
RESEARCH ARTICLE

On the Wiener Polarity Index of Lattice

Networks

Lin Chen1, Tao Li2*, Jinfeng Liu1, Yongtang Shi1, Hua Wang3

1 Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin, China, 2 College of Computer and

Control Engineering, Nankai University, Tianjin 300071, China, 3 Department of Mathematical Sciences

Georgia Southern University, Statesboro, GA 30460-8093, United States of America

* litao@nankai.edu.cn

Abstract

Network structures are everywhere, including but not limited to applications in biological,

physical and social sciences, information technology, and optimization. Network robustness

is of crucial importance in all such applications. Research on this topic relies on finding a

suitable measure and use this measure to quantify network robustness. A number of dis-

tance-based graph invariants, also known as topological indices, have recently been incor-

porated as descriptors of complex networks. Among them the Wiener type indices are the

most well known and commonly used such descriptors. As one of the fundamental variants

of the original Wiener index, the Wiener polarity index has been introduced for a long time

and known to be related to the cluster coefficient of networks. In this paper, we consider the

value of the Wiener polarity index of lattice networks, a common network structure known

for its simplicity and symmetric structure. We first present a simple general formula for com-

puting the Wiener polarity index of any graph. Using this formula, together with the symmet-

ric and recursive topology of lattice networks, we provide explicit formulas of the Wiener

polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the

33 � 42 lattices. We also comment on potential future research topics.

Introduction

Robustness is the ability of a network to maintain performance when encountering attacks or

enduring partial failure. In order to decide whether a given network is robust, a way to quanti-

tatively measure network robustness is needed. Once such a measure has been established, it

can serve as a standard for comparing networks or a guidance for improving existing networks

and designing new networks. Intuitively robustness is all about back-up possibilities, or alter-

native paths, but it is rather challenging to capture all these concepts in a simple mathematical

formula. During the recent years a lot of robustness measures have been proposed by scientists

from different backgrounds, including but not limited to Biology, Chemistry, Computer Sci-

ence, Engineering, Physics, and Mathematics [1–7]. Generally a network is considered as a

graph consisting of a set of vertices connected by edges, and the study of network robustness

relies on the analysis of such underlying graphs.
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One way to measure a network structure is through the so called structure descriptors, or

topological indices [8]. In theoretical biology and chemistry, for instance, molecular structure

descriptors are numerical parameters mathematically derived from the graph structure. They

have been found to be useful for modeling physico-chemical, toxicologic, pharmacologic, bio-

logical and other properties of molecular compounds. These descriptors are mainly divided

into three types: degree-based indices, distance-based indices and spectrum-based indices.

Degree-based indices contain the (general) Randić index [9–11], the (general) zeroth order

Randić index [12, 13], the Zagreb index [14, 15], the connective eccentricity index [16] and so

on [17]. Distance-based indices [18] include the Balaban index [19, 20], the Wiener index and

Wiener polarity index [21], the Kirchhoff index [22, 23] and so forth. Eigenvalues of graphs

[24], various of graph energies [25–36], the HOMO-LUMO index [37, 38], and the Estrada

index [39–41] belong to spectrum-based indices. There are also some topological indices

defined based on both degrees and distances, such as the degree distance [42] and graph entro-

pies [43, 44]. The study of mathematical properties of such graph indices and the evaluation of

them in various graph structures have been of tremendous interest to researchers.

A lattice graph, or simply a lattice, is a graph possessing a drawing whose embedding in a

Euclidean space Rn forms a regular tiling. Because of the symmetric nature of its topology, lat-

tice graphs appear to be among the most common network structures. For exactly the same

reason, the computation of various physical and chemical indices of various lattice graphs has

attracted the attention of many scientists as well as mathematicians. See, for instance, [45–51].

We will focus on the square lattices, the hexagonal lattices, the triangular lattices, and the

33 � 42 lattices, each corresponding to a grid with specific geometric shapes.

In this paper all graphs under consideration are finite, connected, undirected and simple.

For standard notations and terminologies we follow [52]. Let G be a graph with vertex set V(G)

and edge set E(G). The distance dG(u, v) (or simply d(u, v) when there is no confusion) between

two vertices u and v of G is the length of the shortest path that connects u and v. One of the

most well-known and well-studied distance-based graph indices is the Wiener number W(G),

also termed as Wiener index in chemical or mathematical chemistry literatures. It is defined as

the sum of distances over all unordered vertex pairs in G [21]. I.e.,

WðGÞ ¼
X

fu;vg�VðGÞ

dGðu; vÞ:

As a representative of successful structure-descriptors, the Wiener index has received much

attention. For further details we refer the readers to some recent papers [53–56] and the com-

prehensive survey of Dobrynin, Entringer and Gutman [57].

Another important molecular descriptor was also introduced by Wiener [21], called the

Wiener polarity index. Denoted by Wp(G), it is defined as the number of unordered pairs of

vertices that are at distance 3 in G. That is,

WpðGÞ ¼ jfðu; vÞjdGðu; vÞ ¼ 3; u; v 2 VðGÞgj: ð1Þ

In organic compounds, say paraffin, the Wiener polarity index is the number of pairs of car-

bon atoms which are separated by three carbon-carbon bonds. Based on the Wiener index and

the Wiener polarity index, the formula

tB ¼ aWðGÞ þ bWpðGÞ þ c;

was used to calculate the boiling points tB of the paraffins, where a, b and c are constants for a

given isomeric group.
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In an acyclic structure, the Wiener polarity index can be expressed in terms of vertex

degrees (see, for instance, Lemma 2). This unique characteristic of the Wiener polarity index

makes it interesting for studies from both distance-based and degree-based points of view.

However, compared with the Wiener index, surprisingly little attention has been paid to the

Wiener polarity index until very recently. Nevertheless, the study of the Wiener polarity index

has indeed caught the attention of many researchers. By using the Wiener polarity index,

Lukovits and Linert demonstrated quantitative structure-property relationships in a series of

acyclic and cycle-containing hydrocarbons in [58]. Hosoya in [59] found a physical-chemical

interpretation of Wp(G). Du et al. [60] described a linear time algorithm for computing the

Wiener polarity index of trees and characterized the trees maximizing the index among all the

trees of the given order. Later, Deng, Xiao and Tang characterized the extremal trees with

respect to this index among all trees of order n and diameter k [61]. While for cycle-containing

graphs, the maximum Wiener polarity index of unicyclic graphs and the corresponding extre-

mal graphs were determined in [62]. In [63] Ma et al. determined the sharp upper bound of

the Wiener polarity index among all bicyclic networks based on some graph transformations.

Moreover, the extremal values of catacondensed hexagonal systems, hexagonal cacti and poly-

phenylene chains with respect to the Wiener polarity index were computed in [64]. It was

proved that the Wiener polarity index of fullerenes with n carbon atoms is (9n − 60)/2 in the

same paper. Recently, Hua and Das [65] established an upper bound on the Wiener polarity

index in terms of Hosoya index and characterized the corresponding extremal graphs. They

also obtaind Nordhaus-Gaddum-type results for Wp(G). Other recent work on Wiener polarity

index can be found in [66–70].

