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Abstract: A shock wave that is characterized by sharp physical gradients always draws the medium
out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects
around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog
analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-,
and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and
relative deviation degrees are defined in order to describe the departure of the fluid system from the
equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized
energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number,
thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around
shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock
wave and nonequilibrium statistical mechanics.
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1. Introduction

Shock waves are widespread in many fields of physics and engineering [1–4], and their frequent
occurrence is based on the fact that matter is more or less compressible [5]. The shock wave is a kind of
disturbance waves that carries abundant energy and propagates at supersonic speed in the medium [6].
At the macroscopic level, it is a high-temperature, high-pressure, high-density surface moving forward
at high-speed, through which the pressure, density, temperature, and other physical quantities of the
medium undergo rapid changes [7,8]. Shock waves, as an objective phenomenon, are generated by
lightning, earthquakes, volcanic eruptions, nuclear or chemical explosions, reentry vehicles, sonic
boom of supersonic aircraft and any supersonic flying projectile, etc. [5,8].

In practice, the shock wave is extremely complex, as it covers a wide range of spatio-temporal
scales, and incorporates hydrodynamic and thermodynamic nonequilibrium effects [9,10]. In fact,
hydrodynamic and thermodynamic nonequilibrium effects often exert significant influences on fluid
systems [11]. It is necessary to take these nonequilibrium effects into consideration in order to accurately
predict fluid behaviours. To this aim, a possible method is to use molecular dynamics [12–14] or
direct simulation Monte Carlo [15]. But both of them encounter the issue that the spatio-temporal
scales amenable are rather limited due to the high computation cost. On the other side, traditional
hydrodynamic methods which require less computation cost usually ignore more abundant, complex
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and essential thermodynamic nonequilibrium effects caused by interactions at microscopic scales [16,17].
The hydrodynamic models are based on the continuity assumption and usually lack the high physical
accuracy for practice flows with sharp physical gradients and/or strong nonequilibrium effects.
To address this problem, great efforts have been made and various kinetic models based on the Boltzmann
equation have been developed.

Actually, there are two classes of kinetic models for fluid systems. One aims to provide a new
algorithm to solving the hydrodynamic governing equations, e.g., Euler equations, incompressible
or full Navier-Stokes equations. Such models include the lattice Boltzmann method [18–21] and the
gas kinetic scheme [22,23]. These models could only simulate the fluid behaviours described by
the original macroscopic fluid equations, they can not provide any information beyond the original
equations. The other type of kinetic models is to capture both hydrodynamic and thermodynamic
nonequilibrium behaviours beyond the macroscopic models. The successful physical models include
the unified gas kinetic scheme [24–26], the discrete unified gas kinetic scheme [27,28], the discrete
Boltzmann method (DBM) [29–39], etc. These powerful models are suitable for continuum and rarefied
systems with a wide range of Knudsen numbers, and capable to subsonic and supersonic flows with
essential nonequilibrium effects.

Compared with the unified gas kinetic scheme and the discrete unified gas kinetic scheme, the DBM
requires less discrete velocities and distribution functions, hence it has a higher computational efficiency.
From a physical modeling perspective, a DBM is approximately equivalent to a continuous fluid model
plus a coarse-grained model of other relevant thermodynamic nonequilibrium effects. At present, the DBM
has been developed as a nonequilibrium flow simulation tool for various flow systems, including the
fluid instability [29,32,38], multiphase flow [34], shock and detonation [30,31,33,36,37,39]. Roughly
speaking, the DBMs can be classed into two categories: the single-relaxation-time DBM [29–36] and the
multiple-relaxation-time DBM [37–39]. In the single-relaxation-time model, there is only one relaxation
time that controls a thermodynamic nonequilibrium system approaching its equilibrium state. In the
multiple-relaxation-time DBM, the relaxation parameters for various kinetic modes are independent of
each other. Actually, the multiple-relaxation-time DBM reduces to a single-relaxation-time model if all
relaxation parameters equal to each other.

