299]

Facilitate key development decisions by applying pharmacometric modeling and simulation [240,

264, 272–274]

Optimize utilization of therapeutics in

pediatric patients

Adjust/individualize dosing strategies by applying Bayesian-based TDM [243–245]

Provide scientific rationale for pediatric drug labels applying pharmacometric modeling and

simulation [281–284]

PK–PD pharmacokinetic–pharmacodynamic, RRT renal replacement therapy, PBPK physiology-based pharmacokinetic, TDM therapeutic drug

monitoring
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Pseudomonas sp., Escherichia coli, Klebsiella pneumo-

niae, Serratia sp., and Staphylococcus species [305–307].

This drug is almost exclusively eliminated by kidneys

(90 %) and its clearance reflects GFR [308]. There is huge

variability in the choice of neonatal dosing regimen used

across the world [309]. Leroux et al. found 19 different

neonatal dosing regimens proposed in the literature [44,

303, 310–323]. Amikacin use is difficult because of its

toxicity and pharmacokinetic variability, and no study or

specific recommendations in cases of changing kidney

function were described. Potential kidney effects on phar-

macokinetic parameters were tested by incorporating age

and weight as indirect measures for maturation and growth,

and serum creatinine as a measure of kidney function in a

population pharmacokinetic model [313, 324].

Sherwin et al. recently developed a population-based

pharmacokinetic model based on 70 pediatric burn patients

(6 months to 17 years) receiving amikacin, and found that

weighthad a significant influence on amikacin clearance [325].

De Cock et al. conducted a large population pharma-

cokinetic modeling study using data from 874 preterm and

term neonates treated with amikacin (range: GA 24–

43 weeks; PNA 1–30 days) [311]. Amikacin clearance was

found to be related to PNA and birth weight, with children

with higher age and weight having a faster maturation of

clearance. Furthermore, coadministration of ibuprofen

appeared to reduce amikacin clearance, likely (at least in

part) due to negative effect on kidney function [311, 326,

327]. The individual amikacin clearance can be predicted

using Eq. 1, with CLi being amikacin clearance in the ith

individual, CLp being the population value of amikacin

clearance, and bBW being birth body weight and PNA

corresponding to PNA:

CLi ¼CLP�
bBW

bBWmedian

� �1:34

� 1þ 0:213� PNA

PNAmedian

� �� �
�0:838ibuprofen

ð1Þ

Figure 7 illustrates how the predicted clearance of

amikacin increases with birth body weight (representing

antenatal maturation) and PNA (representing postnatal

maturation), taking into account coadministration of

ibuprofen.

Predictive performance of this model was externally

validated in 239 neonates. An evidence-based dosing reg-

imen, summarized in Table 5, was proposed by performing

simulations with the developed model. They demonstrated

that the currently used dosing regimens for amikacin, based

on reference handbooks, may increase the risk of toxicities,

and should be revised [311].

The authors also performed a study to extrapolate the

amikacin model to other drug compounds almost entirely

eliminated through glomerular filtration and with similar

physicochemical properties (netilmicin, tobramycin, van-

comycin, and gentamicin). They showed that pediatric

covariate models may represent physiological information

on developmental changes in glomerular filtration that may

be leveraged to describe kinetics of other antibiotics that

are primarily eliminated by kidneys [328].

Fig. 7 Model-based predicted amikacin clearance values versus

bBW for PNA of 0, 14, or 28 days with and without coadministration

of ibuprofen, according to De Cock et al. [311]. bBW Birth body

weight, PNA postnatal age, CL clearance

Table 5 Amikacin dosing

regimen according to De Cock

et al. [311]. The dosing interval

is prolonged by 10 h when

ibuprofen is coadministered

Postnatal age (days) Current bodyweight (g) Dose (mg kg-1) Dosing interval (h)

\14 0–800 16 48

800–1200 16 42

1200–2000 15 36

2000–2800 13 30

C2800 12 24

C14 0–800 20 42

800–1200 20 36

1200–2000 19 30

2000–2800 18 24

C2800 17 20
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7 Discussion and Outlook

Growth, maturation, and environmental factors affect drug

kinetics, response, and dosing in pediatric patients. Chan-

ges in kidney function, as a result of normal growth and

development as well as underlying kidney diseases,

comorbidities, medications, and environmental and genetic

factors, will not only have an impact on renal clearance but

also on the absorption, distribution, metabolism, and non-

renal clearance of drugs [141, 142]. Both drug exposure

and response may change during childhood and impact the

TW and efficacy/safety balance of drugs in neonates,

infants, and children. Current markers of kidney function

provide limited value in assessing and monitoring kidney

function in children, especially during the first days of life

and in cases of AKI [172, 173]. Therefore, new renal

biomarkers are needed. ‘Omics’-based technologies, such

as proteomics and metabolomics, can be leveraged to

uncover novel markers in plasma and urine for kidney

function during normal development, AKI, and CKD.