In this paper we study the Wiener polarity index of several common classes of lattices. In

the section of Preliminaries and the square lattices, we first introduce some notations and pre-

viously established fundamental results on the Wiener polarity index of graphs. Through the

concept of 3rd neighborhoods, we provide a simple but extremely useful formula for calculat-

ing the Wiener polarity index. We also present the computation of the Wiener polarity index

of square lattices as an example of applications of such results. In the sections that follow, we

discuss in details the computation of the Wiener polarity index of the hexagonal lattices, the

triangular lattices, and the 33 � 42 lattices. We summarize our findings and propose some future

directions of research in the section of Concluding remarks.

Preliminaries and the square lattices

In this section, we first recall some notations. Then a general formula is presented for the Wie-

ner polarity index of any graph. In mathematics, a Cartesian product is a mathematical opera-

tion which returns a product set (or simply product) from multiple sets. Given sets A and B,

the Cartesian product of A and B, generally denoted by A□B, is the set of all ordered pairs (a,

b), where a 2 A and b 2 B. That is,

A□B ¼ fða; bÞja 2 A; b 2 Bg:

Given graphs G and H with vertex sets U and V, the Cartesian product G□H of graphs G and H
is a graph such that the vertex set of G□H is U□V, and any two vertices (u, u0) and (v, v0) are

adjacent in G□H if and only if either u = v and u0 is adjacent to v0 in H, or u0 = v0 and u is adja-

cent to v in G.

For a graph G and vertex v 2 V(G), let NG(v) denote the neighborhood of v and dG(v) =

|NG(v)| denote the degree of v. The greatest distance between any two vertices in G is the diam-

eter of G, denoted by diam(G). The girth g(G) of G, is the length of a shortest cycle in G. For

any integer i, we call Ni
GðvÞ ¼ fu 2 VðGÞjdGðu; vÞ ¼ ig the ith neighborhood of v, and the
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vertices in Ni
GðvÞ are called the ith neighbors of v. In particular, N1

GðvÞ is precisely the neighbor-

hood NG(v) of v, N0
GðvÞ ¼ fvg, while Ni

GðvÞ ¼ ; for i> diam(G). In addition, let Pn and Cn
denote the path and the cycle with n vertices, respectively.

The following lemmas are useful in the study of the Wiener polarity index of the lattice

networks.

Lemma 1 ([69]) Let G and H be two non-trivial connected graphs, then

WpðG□HÞ ¼WpðGÞjVðHÞj þWpðHÞjVðGÞj þ 2W2ðGÞmðHÞ þ 2W2ðHÞmðGÞ;

where m(G) and m(H) are the number of edges of G and H, respectively, and W2(G) =

|{{u, v}|d(u, v) = 2, u, v 2 V(G)}| is the number of unordered pairs of vertices {u, v} of G such that
dG(u, v) = 2.

Lemma 2 ([60]) Let T = (V, E) be a tree. Then

WpðTÞ ¼
X

uv2E

ðdTðuÞ � 1ÞðdTðvÞ � 1Þ:

Lemma 3 ([62, 67]) Let U = (V, E) be a unicyclic graph. Let C denote the unique cycle of U:

• If g(U) = 3 with V(C) = {v1, v2, v3}, then

WpðUÞ ¼
X

uv2E

ðdUðuÞ � 1ÞðdUðvÞ � 1Þ þ 9 � 2dUðv1Þ � 2dUðv2Þ � 2dUðv3Þ;

• If g(U) = 4 with V(C) = {v1, v2, v3, v4}, then

WpðUÞ ¼
X

uv2E

ðdUðuÞ � 1ÞðdUðvÞ � 1Þ þ 4 � dUðv1Þ � dUðv2Þ � dUðv3Þ � dUðv4Þ;

• If g(U)�5, then

WpðUÞ ¼

X

uv2E

ðdUðuÞ � 1ÞðdUðvÞ � 1Þ � 5; if gðUÞ ¼ 5;

X

uv2E

ðdUðuÞ � 1ÞðdUðvÞ � 1Þ � 3; if gðUÞ ¼ 6;

X

uv2E

ðdUðuÞ � 1ÞðdUðvÞ � 1Þ; if gðUÞ � 7:

8
>>>>>>>><

>>>>>>>>:

Lastly, we provide a simple general formula for the Wiener polarity index of a graph, which

plays an important role in the proofs of our main results.

Lemma 4 For any graph G, the Wiener polarity index Wp(G) of G can be expressed as

WpðGÞ ¼

X

v2VðGÞ

jN3

GðvÞj

2
:

ð2Þ

Proof. By the definitions of the Wiener polarity index and the ith neighborhood, we have

WpðGÞ ¼ jfðu; vÞjdGðu; vÞ ¼ 3; u; v 2 VðGÞgj

On the Wiener Polarity Index of Lattice Networks
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and

jN3
GðvÞj ¼ jfðu; vÞjdGðu; vÞ ¼ 3; u 2 VðGÞgj:

Formula (2) then follows immediately.

To study the Wiener polarity index of lattice networks, we first consider the simple case

concerning the square lattices.

Let Pm□Pn(m� 2, n� 2), Pm□Cn(m� 2, n� 3), and Cm□Cn(m� 3, n� 3) denote the

square lattices with free, cylindrical and toroidal boundary conditions respectively, it is easy to

see that Pm□Pn is a sequence of spanning subgraphs of the sequence Pm□Cn of finite graphs,

and Pm□Cn is a sequence of spanning subgraphs of the sequence Cm□Cn of finite graphs. Fol-

lowing the aforementioned lemmas, the Wiener polarity index of the square lattices can be eas-

ily calculated. In the rest of this section, we assume without loss of generality, that n�m in

Pm□Pn and Cm□Cn.

Theorem 1 Let Pm□Pn, Pm□Cn and Cm□Cn denote the square lattices with free, cylindrical
and toroidal boundary conditions, respectively. Then

WpðPm□PnÞ ¼

(
4n � 10; if m ¼ 2; n � 3;

6mn � 9m � 9nþ 8; if m � 3; n � 3;
ð3Þ

WpðPm□CnÞ ¼

4n; if m ¼ 2; n � 7;

9m � 21; if m � 3; n ¼ 3;

16m � 32; if m � 3; n ¼ 4;

25m � 45; if m � 3; n ¼ 5;

33m � 54; if m � 3; n ¼ 6;

6mn � 9n; if m � 3; n � 7;

ð4Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

WpðCm□CnÞ ¼

9n; if m ¼ 3; n � 7;

16n; if m ¼ 4; n � 7;

25n; if m ¼ 5; n � 7;

33n; if m ¼ 6; n � 7;

6mn; if m � 7; n � 7:

ð5Þ

8
>>>>>>>>>><

>>>>>>>>>>:

Proof. It follows from Lemma 2 that Wp(P2) = 0 and Wp(Pm) = m − 3 for m� 3. On the

other hand, Lemma 3 yields that Wp(C3) = Wp(C4) = Wp(C5) = 0, Wp(C6) = 3, and Wp(Cn) = n
for n� 7. By the definition of W2(G), it is not difficult to see that W2(Pm) = m − 2 for m� 2,

W2(C3) = 0, W2(C4) = 2, and W2(Cn) = n for n� 5. In addition, by Lemma 1 we have

WpðPm□PnÞ ¼ WpðPmÞjVðPnÞj þWpðPnÞjVðPmÞj þ 2W2ðPmÞmðPnÞ

þ2W2ðPnÞmðPmÞ;

proving Eq (3).

Similarly, Eqs (4) and (5) are also direct consequences of Lemma 1 and the above

discussion.