In this article, we use the multiple-relaxation-time DBM to study nonequilibrium shock waves,
where both specific heat ratio and Prandtl number are adjustable [39]. Thanks to its kinetic nature,
the versatile DBM can be adopted to capture and measure both hydrodynamic and thermodynamic
nonequilibrium behaviours in an accurate and effective way [39]. The DBM is briefly introduced in
Appendix A. The rest of the paper is structured as follows. The study of local nonequilibrium effects is
presented in Section 2. Then the investigation of global nonequilibrium effects is shown in Section 3.
Finally, Section 4 concludes.

2. Local Nonequilibrium Effects

It is noteworthy that the DBM has the capability of measuring the nonequilibrium manifestations
in subsonic, sonic and supersonic flows accurately [29–39]. Actually, the DBM is capable to recover
the velocity distribution function in two ways. One is to obtain the main features of the velocity
distribution function by analysis of the detailed nonequilibrium quantity f̂ neq

i that has specific physical
meanings. For example, f̂ neq

5 = f̂5 − f̂ eq
5 denotes twice the nonorganized energy in the x direction;

f̂ neq
7 = f̂7 − f̂ eq

7 represents twice the nonorganized energy in the y direction; f̂ neq
8 = f̂8 − f̂ eq

8 stands for
twice the nonorganized energy flux in the x direction; f̂ neq

9 = f̂9− f̂ eq
9 is twice the nonorganized energy

flux in the y direction. In previous works [29,30,40], the DBM has already been utilized to get the
characteristics of the velocity distribution function around the detonation wave, shock front, rarefaction
wave, and material interface. The other is to recover the main characteristics of the velocity distribution
quantitatively through the macroscopic quantities and their spatial and temporal derivatives, which
can be achieved by the Chapman-Enskog expansion [35].
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2.1. Nonequilibrium Manifestations

To have a better understanding of the nonequilibrium effects upon the fine structure of the shock
wave, we probe the nonequilibrium variables, effects, and degrees in this subsection. Note that the
main characteristics of the velocity distribution function can be obtained from the thermodynamic
nonequilibrium manifestations [29,30,40].

Now we consider a shock wave propagating from left to right. At the beginning, the shock front
is located at x = 0.01 with the Mach number Ma = 2. The computation is carried out with the mesh
number Nx × Ny = 10,000 × 1. The spatial step is ∆x = ∆y = 10−4, the temporal step ∆t = 10−5,
and relaxation frequency Si = 103. The initial state is set by the Hugoniot relation,{ (

ρ, ux, uy, T, P
)

L = (2.667, 1.479, 0, 1.688, 4.5) ,(
ρ, ux, uy, T, P

)
R = (1, 0, 0, 1, 1) ,

where the subscripts L and R denote 0 < x ≤ 0.01 and 0.01 < x ≤ 1, respectively. In addition,
inflow and outflow boundary conditions are employed in the x direction, and the periodic boundary
condition is adopted in the y direction.

The profiles of density ρ, pressure P, temperature T, and horizontal velocity ux near the shock front
are illustrated in Figure 1a. The solid lines with squares, circles, upper triangles and lower triangles
represent the density, pressure, temperature, and horizontal velocity, respectively. Three vertical dashed
lines are plotted to guide the locations at x1 = 0.9545, x2 = 0.9575 and x3 = 0.9605, respectively. It’s clear
that these quantities increase dramatically as the shock wave travels forward through the medium.
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Figure 1. Profiles of physical quantities (ρ, P, T, ux) (a), physical gradients (b), nonorganized energy
f̂ neq
5 and energy flux in the x direction f̂ neq

8 (c), nonequilibrium effect Φ and deviation degrees (relative
deviation degree ∆r, absolute deviation degree ∆a) (d) near the wavefront.

Figure 1b displays the gradients of the physical quantities. The solid lines with squares, circles,
upper triangles and lower triangles denote the gradients of density, pressure, temperature and
horizontal velocity, respectively. Obviously, these physical gradients are quite distinguishable from
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each other with different amplitudes and trough locations around the wavefront. The minima of ρ, P,
T and ux are located at x = 0.95705, 0.95755, 0.95955 and 0.95885, respectively.