Motivated by challenges in conducting clinical studies

in pediatric subjects, supported by regulatory agencies such

as the European Medicines Agency (EMA) and the US

FDA, pharmacometric and systems pharmacology have

been suggested to facilitate the design and conduct of

studies in pediatric subjects [329]. Strategic use of model-

based quantitative approaches and biomarkers [240, 330]

has the potential to streamline development and optimize

utilization of drugs in pediatric patients with and without

impaired kidney function by (1) informing the design of

pediatric clinical trials, including sample size and first dose

selection, providing rationale for the dose range to be

studied, and simplifying PK–PD sampling; (2) character-

izing disease progression to project long-term clinical

outcomes; (3) quantifying the effects of impaired kidney

function (and RRT) on drug pharmacokinetics and/or

response; (4) facilitating key development decisions; and

(5) providing a scientific rationale for pediatric drug labels.

The recently formed Drug Disease Model Resources

(DDMoRe) consortium facilitates collaborations between

pharmaceutical industries and academic partners [331].

They aim to address the lack of common tools, languages,

and standards for modeling and simulation to improve

model-based knowledge integration. A public drug and

disease model library, supported by an open source and

universally applicable framework, provides access to dis-

ease modeling tools [331, 332]. It should also be noted that

online tools have been developed to facilitate evaluation and

optimization of study designs in adult and pediatric subjects.

For example, Mentré et al. developed a software tool known

as PFIM, which is a set of R functions that evaluates and/or

optimizes study designs based on the expression of the

Fisher information matrix (FIM) in nonlinear mixed effects

models (http://www.pfim.biostat.fr/) [333, 334].

In clinical practice, pharmacometric approaches can be

applied to identify predictive covariates, such as the impact

of kidney function changes on drugs, and provide a sci-

entific basis for optimizing dosing in pediatric patients

[242, 244, 245]. Bayesian-based TDM methods can

leverage patient characteristics, physiological differences

between adults and children, genetic and environmental

factors and pharmacokinetic properties of drugs, and

individualize dosing strategies in neonates, infants, and

children. Decision support tools are emerging to assist

clinicians at the bedside in personalized dosing of pediatric

patients, including neonates, such as the EzeCHiel (http://

www.ezechiel.ch/) [244, 289] and DoseMe software

packages (http://www.doseme.com.au/) [335].

Table 6 outlines opportunities to overcome challenges

in further streamlining development and optimizing

Table 6 Challenges and opportunities to facilitate development and optimize utilization of drugs in pediatric patients

Challenges in pediatric patients Opportunities for innovative and collaborative approaches

Lack of markers for assessing kidney function or

detecting AKI and CKD

Leverage proteomics and metabolomics to identify new renal markers for kidney

injury/disease

Lack of large pharmacokinetic, biomarker and clinical

outcomes datasets

Create and share integrated large databases

Lack of common tools, languages, and standards for

modeling and simulation

Develop platforms with standardized modeling tools

Lack of consensus, rationale on dosing strategies Collaborate between clinicians and scientists in academia and industry to optimize

and standardize dosing strategies

Lack of individualized dosing in children Apply model-based Bayesian TDM to leverage patient characteristics and fine-tune

personalized dosing

Lack of application of model-based approaches by

clinicians

Develop user-friendly bedside decision tools for clinicians

Lack of specific drug labels Collaborate between clinicians and scientists in academia, industry and regulatory

agencies to enhance drug labels

AKI acute kidney injury, CKD chronic kidney disease, TDM therapeutic drug monitoring

Kidney Function and Drug Dosing in Pediatric Patients 1195

http://www.pfim.biostat.fr/
http://www.ezechiel.ch/
http://www.ezechiel.ch/
http://www.doseme.com.au/


utilization of therapeutics in neonates, infants, and chil-

dren, especially those with impaired kidney function.

Collaborative efforts between clinicians and scientists

in academia, industry, and regulatory agencies are

required to (1) identify new renal biomarkers for early

detection and enhanced monitoring of kidney injury and

disease; (2) collect and share prospective pharmacoki-

netic, genetic, and clinical data with the goal of creating

large clinical outcome databases; (3) build and evaluate

integrated pharmacometric models for key diseases and

therapeutics; (4) optimize and standardize dosing strate-

gies; (5) develop user-friendly bedside decision tools for

clinicians; and (6) enhance drug labels for neonates,

infants, and children.
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