On the Wiener Polarity Index of Lattice Networks
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Remark 1 For small values of m and n, still by Lemma 1, we have the followings:
Wp(P2□P2) = 0; Wp(P2□C3) = 0, Wp(P2□C4) = 4, Wp(P2□C5) = 10, Wp(P2□C6) = 18;

Wp(C3□C3) = 0, Wp(C3□C4) = 12, Wp(C3□C5) = 30, Wp(C3□C6) = 45, Wp(C4□C4) = 32,

Wp(C4□C5) = 60, Wp(C4□C6) = 84, Wp(C5□C5) = 100, Wp(C5□C6) = 135, Wp(C6□C6) = 180.

The Wiener polarity index of the hexagonal lattices

Next we consider the Wiener polarity index of the hexagonal lattices. We follow the notations

in [50]. The hexagonal lattices with toroidal, cylindrical and free boundary conditions, are

denoted by Ht(n, m), Hc(n, m) and Hf(n, m), respectively, where (a1, b1), (a2, b2), . . ., (am+1, bm
+1); ða1; c�1Þ, ðc1; c�2Þ, ðc2; c�3Þ, . . ., ðcn� 1; c�nÞ, (cn, bm+1) are edges in Ht(n, m) (as illustrated in

Fig 1). The hexagonal lattice Hc(n, m) is obtained from Ht(n, m) by deleting edges ða1; c�1Þ,
ðc1; c�2Þ, ðc2; c�3Þ, . . ., ðcn� 1; c�nÞ, (cn, bm+1). If the edges (a1, b1), (a2, b2), . . ., (am+1, bm+1) are also

removed, then the hexagonal lattice Hf(n, m) with free boundary condition is obtained. It is

easy to see that |V(Ht(n, m))| = |V(Hc(n, m))| = |V(Hf(n, m))| = 2(n + 1)(m + 1). Furthermore,

from the definitions it is obvious that Hf(n, m) and Hc(n, m) are spanning subgraphs of Ht(n,

m). In the following result we assume, without loss of generality, that m� n in Ht(n, m) and

Hf(n, m).

Fig 1. The hexagonal lattice.

doi:10.1371/journal.pone.0167075.g001
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Theorem 2 For the hexagonal lattices Ht(n, m), Hc(n, m) and Hf(n, m) with toroidal, cylindri-
cal and free boundary conditions, we have

WpðHtðn;mÞÞ ¼

10ðmþ 1Þ; if n ¼ 1;m � 3;

24ðmþ 1Þ; if n ¼ 2;m � 3;

9ðnþ 1Þðmþ 1Þ; if n � 3;m � 3;

8
>>><

>>>:

WpðHcðn;mÞÞ ¼

10m � 4; if n ¼ 1;m � 1;

24m � 3; if n ¼ 2;m � 1;

9mðnþ 1Þ; if n � 3;m � 1;

8
>>><

>>>:

WpðHf ðn;mÞÞ ¼ 9nm � 2 for n � 1;m � 1:

Remark 2 As illustrated in Fig 2, we generally have

WpðHtðn;mÞÞ >WpðHcðn;mÞÞ >WpðHf ðn;mÞÞ;

with the common asymptotic value 9mn as both m an n approaches infinity.

Fig 2. The Wiener polarity index of Ht(n, m), Hc(n, m) and Hf(n, m).

doi:10.1371/journal.pone.0167075.g002
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Proof. We consider each of these three lattices through different cases.

(1) First consider Ht(n, m). Our argument relies on the simple fact that every vertex in Ht(n,

m) has the same number of 3rd neighbors. Take, for instance, vertex a1 from Fig 1:

• If n = 1 and m� 3, then

N3
Htð1;mÞða1Þ ¼ fu21; b2; um1; bm; bmþ1g:

Hence the number of 3rd neighbors of any vertex in Ht(1, m) is 5 and Lemma 4 implies that

WpðHtð1;mÞÞ ¼

X

v2Htð1;mÞ

jN3

Htð1;mÞðvÞj

2
¼

5� 2ð1þ 1Þðmþ 1Þ

2
¼ 10ðmþ 1Þ:

• If n = 2 and m� 3, then

N3
Htð2;mÞða1Þ ¼ fu21; b2; u12; c�2; bmþ1; u22; um1; um2g:

Thus the number of 3rd neighbors of any vertex in Ht(2, m) is 8 and Lemma 4 implies that

WpðHtð2;mÞÞ ¼

X

v2Htð2;mÞ

jN3

Htð2;mÞðvÞj

2
¼

8� 2ð2þ 1Þðmþ 1Þ

2
¼ 24ðmþ 1Þ:

• If n� 3 and m� 3, then

N3
Htðn;mÞða1Þ ¼ fu21; b2; u12; c�2; u1n; bmþ1; u2n; um1; um2g:

Similarly we have

WpðHtðn;mÞÞ ¼

X

v2Htðn;mÞ

jN3

Htðn;mÞðvÞj

2
¼

9� 2ðnþ 1Þðmþ 1Þ

2

¼ 9ðnþ 1Þðmþ 1Þ:

(2) In the case of Hc(n, m) (Fig 1), we can make similar observations on vertices whose 3rd

neighborhood share the same cardinality. For this purpose we partition the vertex set Hc(n, m)

into m + 1 disjoint classes:

•

V0 ¼ fa1; c1; c2; . . . ; cn; c�1; c
�
2
; . . . ; c�n; bmþ1g;

•

V1 ¼ fu11; u12; . . . ; u1n; b1; amþ1; vm1; vm2; . . . ; vmng;

•

V2 ¼ fa2; v11; v12; . . . ; v1n; um1; um2; . . . ; umn; bmg;

..

.

•

Vm ¼ fu mþ1
2ð Þ1

; u mþ1
2ð Þ2

; . . . ; u mþ1
2ð Þn

; bmþ 1

2

; a mþ1
2ð Þþ1

; v mþ1
2ð Þ1

; v mþ1
2ð Þ2

; . . . ; v mþ1
2ð Þn
g
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when m is odd, or

Vm ¼ fam
2
þ1; vm

2
1; vm

2
2; . . . ; vm

2
n; u m

2
þ1ð Þ1; u m

2
þ1ð Þ2; . . . ; u m

2
þ1ð Þn; bm2þ1g

when m is even.

Since vertices in the same class have the same number of 3rd neighbors, we only need to

consider one vertex from each class.

• If n = 1, it is easy to see that Wp(Hc(1, 1)) = 6 and Wp(Hc(1, 2)) = 16. When m� 3, one can

verify the followings:

N3
Hcð1;mÞða1Þ ¼ fu21; b2g; N3

Hcð1;mÞðu11Þ ¼ fa3; v11; v21g;

N3
Hcð1;mÞða2Þ ¼ fu31; b3; b1g; N3

Hcð1;mÞðu21Þ ¼ fa1; c1; v21; a4; v31g;

N3
Hcð1;mÞðaiÞ ¼ fuði� 2Þ1; bi� 1; bi� 2; uðiþ1Þ1; biþ1g 3 � i � b

m
2
c þ 1

� �
;

N3
Hcð1;mÞðui1Þ ¼ fai� 1; vði� 2Þ1; vi1; vðiþ1Þ1; aiþ2g 3 � i � d

m
2
e

� �
:

That is, jN3
Hcð1;mÞðvÞj ¼ 2 for v 2 V0, jN3

Hcð1;mÞðvÞj ¼ 3 for v 2 V1 or v 2 V2, and

jN3
Hcð1;mÞðvÞj ¼ 5 for any vertex v in V0 = V(Hc(1, m)) − V0 − V1 − V2. By Lemma 4,

WpðHcð1;mÞÞ ¼

X

v2VðHcð1;mÞÞ

jN3

Hcð1;mÞðvÞj

2

¼
2� jV0j þ 3� jV1j þ 3� jV2j þ 5� jV 0j

2

¼
2� 4þ 3� 4þ 3� 4þ 5� ½4ðmþ 1Þ � 4� 3�

2

¼ 10m � 4:

It is not hard to check that Wp(Hc(1, 1)) (with m = 1) and Wp(Hc(1, 2)) (with m = 2) also sat-

isfy this expression.