Figure 1c describes the nonorganized energy f̂ neq
5 and nonorganized energy flux in the x direction

f̂ neq
8 . The solid lines with circles and squares indicate f̂ neq

5 and f̂ neq
8 , respectively. It is evident that both

of them are greater than zero, and they first increase and then decrease around the wavefront. Their
peaks nearly coincide at x2 = 0.9575. Physically, f̂ neq

5 and f̂ neq
8 are related to the gradients of fluid

velocity and temperature (∇u and ∇T), respectively [41]. As shown in Figure 1b, the troughs of the
physical gradients ∇ux and ∇T are close to each other. This is the reason why the locations of their
minima are near.

Figure 1d shows the profiles of nonequilibrium effect (Φ) and deviation degrees (∆r and ∆a).
The line with squares denotes the nonequilibrium effect,

Φ =

√
∑
(

f̂ neq
i

)2
. (1)

The solid lines with upper triangles and circles display the absolute and relative deviation degrees
defined as,

∆a=

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

| f − f eq|dvxdvydη, (2)

and

∆r=

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞
| f − f eq|dvxdvydη

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞
| f+ f eq|dvxdvydη

=
1

2ρ

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

| f − f eq|dvxdvydη=
∆a

2ρ
, (3)

respectively. Obviously, ∆a, ∆r and Φ first grow, then decrease and form peaks near the wavefront.
The peak of Φ nearly coincides with those of f̂ neq

5 and f̂ neq
8 at x2 = 0.9575, because all the

three nonequilibrium quantities Φ, f̂ neq
5 and f̂ neq

8 depend upon the gradients of fluid velocity and
temperature. The peak of ∆r is closer to the peak of Φ, and the peak of ∆a is located behind them.
The hysteresis of this peak arises from the change in density as it passes through the shock wave.

2.2. Recovery of Velocity Distribution Function

Next, we derive the formula of the velocity distribution function through the macroscopic
quantities and their spatial and temporal derivatives for the multiple-relaxation-time DBM. Compared
with the derivation in Ref. [35], the specific heat ratio is under consideration here. Then the equilibrium
and nonequilibrium velocity distribution functions are recovered and analyzed at three different
locations around the shock front that propagates forward.

Let us consider the case with the Prandtl number Pr = 1, which means the relaxation frequency
Si equals to each other in the multiple-relaxation-time discrete Boltzmann model. Additionally,
the relaxation time is defined as τi = 1/Si. Via the Chapman–Enskog analysis, the first order
approximation of the velocity distribution function f can be obtained, as below

f ≈ f eq + f (1)

= f eq
{

1− τi

[
Dρ

(
∂ρ
∂t + vα

∂ρ
∂rα

)
+ DT

(
∂T
∂t + vα

∂T
∂rα

)
+ Duβ

(
∂uβ

∂t + vα
∂uβ

∂rα

)]}
,

(4)

with the equilibrium distribution function

f eq =
ρ

2πT

(
1

2π IT

)1/2
exp

[
− (v− u) · (v− u)

2T
− η2

2IT

]
, (5)
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where Dρ = 1/ρ, DT =
[
− (D + 1) /2T + |vα − uα|2/2T2 + η2/2IT2

]
, Duβ

=
(
vβ − uβ

)
/T, D = 2

stands for the space dimension, I indicates extra degrees of freedom due to vibration and/or rotation,
and η corresponds to vibrational and/or rotational energies. Appendix B provides the detailed
derivation process.
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Figure 2. The first row shows the 3D velocity distribution functions, the second row plots the 2D
velocity distribution functions, and in the last two rows the solid lines represent f (vx) or f (vy) and
the dashed lines denote f eq(vx) or f eq(vy). The three columns from left to right depict the velocity
distribution functions at locations x1 = 0.9545, x2 = 0.9575 and x3 = 0.9605, respectively.

Figure 2 presents the velocity distribution functions. To quantitatively study the characteristics
of the distribution functions, three-dimensional (3D) to one-dimensional (1D) velocity distribution
functions at each position are drawn. The three columns depict velocity distribution functions at
locations x1 = 0.9545, x2 = 0.9575, x3 = 0.9605 from left to right, respectively. Figure 2(a1–c1)
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intuitively show the 3D distribution functions in velocity space (vx, vy) at different points.
Figure 2(a2–c2) plot the two-dimensional (2D) contours of distribution functions. Figure 2(a3–c3) are
the 1D distribution functions, where the solid and dashed lines represent the velocity distribution
function f (vx) =

∫∫
f dvydη and its equilibrium counterpart f eq(vx)=

∫∫
f eqdvydη, respectively.