• If n = 2, then Wp(Hc(2, 1)) = 21 and Wp(Hc(2, 2)) = 45. When m� 3, the 3rd neighborhoods

of the representative vertices are

N3
Hcð2;mÞða1Þ ¼ fu21; b2; u12; u22g;

N3
Hcð2;mÞðu11Þ ¼ fa3; v11; v12; v22; c2g;

N3
Hcð2;mÞða2Þ ¼ fu31; b3; u12; u22; b1; u32g;

N3
Hcð2;mÞðu21Þ ¼ fa1; c1; v12; v22; c2; v21; a4; v32g;

N3
Hcð2;mÞðaiÞ ¼ fuði� 2Þ1; bi� 1; uði� 2Þ2; uði� 1Þ2; ui2; uðiþ1Þ2; biþ1; uðiþ1Þ1g
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for 3 � i � bm
2
c þ 1, and

N3
Hcð2;mÞðui1Þ ¼ fai� 1; vði� 2Þ1; vði� 1Þ2; vi2; vði� 2Þ2; vi1; vðiþ1Þ2; aiþ2g

for 3 � i � dm
2
e.

Hence jN3
Hcð2;mÞðvÞj ¼ 4 for v 2 V0, jN3

Hcð2;mÞðvÞj ¼ 5 for v 2 V1, jN3
Hcð2;mÞðvÞj ¼ 6 for

v 2 V2, and jN3
Hcð2;mÞðvÞj ¼ 8 for any vertex v in V0 = V(Hc(2, m)) − V0 − V1 − V2. Conse-

quently

WpðHcð2;mÞÞ ¼

X

v2VðHcð2;mÞÞ

jN3

Hcð2;mÞðvÞj

2

¼
4� jV0j þ 5� jV1j þ 6� jV2j þ 8� jV 0j

2

¼
4� 6þ 5� 6þ 6� 6þ 8� ½6ðmþ 1Þ � 6� 3�

2

¼ 24m � 3;

which also holds for m = 1 and m = 2.

• If n� 3, we have, for m = 1 or m = 2,

WpðHcðn; 1ÞÞ ¼ 9ðnþ 1Þ

and

WpðHcðn; 2ÞÞ ¼ 18ðnþ 1Þ:

When m� 3, similar to before we have

jN3
Hcðn;mÞðvÞj ¼ 5 for v 2 V0;

jN3
Hcðn;mÞðvÞj ¼ 6 for v 2 V1;

jN3
Hcðn;mÞðvÞj ¼ 7 for v 2 V2;

and

jN3
Hcðn;mÞðvÞj ¼ 9 for v 2 V 0 ¼ VðHcðn;mÞÞ � V0 � V1 � V2:

Hence

WpðHcðn;mÞÞ ¼

X

v2VðHcðn;mÞÞ

jN3

Hcðn;mÞðvÞj

2

¼
5� jV0j þ 6� jV1j þ 7� jV2j þ 9� jV 0j

2

¼
5ð2nþ 2Þ þ 6ð2nþ 2Þ þ 7ð2nþ 2Þ þ 9ð2nþ 2Þðm � 2Þ

2

¼ 9mðnþ 1Þ;

also satisfied by Wp(Hc(n, 1)) and Wp(Hc(n, 2)).
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(3) Lastly, we will evaluate the Wiener polarity index of Hf(n, m) recursively.

First consider the case n = 1. Through direct computation we have, in Hf(1, m), the follow-

ings when m� 3:

jN3

Hf ð1;mÞða1Þj ¼ jN3

Hf ð1;mÞðbmþ1Þj ¼ 2,

jN3

Hf ð1;mÞðu11Þj ¼ jN3

Hf ð1;mÞðvm1Þj ¼ 2,

jN3

Hf ð1;mÞða2Þj ¼ jN3

Hf ð1;mÞðbmÞj ¼ 3,

jN3

Hf ð1;mÞðui1Þj ¼ jN
3

Hf ð1;mÞðvðmþ1� iÞ1Þj ¼ 4 for 2� i�m − 1,

jN3

Hf ð1;mÞðaiÞj ¼ jN
3

Hf ð1;mÞðbmþ2� iÞj ¼ 5 for 3� i�m,

jN3

Hf ð1;mÞðum1Þj ¼ jN3

Hf ð1;mÞðv11Þj ¼ 3,

jN3

Hf ð1;mÞðamþ1Þj ¼ jN3

Hf ð1;mÞðb1Þj ¼ 4, and

jN3

Hf ð1;mÞðc
�
1
Þj ¼ jN3

Hf ð1;mÞðc1Þj ¼ 2.

Thus

WpðHf ð1;mÞÞ ¼

X

v2VðHf ð1;mÞÞ

jN3

Hf ð1;mÞðvÞj

2

¼
½2þ 2þ 3þ 4ðm � 2Þ þ 5ðm � 2Þ þ 3þ 4þ 2� � 2

2

¼ 9m � 2;

also satisfied by Wp(Hf(1, 1)) = 7 and Wp(Hf(1, 2)) = 16.

Now let n� 2. The structure of Hf(n, m) yields

WpðHf ðn;mÞÞ ¼ jfðu; vÞjdHf ðn;mÞðu; vÞ ¼ 3; u; v 2 VðHf ðn;mÞÞgj

¼ jN3

Hf ðn;mÞða1Þj þ jN3

Hf ðn;mÞðu11Þj þ jN3

Hf ðn;mÞða2Þj

þ
Xm

i¼2

ðjN3

Hf ðn;mÞðui1Þj � 1Þ þ
Xmþ1

i¼3

ðjN3

Hf ðn;mÞðaiÞj � 1Þ

þ ðjN3

Hf ðn;mÞðc
�
1
Þj � 1Þ þWpðHf ðn � 1;mÞÞ:

Here ðjN3

Hf ðn;mÞðui1Þj � 1Þ and ðjN3

Hf ðn;mÞðaiÞj � 1Þ appear because of the double counted terms.

By applying this recursion we can explicitly compute Wp(Hf(n, m)) for n� 2.

For m� 3, it is not difficult to check the 3rd neighborhoods individual vertices, we skip the

details. As a result we have

jN3

Hf ðn;mÞða1Þj þ jN3

Hf ðn;mÞðu11Þj þ jN3

Hf ðn;mÞða2Þj þ
Xm

i¼2

ðjN3

Hf ðn;mÞðui1Þj � 1Þ

þ
Xmþ1

i¼3

ðjN3

Hf ðn;mÞðaiÞj � 1Þ þ ðjN3

Hf ðn;mÞðc
�

1
Þj � 1Þ ¼ 9m:

and

WpðHf ðn;mÞÞ ¼ 9mþWpðHf ðn � 1;mÞÞ

¼ 9mþ 9mþWpðHf ðn � 2;mÞÞ

¼ � � � � � �

¼ 9m� ðn � 1Þ þWpðHf ð1;mÞÞ

¼ 9nm � 2
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for m� 3. It is easy to check Wp(Hf(n, 1)) = 9n − 2 and Wp(Hf(n, 2)) = 18n − 2, and hence

Wp(Hf(n, m)) = 9nm − 2 for n� 2 and m� 1. Furthermore, we have Wp(Hf(1, m)) = 9m − 2.

Thus we conclude that Wp(Hf(n, m)) = 9nm − 2 for n� 1 and m� 1.

Remark 3 For small values of n and m, direct computation yields
Wp(Ht(1, 1)) = 4, Wp(Ht(1, 2)) = Wp(Ht(2, 1)) = 18, Wp(Ht(2, 2)) = 54.

The Wiener polarity index of the triangular lattices

We now turn our attention to the Wiener polarity index of the triangular lattices. Again our

notations follow [50]. The triangular lattices with toroidal, cylindrical and free boundary con-

ditions are respectively denoted by Tt(n, m), Tc(n, m) and Tf(n, m). It is not hard to see, that

the triangular lattice with toroidal boundary condition Tt(n, m) can be considered as an n × m
square lattice Cn□Cm with toroidal boundary condition with an additional diagonal edge

added to every square. As in Fig 3, ða1; a�1Þ, ða2; a�2Þ, . . ., ðam; a�mÞ; ðb1; b�1Þ, ðb2; b�2Þ, . . ., ðbn; b�nÞ;
ðb2; b�1Þ, ðb3; b�2Þ, . . ., ðbn; b�n� 1

Þ, ðb1; b�nÞ ¼ ða1; a�mÞ; ða2; a�1Þ, ða3; a�2Þ, . . ., ðam; a�m� 1
Þ are edges.

Note that a1 = b1, a�
1
¼ bn, am ¼ b�

1
and a�m ¼ b�n. The triangular lattice with cylindrical bound-

ary condition Tc(n, m) is obtained by deleting the edges ðb1; b�1Þ, ðb2; b�2Þ, . . ., ðbn; b�nÞ; ðb2; b�1Þ,
ðb3; b�2Þ, . . ., ðbn; b�n� 1

Þ, ðb1; b�nÞ from Tt(n, m). If we further remove the edges ða1; a�1Þ, ða2; a�2Þ,
. . ., ðam; a�mÞ; ða2; a�1Þ, ða3; a�2Þ, . . ., ðam; a�m� 1

Þ from Tc(n, m), the triangular lattice with free

boundary condition Tf(n, m) is then obtained. Since it has been established that Cn□Cm exists

for n� 3 and m� 3, in what follows we assume n� 3 and m� 3 for all the triangular lattices

considered.

Theorem 3 Let Tf(n, m), Tc(n, m) and Tt(n, m) be the triangular lattices with free, cylindrical
and toroidal boundary conditions respectively. Then we have

(i) For n� 3 and m� 3, Wp(Tf(n, m)) = 9nm − 18n − 18m + 31;

(ii)

WpðTcðn;mÞÞ ¼

9m � 27 if n ¼ 3; m � 3;

20m � 56 if n ¼ 4; m � 3;

35m � 85 if n ¼ 5; m � 3;

51m � 108 if n ¼ 6; m � 3;

9nm � 18n if n � 7; m � 3;

8
>>>>>>>>>><

>>>>>>>>>>:

(iii)

WpðTtðn;mÞÞ ¼

9m if n ¼ 3; m � 7;

20m if n ¼ 4; m � 7;

35m if n ¼ 5; m � 7;

51m if n ¼ 6; m � 7;

9nm if n � 7; m � 7:

8
>>>>>>>>>><

>>>>>>>>>>:

Moreover, for small values of n and m we have the followings:
Wp(Tt(n, m)) = 0 if n = 3, 3�m� 5 or n = m = 4;

Wp(Tt(3, 6)) = 27; Wp(Tt(4, 5)) = 20; Wp(Tt(4, 6)) = 72;

Wp(Tt(5, 5)) = 75; Wp(Tt(5, 6)) = 165; Wp(Tt(6, 6)) = 270.
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Remark 4 As illustrated in Fig 4, we generally have

WpðTtðn;mÞÞ >WpðTcðn;mÞÞ >WpðTf ðn;mÞÞ;

with the common asymptotic value 9mn as both m an n approaches infinity. It is interesting to
note that the Wiener polarity index of the triangular lattices and that of the hexagonal lattices are
approximately the same.

Proof. We consider each of the three statements.

(i) First we consider the triangular lattice with free boundary condition, Tf(n, m), with the

assumption n�m.

Case 1 When m = 3:

Fig 3. The triangular lattice.

doi:10.1371/journal.pone.0167075.g003
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• If n = 3, Wp(Tf(3, 3)) = 4.

• If n� 4, we have

jN3

Tf ðn;3Þða1Þj ¼ 3; jN3

Tf ðn;3Þða2Þj ¼ 3; jN3

Tf ðn;3Þða3Þj ¼ 3:

Thus

WpðTf ðn; 3ÞÞ ¼
X3

i¼1

jN3

Tf ðn;3ÞðaiÞj þWpðT
f ðn � 1; 3ÞÞ

¼ 9þWpðTf ðn � 1; 3ÞÞ

¼ 9þ
X3

i¼1

jN3

Tf ðn� 1;3Þ
ðaiÞj þWpðT

f ðn � 2; 3ÞÞ

¼ 9þ 9þWpðTf ðn � 2; 3ÞÞ

¼ � � �

¼ 9ðn � 3Þ þWpðTf ð3; 3ÞÞ ¼ 9n � 23;

also satisfied by Wp(Tf(3, 3)) = 4.

Fig 4. The Wiener polarity index of Tt(n, m), Tc(n, m) and Tf(n, m).

doi:10.1371/journal.pone.0167075.g004
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Case 2 When m = 4, for n�m we have

jN3

Tf ðn;4Þða1Þj ¼ 7; jN3

Tf ðn;4Þða2Þj ¼ 4; jN3

Tf ðn;4Þða3Þj ¼ 4; jN3

Tf ðn;4Þða4Þj ¼ 4:

Hence

WpðTf ðn; 4ÞÞ ¼
X4

i¼1

jN3

Tf ðn;4ÞðaiÞj � WpðP4Þ þWpðT
f ðn � 1; 4ÞÞ

¼ ð19 � 1Þ þWpðTf ðn � 1; 4ÞÞ

¼ 18þ
X4

i¼1

jN3

Tf ðn� 1;4Þ
ðaiÞj � WpðP4Þ þWpðT

f ðn � 2; 4ÞÞ

¼ 18þ 18þWpðTf ðn � 2; 4ÞÞ

¼ � � �

¼ 18ðn � 3Þ þWpðTf ð3; 4ÞÞ

¼ 18ðn � 3Þ þWpðTf ð4; 3ÞÞ

¼ 18n � 41:

Case 3 When m = 5, similar to Case 2 we have Wp(Tf(n, 5)) = 27n − 59 for n�m = 5.