Figure 2(a4–c4) display the other 1D profiles of the distribution functions, where the solid lines
denote f

(
vy
)
=
∫∫

f dvxdη and the dashed lines indicate f eq(vy)=
∫∫

f eqdvxdη. From Figure 2, we can
obtain the following points.

(I) There are clear peaks in the Figure 2(a1–c1). From left to right, the peaks get “smaller” and
more “pointy”. Because the shock wave passes through the medium, the physical quantities increase
rapidly. The velocity distribution functions become progressively sharper from post-wave to pre-wave.

(II) The contours presented in Figure 2(a2–c2) are symmetrical in the vy direction and asymmetric
in the vx direction at various locations. From left to right, the contours gradually look like eggs due to
the nonequilibrium effects. The reason is that the system is periodic in the y direction and there is flow
or flux just in the x direction.

(III) As Figure 2(a3–c3) show, f eq(vx) is symmetric and the symmetry axis is ux, while f (vx) is
asymmetric due to the nonequilibrium effects. The velocity distribution function f (vx) is “lower” and
“fatter” than the equilibrium velocity distribution function f eq(vx), which indicates the nonorganized
energy f neq

5 > 0 (see Figure 1). As vx deviates far from ux, the distribution function f (vx) for vx > ux

is larger than the corresponding value of f (vx) for vx < ux, which indicates f̂ neq
8 > 0 (see Figure 1).

(IV) Both f (vy) and f eq(vy) in Figure 2(a4–c4) are symmetrical and the axes of symmetry are
uy = 0, because there is no flow or flux in the y direction. Additionally, the velocity distribution
function f (vy) “higher” and “thinner” than the equilibrium velocity distribution function f eq(vy).
It indicates f̂ neq

7 < 0 and f̂ neq
9 = 0 (which is not shown here).

(V) In the last two rows, the areas of f (vx), f (vy), f eq(vx), and f eq(vy) decrease gradually from
left to right. In fact, the area corresponds to density ρ, which increases as the shock wave travels from
left to right. The widths of f (vx), f (vy), f eq(vx), and f eq(vy) are related to the temperature T, which
increases from the first to the third columns. As a result, the curves become “higher” and “leaner”.

It should be mentioned that the numerical results presented in Figure 1 are consistent with the
analytic solutions in Figure 2. Up to this point, from Figures 1 and 2, we can obtain an intuitive
understanding of the deviation between the nonequilibrium and equilibrium velocity distribution
functions around the shock wave. More simulations are conducted in the following section in order
to have a better understanding of the physical mechanisms of the nonequilibrium shock waves.

3. Global Nonequilibrium Effects

We define the following nonequilibrium quantities to further study the nonequilibrium effects
around the shock wave,

Ψ =
∫∫ √

∑
(

f̂ neq
i

)2
dxdy, (6)

Ψ2,xx =
∫∫

f̂ neq
5 dxdy, (7)

Ψ3,1,x =
∫∫

f̂ neq
8 dxdy, (8)

which denote the global nonequilibrium effects, the global nonorganized energy in the x direction,
and the global nonorganized energy flux in the x direction, respectively. Next, the DBM is employed
to study the effects of the relaxation frequency, Mach number, thermal conductivity, viscosity, and
specific heat ratio on those global nonequilibrium variables around shock waves, respectively.

3.1. Impact of the Relaxation Frequency

In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium.
In our simulations, the relaxation frequency Si governs the speed of relaxation process from a nonequilibrium
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state to its equilibrium state. It plays a key role in the nonequilibrium manifestations. Here, let us investigate
the nonequilibrium effects around the shock wave under different relaxation frequencies. The relaxation
frequencies are chosen as Si = 1× 103, 2× 103, 4× 103, 8× 103, 1.6× 104, and 3.2× 104, respectively.

First of all, to give comparisons between Riemann solutions and DBM results, the profiles of
density ρ, horizontal velocity ux, pressure P, and temperature T near the shock front are shown in
Figure 3. The black solid line represents the result of the Riemann solutions, and the other lines stand
for the DBM results under various relaxation frequencies. It is evident that the Riemann solutions
show a straight vertical line near the shock wave, while the DBM results display a smooth curve
around the shock front. Because the DBM contains viscosity and thermal conductivity as well as other
detailed thermodynamic nonequilibrium effects, while the Riemann solutions are based on the Euler
equations that ignore all thermodynamic nonequilibrium effects. As the relaxation frequency increases,
the nonequilibrium effects decrease, and the DBM results are close to the Riemann solutions.
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Figure 3. Comparisons between Riemann solutions and DBM results under various relaxation frequencies:
(a) density, (b) horizontal velocity, (c) pressure, and (d) temperature.

Figure 4a displays the profiles of the nonequilibrium effect Φ with various relaxation frequencies
at time t = 0.4. With the increasing relaxation frequency, the amplitude of the nonequilibrium effect
remains constant, while the width of the nonequilibrium region increases proportionally. Figure 4b–d
illustrate the global nonequilibrium quantities ln Ψ, ln Ψ2,xx, and ln Ψ3,1,x versus ln Si. Circles, triangles,
and squares denote the simulation results, and the lines represent the fitting equations: ln Ψ =

2.892− 2× ln Si, ln Ψ2,xx = −0.423− 2× ln Si and ln Ψ3,1,x = 1.008− 2× ln Si, respectively. It is
evident that the fitting results agree well with the simulation solutions, and ln Ψ, ln Ψ2,xx and ln Ψ3,1,x
decrease as ln Si increases linearly. Physically, with the increasing relaxation frequency, the relaxation
time from f̂i to f̂ eq

i decreases, and the nonequilibrium effects around the shock wave reduce [31].
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Figure 4. Nonequilibrium effects with various relaxation frequencies: (a) nonequilibrium effect Φ,
(b) the global nonequilibrium effects Ψ, (c) the global nonorganized energy in the x direction Ψ2,xx, and
(d) the global nonorganized energy flux in the x direction Ψ3,1,x.

3.2. Impact of the Mach Number

Mach number Ma is a dimensionless quantity in fluid dynamics that represents the ratio of flow
velocity past a boundary to the local speed of sound [42]. Now, let us demonstrate the relationship
between the nonequilibrium effects and Mach number. We simulate a shock wave with various Mach
numbers from Ma = 1.5 to 5 at time t = 0.4, with Pr = 1. The Hugoniot relation sets the initial states
in all cases.

Figure 5 exhibits the nonequilibrium effects versus the Mach numbers. Figure 5a–c are for the
global nonequilibrium effects, the global nonorganized energy in the x direction, and the global
nonorganized energy flux in the x direction, respectively. The symbols denote the simulation results
and the lines are for the fitting results. The fitting equations are ln Ψ = −14.557 + 1.724 ×Ma,
Ψ2,xx = [0.635× exp (Ma/1.65)− 1.45]× 10−6, and Ψ3,1,x = [1.778× exp (Ma/1.13)− 7.721]× 10−6,
respectively. Clearly, as the Mach number increases, the global nonequilibrium effects ln Ψ increases in
a linear relationship approximately, while the global nonorganized energy Ψ2,xx and energy flux in
the x direction Ψ3,1,x grow exponentially. With the increasing Mach number, both physical quantities
and physical gradients increase around the shock wave, which leads to increasing nonequilibrium
effects [31].
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Figure 5. Nonequilibrium effects with various Mach numbers: (a) the global nonequilibrium effects Ψ,
(b) the global nonorganized energy in the x direction Ψ2,xx, and (c) the global nonorganized energy
flux in the x direction Ψ3,1,x.