Case 4 When m� 6 and n�m. Simple computation yields

jN3

Tf ðn;mÞða1Þj ¼ 7; jN3

Tf ðn;mÞða2Þj ¼ 8; jN3

Tf ðn;mÞða3Þj ¼ 9;

jN3

Tf ðn;mÞða4Þj ¼ � � � ¼ jN3

Tf ðn;mÞðam� 3Þj ¼ 10;

jN3

Tf ðn;mÞðam� 2Þj ¼ 6; jN3

Tf ðn;mÞðam� 1Þj ¼ 5; jN3

Tf ðn;mÞðamÞj ¼ 4:

Noting that Wp(Pm) = m − 3 and Wp(Tf(3, m)) = Wp(Tf(m, 3)) = 9m − 23, we have

WpðTf ðn;mÞÞ ¼
Xm

i¼1

jN3

Tf ðn;mÞðaiÞj � WpðPmÞ þWpðT
f ðn � 1;mÞÞ

¼ ð10m � 21Þ � ðm � 3Þ þWpðTf ðn � 1;mÞÞ

¼ ð9m � 18Þ þ
Xm

i¼1

jN3

Tf ðn� 1;mÞðaiÞj � WpðPmÞ

þWpðTf ðn � 2;mÞÞ

¼ ð9m � 18Þ þ ð9m � 18Þ þWpðTf ðn � 2;mÞÞ

¼ � � �

¼ ð9m � 18Þ � ðn � 3Þ þWpðTf ð3;mÞÞ

¼ 9nm � 18n � 18mþ 31:

Since this formula coincides with our findings for smaller values of m, we conclude that

Wp(Tf(n, m)) = 9nm − 18n − 18m + 31 for n� 3 and m� 3.

(ii) Next we consider the triangular lattice with cylindrical boundary condition Tc(n, m).

The symmetric structure of Tc(n, m) indicates that the vertices from the same row have the

same number of 3rd neighbors. Thus it suffices to compute N3
Tcðn;mÞðaiÞ for i = 1, 2, . . ., m to

obtain Wp(Tc(n, m)).
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Case 1 If n = 3; first suppose m� 7. Direct computation yields

jN3
Tcð3;mÞðaiÞj ¼ 3 for i ¼ 1; 2; 3; m � 2; m � 1; m

and

jN3
Tcð3;mÞðaiÞj ¼ 6 for 4 � i � m � 3:

Thus Lemma 4 implies that

WpðTcð3;mÞÞ ¼

X

v2VðTcð3;mÞÞ

jN3

Tcð3;mÞðvÞj

2

¼

Xm

i¼1

jN3

Tcð3;mÞðaiÞj

 !

� 3

2

¼ 9m � 27:

On the other hand, for 3�m� 6, one can verify Wp(Tc(3, m)) = 9m − 27 through direct

computation.

Case 2 If n = 4, 5, or 6; Following essentially the same arguments as that of Case 1, we have

WpðTcð4;mÞÞ ¼ 20m � 56 for m � 3;

WpðTcð5;mÞÞ ¼ 35m � 85 for m � 3;

WpðTcð6;mÞÞ ¼ 51m � 108 for m � 3:

Case 3 If n� 7:

• When m = 3, it is easy to see that jN 3
Tcðn;3ÞðaiÞj ¼ 6 for i = 1, 2, 3, and hence Lemma 4 implies

WpðTcðn; 3ÞÞ ¼

X

v2VðTcðn;3ÞÞ

jN3

Tcðn;3ÞðvÞj

2

¼

X3

i¼1

jN3

Tcðn;3ÞðaiÞj

 !

� n

2

¼ 9n:

• When m = 4, we have jN 3
Tcðn;4Þða1Þj ¼ jN3

Tcðn;4Þða4Þj ¼ 10 and

jN3
Tcðn;4Þða2Þj ¼ jN3

Tcðn;4Þða3Þj ¼ 8. Thus

WpðTcðn; 4ÞÞ ¼

X

v2VðTcðn;4ÞÞ

jN3

Tcðn;4ÞðvÞj

2

¼

X4

i¼1

jN3

Tcðn;4ÞðaiÞj

 !

� n

2

¼ 18n:
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• Similarly, when m = 5 or 6 we have

WpðTcðn; 5ÞÞ ¼ 27n;

WpðTcðn; 6ÞÞ ¼ 36n:

• When m� 7, examining the 3rd neighborhoods yields

jN3
Tcðn;mÞða1Þj ¼ jN3

Tcðn;mÞðamÞj ¼ 10;

jN3
Tcðn;mÞða2Þj ¼ jN3

Tcðn;mÞðam� 1Þj ¼ 12;

jN3
Tcðn;mÞða3Þj ¼ jN3

Tcðn;mÞðam� 2Þj ¼ 14;

jN3
Tcðn;mÞðaiÞj ¼ 18 for 4 � i � m � 3:

Consequently

WpðTcðn;mÞÞ ¼

X

v2VðTcðn;mÞÞ

jN3

Tcðn;mÞðvÞj

2

¼

Xm

i¼1

jN3

Tcðn;mÞðaiÞj

 !

� n

2

¼ 9nm � 18n:

Again this formula can be verified with m = 3, 4, 5, 6, and hence we may conclude that

Wp(Tc(n, m)) = 9nm − 18n for n� 7 and m� 3.

(iii) Lastly, we consider Tt(n, m) with the assumption that m� n. It is easy to see that all

vertices share the same number of 3rd neighbors.

For small values of n and m, we have Wp(Tt(n, m)) = 0 for n = 3 and 3�m� 5 or n =

m = 4; Wp(Tt(3, 6)) = 27; Wp(Tt(4, 5)) = 20; Wp(Tt(4, 6)) = 72; Wp(Tt(5, 5)) = 75; Wp(Tt(5, 6)) =

165; Wp(Tt(6, 6)) = 270.

For m� 7 we consider different cases depending on the value of n.

• If n = 3 and m� 7, then jN3
Ttð3;mÞðvÞj ¼ 6 for any vertex v 2 V(Tt(3, m)) and

WpðTtð3;mÞÞ ¼

X

v2VðTtð3;mÞÞ

jN3

Tt ð3;mÞðvÞj

2

¼
6� 3m

2

¼ 9m:

• If n = 4 and m� 7, jN 3
Ttð4;mÞðvÞj ¼ 10 for any vertex v 2 V(Tt(4, m)) and Wp(Tt(4, m)) = 20m.

• If n = 5 and m� 7, jN 3
Ttð5;mÞðvÞj ¼ 14 for any vertex v 2 V(Tt(5, m)) and Wp(Tt(5, m)) = 35m.

• If n = 6 and m� 7, jN 3
Ttð6;mÞðvÞj ¼ 17 for any vertex v 2 V(Tt(6, m)) and Wp(Tt(6, m)) = 51m.
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• If n� 7 and m� 7, direct computation shows jN 3
Ttðn;mÞðvÞj ¼ 18 for any vertex v 2 V(Tt(n,

m)). Hence

WpðTtðn;mÞÞ ¼

X

v2VðTtðn;mÞÞ

jN3

Ttðn;mÞðvÞj

2

¼
18� nm

2

¼ 9nm:

The Wiener polarity index of the 33 � 42 lattices

We conclude our study by considering the Wiener polarity index of the 33 � 42 lattices, follow-

ing the notations of [50]. The 33 � 42 lattice with toroidal boundary condition, denoted by St(n,

2m), can be constructed from the square lattice C2m□Cn by adding a diagonal edge in each

square of every other row, as shown in Fig 5. Here a1 = b1, a2m ¼ b�
1
, a�

1
¼ bn, a�2m ¼ b�n, and

ða1; a�1Þ, ða2; a�2Þ, . . ., ða2m; a�2mÞ; ðb1; b�1Þ, ðb2; b�2Þ, . . ., ðbn; b�nÞ; ða1; a�2Þ, ða3; a�4Þ, . . ., ða2m� 1; a�2mÞ
are edges. If we remove the edges ðb1; b�1Þ, ðb2; b�2Þ, . . ., ðbn; b�nÞ of St(n, 2m), then the 33 � 42 lat-

tice with cylindrical boundary condition, denoted by Sc(n, 2m), is obtained. The 33 � 42 lattice

Sf(n, 2m) with free boundary condition is obtained by further removing edges ða1; a�1Þ, ða2; a�2Þ,
. . ., ða2m; a�2mÞ; ða1; a�2Þ, ða3; a�4Þ, . . ., ða2m� 1; a�2mÞ from Sc(n, 2m). Similar to before, we will

assume n� 3 and m� 2 when the 33 � 42 lattices are discussed.