3.3. Impact of the Thermal Conductivity

Next, the simulation of the shock wave is carried out for various values of the thermal conductivity.
In the DBM, the thermal conductivity takes the form κ = (D + I + 2)P/(2Sκ) in terms of the pressure
P = ρT and the parameter Sκ = S8 = S9. Clearly, the thermal conductivity changes due to the
variable pressure across the shock wave. For convenience of quantitative study, we choose the pressure
P = (PL + PR)/2 where PL = 4.5 and PR = 1.0 denote the pressure on the left and right sides of the
shock wave, respectively. Besides, the collision parameters are Si = 2× 103, except S8 = S9 = 0.5× 103,
1× 103, 2× 103, 3× 103, 4× 103, 5× 103, 6× 103, 7× 103, and 8× 103, for the nine different cases.
Correspondingly, the thermal conductivity is κ = 0.0165, 0.00825, 0.004125, 0.00275, 0.0020625, 0.00165,
0.001375, 0.001178571, and 0.00103125, respectively.

Figure 6 displays the simulation results and the fitting solutions. The fitting equations are
Ψ= [3.144× exp (−0.0182/κ) + 3.081] × 10−6 and Ψ3,1,x = (0.246 + 103.426κ) × 10−6, respectively.
Obviously, with the increasing value of 1/κ, the nonequilibrium effect Ψ decreases exponentially
and it tends to be a constant, and Ψ3,1,x grows linearly with the thermal conductivity. Physically,
with the increasing Sκ , the thermal conductivity reduces, the nonorganized energy flux decreases,
and the nonequilibrium effects become week [41].
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Figure 6. Nonequilibrium effects with different thermal conductivity: (a) the global nonequilibrium
effects Ψ versus 1/κ and (b) the global nonorganized energy flux Ψ3,1,x in the x direction versus κ.

3.4. Impact of the Viscosity

In this subsection, we simulate a 1D steady shock wave with various values of viscosity. In the
DBM, the dynamic viscosity is expressed by µ = P/Sµ with the parameter Sµ = S5 = S6 = S7.
Similarly, the dynamic viscosity is variable around the shock front. For convenience, we adopt
P = (PL + PR)/2 at the shock wave. The collision parameters are Sµ = 2.5× 103, 3× 103, 4× 103,
5× 103, 6× 103, 7× 103, 8× 103, 9× 103 and 1× 104, and Si = 5× 103 for the others. The corresponding
dynamic viscosity is µ = 0.0011, 0.000916667, 0.0006875, 0.00055, 0.000458333, 0.000392857, 0.00034375,
0.000305556, and 0.000275, respectively.

Figure 7 displays the simulation and fitting results: (a) the global nonequilibrium effects versus
the reciprocal of µ and (b) the global nonorganized energy in the x direction versus µ. The circles and
triangles stand for the DBM results and the solid lines stand for the solutions of the fitting equations:
Ψ= [1.378× exp(−0.0025/µ) + 1.177]× 10−6, Ψ2,xx = (−2.7× 10−6 + 1.1937µ)× 10−4.
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Figure 7. Nonequilibrium effects with various viscosity: (a) the global nonequilibrium effects Ψ versus
1/µ and (b) the global nonorganized energy Ψ2,xx in the x direction versus µ.

It can be found that the global nonequilibrium effect Ψ decreases and approaches a constant with
the increasing 1/µ, and there is a linear growth relationship between Ψ2,xx and µ. Physically, with the
increasing Sµ, the viscosity decreases, the viscous shear reduces, the nonorganized energy decreases,
and the nonequilibrium effects become smaller [41].



Entropy 2020, 22, 1397 11 of 17

3.5. Impact of the Specific Heat Ratio

In thermal physics and thermodynamics, the specific heat ratio is the ratio of the heat capacity
at constant pressure to heat capacity at constant volume. In this subsection, the simulation of shock
wave is carried out for different specific heat ratios. The specific heat ratio is γ=(D + I + 2)/(D + I).
In our simulations, the specific heat ratio γ is adjusted by varying the extra degrees of freedom I.
The extra degrees of freedom are I = 7, 6, 5, 4, 3, 2, 1, and 0, and the corresponding specific heat ratios
are γ = 1.22, 1.25, 1.29, 1.33, 1.4, 1.5, 1.67, and 2, respectively.