Theorem 4 Let Sf(n, 2m), Sc(n, 2m) and St(n, 2m) be the 33 � 42 lattices with free, cylindrical
and toroidal boundary conditions, respectively. Then

(i) For n� 3 and m� 2, Wp(Sf(n, 2m)) = 15nm − 13n − 25m + 15;

(ii)

WpðScðn; 2mÞÞ ¼

21m � 27 if n ¼ 3; m � 2;

40m � 48 if n ¼ 4; m � 2;

60m � 65 if n ¼ 5; m � 2;

84m � 78 if n ¼ 6; m � 2;

15nm � 13n if n � 7; m � 2;

8
>>>>>>>>>><

>>>>>>>>>>:

(iii)

WpðStðn; 2mÞÞ ¼

21m if n ¼ 3; m � 4;

40m if n ¼ 4; m � 4;

60m if n ¼ 5; m � 4;

84m if n ¼ 6; m � 4;

16n if n � 7; m ¼ 2;

42n if n � 7; m ¼ 3;

15nm if n � 7; m � 4:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:
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In addition, for small n and m we have Wp(St(3, 4)) = 0; Wp(St(3, 6)) = 45; Wp(St(4, 4)) = 16;

Wp(St(4, 6)) = 108; Wp(St(5, 4)) = 50; Wp(St(5, 6)) = 165; Wp(St(6, 4)) = 84; Wp(St(6, 6)) = 234.

Remark 5 As illurstrated in Fig 6, we generally have

WpðStðn;mÞÞ >WpðScðn;mÞÞ >WpðSf ðn;mÞÞ;

with the common asymptotic value 15mn as both m an n approaches infinity.

Proof. We consider each of the three cases as follows:

(i) We start with the 33 � 42 lattice Sf(n, 2m) with free boundary condition. First we consider

Wp(Sf(n, 2m)), noting that jN3

Sf ð3;2mÞðaiÞj ¼ jN
3

Sf ð3;2mÞða
�
2mþ1� iÞj for 1� i� 2m, thus for m� 4

Fig 5. The 33 � 42 lattice.

doi:10.1371/journal.pone.0167075.g005
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we have

jN3

Sf ð3;2mÞða1Þj ¼ jN3

Sf ð3;2mÞða
�
2mÞj ¼ 3; jN3

Sf ð3;2mÞða2Þj ¼ jN3

Sf ð3;2mÞða
�
2m� 1
Þj ¼ 3;

jN3

Sf ð3;2mÞða3Þj ¼ jN3

Sf ð3;2mÞða
�
2m� 2
Þj ¼ 5; jN3

Sf ð3;2mÞða2m� 2Þj ¼ jN3

Sf ð3;2mÞða
�
3
Þj ¼ 6;

jN3

Sf ð3;2mÞða2m� 1Þj ¼ jN3

Sf ð3;2mÞða
�
2
Þj ¼ 5; jN3

Sf ð3;2mÞða2mÞj ¼ jN3

Sf ð3;2mÞða
�
1
Þj ¼ 4;

jN3

Sf ð3;2mÞðaiÞj ¼ jN
3

Sf ð3;2mÞða
�
2mþ1� iÞj ¼ 7 for 4 � i � 2m � 3;

jN3

Sf ð3;2mÞðb2Þj ¼ 3; jN3

Sf ð3;2mÞðc2Þj ¼ 3; jN3

Sf ð3;2mÞðc3Þj ¼ 4;

jN3

Sf ð3;2mÞðc2m� 2Þj ¼ 4; jN3

Sf ð3;2mÞðc2m� 1Þj ¼ 3; jN3

Sf ð3;2mÞðb
�
2
Þj ¼ 3;

jN3

Sf ð3;2mÞðciÞj ¼ 6 for 4 � i � 2m � 3:

Plugging into Eq (2), we have Wp(Sf(3, 2m)) = 20m − 24 for m� 4. Since Wp(Sf(3, 4)) =

16 = 20 × 2 − 24 when m = 2 and Wp(Sf(3, 6)) = 36 = 20 × 3 − 24 when m = 3, we conclude that

Wp(Sf(3, 2m)) = 20m − 24 for m� 2.

Fig 6. The Wiener polarity index of St(n, m), Sc(n, m) and Sf(n, m).

doi:10.1371/journal.pone.0167075.g006
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Now suppose n� 4. Observe that if the vertices in the first column are removed from Sf(n,

2m), then Sf(n − 1, 2m) is obtained. We now consider the vertices in the first column of Sf(n,

2m) and their 3rd neighbors:

jN3

Sf ðn;2mÞða1Þj ¼ 4; jN3

Sf ðn;2mÞða2Þj ¼ 5; jN3

Sf ðn;2mÞða3Þj ¼ 6;

jN3

Sf ðn;2mÞðaiÞj ¼ 9 for i ¼ 4; 6; . . . ; 2m � 4;

jN3

Sf ðn;2mÞðaiÞj ¼ 8 for i ¼ 5; 7; . . . ; 2m � 3;

jN3

Sf ðn;2mÞða2m� 2Þj ¼ 8; jN3

Sf ðn;2mÞða2m� 1Þj ¼ 6; jN3

Sf ðn;2mÞða2mÞj ¼ 6;

Applying Lemma 4 together with the fact that Wp(Pn) = n − 3, have, for m� 4,

WpðSf ðn; 2mÞÞ ¼
X2m

i¼1

jN3

Sf ðn;2mÞðaiÞj � WpðP2mÞ þWpðS
f ðn � 1; 2mÞÞ

¼ ð15m � 13Þ þWpðSf ðn � 1; 2mÞÞ

¼ ð15m � 13Þ þ
X2m

i¼1

jN3

Sf ðn� 1;2mÞðaiÞj � WpðP2mÞ

þWpðSf ðn � 2; 2mÞÞ

¼ ð15m � 13Þ þ ð15m � 13Þ þWpðTf ðn � 2;mÞÞ

¼ � � �

¼ ð15m � 13Þ � ðn � 3Þ þWpðSf ð3; 2mÞÞ

¼ 15nm � 13n � 25mþ 15:

Again this formula can be verified for small values of n and m. Hence Wp(Sf(n, 2m)) = 15nm
− 13n − 25m + 15 for m� 2.

(ii) Next we consider the 33 � 42 lattice Sc(n, 2m) with cylindrical boundary condition. In

this case the vertices of Sc(n, 2m) in the same row have the same number of 3rd neighbors.

Hence it is sufficient to compute jN3
Scðn;2mÞðaiÞj for i = 1, 2, . . ., 2m.

Case 1 If n = 3 and m� 2; When m� 4 we have

jN3
Scð3;2mÞða1Þj ¼ jN3

Scð3;2mÞða2mÞj ¼ 4;

jN3
Scð3;2mÞða2Þj ¼ jN3

Scð3;2mÞða2m� 1Þj ¼ 3;

jN3
Scð3;2mÞða3Þj ¼ jN3

Scð3;2mÞða2m� 2Þj ¼ 5;

jN3
Scð3;2mÞðaiÞj ¼ 7 for 4 � i � 2m � 3:
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Then Lemma 4 implies

WpðScð3; 2mÞÞ ¼

X

v2VðScð3;2mÞÞ

jN3

Scð3;2mÞðvÞj

2

¼

X2m

i¼1

jN3

Scð3;2mÞðaiÞj

 !

� 3

2

¼ 21m � 27:

This formula can be easily verified for Wp(Sc(3, 4)) = 15 (m = 2) and Wp(Sc(3, 6)) = 36 (m = 3).

Case 2 If n = 4 and m� 2; When m� 4, we have

jN3
Scð4;2mÞðaiÞj ¼ 5 for i ¼ 1; 2; 2m � 1; 2m;

jN3
Scð4;2mÞða3Þj ¼ jN3

Scð4;2mÞða2m� 2Þj ¼ 8;

jN3
Scð4;2mÞðaiÞj ¼ 10 for 4 � i � 2m � 3:

Thus

WpðScð4; 2mÞÞ ¼

X

v2VðScð4;2mÞÞ

jN3

Scð4;2mÞðvÞj

2

¼

X2m

i¼1

jN3

Scð4;2mÞðaiÞj

 !

� 4

2

¼ 40m � 48:

Again this can be verified for m = 2 or 3.

Case 3 Similarly, we have

WpðScðn; 2mÞÞ ¼ 60m � 65 for n ¼ 5 and m � 2;

WpðScðn; 2mÞÞ ¼ 84m � 78 for n ¼ 6 and m � 2:

Case 4 If n� 7 and m� 2;

• When m = 2 and n� 7, we have

jN3
Scðn;4Þða1Þj ¼ jN3

Scðn;4Þða4Þj ¼ 9; jN3
Scðn;4Þða2Þj ¼ jN3

Scðn;4Þða3Þj ¼ 8:
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Hence

WpðScðn; 4ÞÞ ¼

X

v2VðScðn;4ÞÞ

jN3

Scðn;4ÞðvÞj

2

¼

X4

i¼1

jN3

Scðn;4ÞðaiÞj

 !

� n

2

¼ 17n:

• When m = 3, we have

jN3
Scðn;6Þða1Þj ¼ jN3

Scðn;6Þða6Þj ¼ 9;

jN3
Scðn;6Þða2Þj ¼ jN3

Scðn;6Þða5Þj ¼ 10;

jN3
Scðn;6Þða3Þj ¼ jN3

Scðn;6Þða4Þj ¼ 13:

and hence Wp(Sc(n, 6)) = 32n.

• When m� 4, we have

jN3
Scðn;2mÞða1Þj ¼ jN3

Scðn;2mÞða2mÞj ¼ 9;

jN3
Scðn;2mÞða2Þj ¼ jN3

Scðn;2mÞða2m� 1Þj ¼ 10;

jN3
Scðn;2mÞða3Þj ¼ jN3

Scðn;2mÞða2m� 2Þj ¼ 13;

jN3
Scðn;2mÞðaiÞj ¼ 15 for 4 � i � 2m � 3:

Hence

WpðScðn; 2mÞÞ ¼

X

v2VðScðn;2mÞÞ

jN3

Scðn;2mÞðvÞj

2

¼

X2m

i¼1

jN3

Scðn;2mÞðaiÞj

 !

� n

2

¼ 15nm � 13n:

Note that the formula Wp(Sc(n, 2m)) = 15nm − 13n also hold for both m = 2 and m = 3.

(iii) Lastly, we calculate the Wiener polarity index of St(n, 2m), the 33 � 42 lattice with toroi-

dal boundary condition. As in Ht(n, m) and Tt(n, m), all vertices of St(n, 2m) have the same

number of 3rd neighbors. Also note that |V(St(n, 2m))| = 2nm.
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Case 1 If n = 3 and m� 2, it is easy to see that Wp(St(3, 4)) = 0 and Wp(St(3, 6)) = 45. When

m� 4, we have jN3
Stð3;2mÞðvÞj ¼ 7 for any v 2 V(St(3, 2m)). Hence

WpðStð3; 2mÞÞ ¼

X

v2VðStð3;2mÞÞ

jN3

v ðvÞj

2

¼
7� jVðStð3; 2mÞÞj

2

¼ 21m:

Case 2 If n = 4 and m� 2;

• When m = 2, we have Wp(St(4, 4)) = 16.

• When m = 3, we have Wp(St(4, 6)) = 108.

• When m� 4, we have |V(St(4, 2m))| = 8m and jN 3
Stð4;2mÞðvÞj ¼ 10 for any v 2 V(St(4, 2m)).

Hence Wp(St(4, 2m)) = 40m by Lemma 4.

Case 3 If n = 5 and m� 2, similarly we have

WpðStð5; 4ÞÞ ¼ 50; WpðStð5; 6ÞÞ ¼ 165;

and

WpðStð5; 2mÞÞ ¼ 60m for m � 4;

Case 4 If n = 6 and m� 2, similarly we have

WpðStð6; 4ÞÞ ¼ 84; WpðStð6; 6ÞÞ ¼ 234;

and

WpðStð6; 2mÞÞ ¼ 84m for m � 4:

Case 5 If n� 7 and m� 2:

• When m = 2, we have jN 3
Stðn;4ÞðvÞj ¼ 8 for any v 2 V(St(n, 4)) and Wp(St(n, 4)) = 16n.

• When m = 3, we have jN 3
Stðn;6ÞðvÞj ¼ 14 for any v 2 V(St(n, 6)) and Wp(St(n, 6)) = 42n.

• When m� 4, we have jN 3
Stðn;2mÞðvÞj ¼ 15 for any v 2 V(St(n, 2m)) and hence

WpðStðn; 2mÞÞ ¼

X

v2VðStðn;2mÞÞ

jN3

Stðn;2mÞðvÞj

2

¼
15� jVðStðn; 2mÞÞj

2

¼ 15nm:

Concluding remarks

Evaluation of topological indices of network structures is an important problem in the study of

network robustness [71–73]. In particular, the computation of distance-based graph indices of

various lattices has attracted the attention of researchers from many different backgrounds. By

using a fundamental general formula of the Wiener polarity index of graphs, we determined
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the explicit formulas for the Wiener polarity index of the square lattices, the hexagonal lattices,

the triangular lattices, and the 33 � 42 lattices with free, cylindrical and toroidal boundary con-

ditions. The results of Theorems 2, 3, and 4 are plotted in Figs 4–6 respectively.

There exist other interesting graph structures of practical interests, such as the polyomino

chains and the triangular Kagomé lattices. It would be worthwhile to explore their structure

through computation of similar graph indices [74–77]. Given our findings, it may also be

interesting to study the asymptotic behavior of a given topological index of these lattices struc-

tures. Furthermore, it could be a challenge to develop theoretical bounds on such indices,

when certain restrictions (such as the sizes and number of “holes” in a hexagonal system)

accommodated by the graph structure.
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