Figure 8 shows the simulation and fitting results. Triangles and squares represent the simulation
results, and the lines denote the fitting equations: Ψ2,xx = (2.876− 0.899γ) × 10−7 and Ψ3,1,x =

[−14.215× exp (−γ/0.395) + 7.127] × 10−7. Clearly, as the specific heat ratio increases, the global
nonorganized energy Ψ2,xx decreases in a linear ship approximately, while the global nonorganized
energy flux Ψ3,1,x increases in an exponential form. The nonorganized energy in the x direction f̂ neq

5
is the function of the fluid velocity and extra degrees of freedom [41]. The fluid velocity is similar
in the simulations with different specific heat ratios. Meanwhile, as the extra degrees of freedom
increases, the specific heat ratio decreases, and f̂ neq

5 increases. So the decreasing extra degrees of
freedom result in a decrease of Ψ2,xx. Additionally, f̂ neq

8 is related to the gradient of temperature and
thermal conductivity. Consequently, with the increases of extra degrees of freedom, the specific heat
ratio decreases, the temperature and its gradient decrease, and the thermal conductivity increases.
The decreasing temperature gradient and increasing thermal conductivity have opposite impacts on
the nonorganized energy flux, and temperature gradient plays a dominant role. So the increasing
specific heat ratio result in an increase of Ψ3,1,x [41].
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Figure 8. Nonequilibrium effects with various specific heat ratios: (a) the global nonorganized energy
Ψ2,xx in the x direction and (b) the global nonorganized energy flux Ψ3,1,x in the x direction.

4. Conclusions

Shock wave is relevant to many fields of physics and engineering. When the shock wave
passes through the medium, it draws the system out of equilibrium. In this article, we use the
multiple-relaxation-time DBM in order to study hydrodynamic and thermodynamic nonequilibrium
effects around the shock wave. Via the Chapman-Enskog analysis, we derive the formula of the velocity
distribution function through the macroscopic quantities and their spatial and temporal derivatives
with the flexible specific heat ratio. Moreover, we probe the nonequilibrium variables and effects in
order to have a better understanding of the nonequilibrium effects upon the fine structure of the shock
wave. In addition, to give an intuitive description, we define the absolute deviation degree ∆a and
relative deviation degree ∆r in order to describe the departure of velocity distribution function from
its equilibrium counterpart. It is found that the deviation degrees and nonequilibrium effects first
grow, then decrease, and form peaks at the shock wave. Additionally, there are small or remarkable
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distances among those peaks, because the nonequilibrium behaviours are associated with the physical
gradients whose peaks are near or far from each other around the shock wave.

We illustrate 1D, 2D, and 3D velocity distribution functions at three different locations around the
shock front that propagates forward in the x direction in order to quantitatively study the characteristics
of the distribution functions. The 3D velocity distribution functions become progressively sharper from
post-wave to pre-wave. The 2D velocity distribution functions near the shock wave are symmetrical in
the vy direction and asymmetrical in the vx direction. The contours look like eggs gradually from left to
right due to the nonequilibrium effects. As for the 1D velocity distribution functions, the areas of f (vx),
f (vy), f eq(vx), and f eq(vy) correspond to density ρ, and they gradually increase as the shock wave
travels from left to right. Meanwhile, the widths of f (vx), f (vy), f eq(vx), and f eq(vy) that are related to
the temperature T increases step by step when the shock wave propagates forward. As a result, the 1D
velocity distribution function curves become “higher” and “leaner” from post-wave to pre-wave.

Besides, comparisons are made between the Riemann solutions and DBM results. Physically, the DBM
contains viscosity and thermal conductivity, as well as other detailed thermodynamic nonequilibrium
effects, while the Riemann solutions are based on the Euler equations, which ignore all of the
thermodynamic nonequilibrium effects. As the relaxation frequency increases, the nonequilibrium
effects decrease, and the DBM results become close to the Riemann solutions. Moreover, we study
the impacts of relaxation frequency, Mach number, thermal conductivity, viscosity, and specific heat
ratio upon the nonequilibrium effects. The nonequilibrium quantities under consideration include
the global nonequilibrium effects Ψ, the global nonorganized energy in the x direction Ψ2,xx and
the global nonorganized energy flux in the x direction Ψ3,1,x. From the numerical simulations and
corresponding fitting equations, the following points can be obtained: (I) With the increasing relaxation
frequency, the amplitude of the nonequilibrium effect remains constant, while the width of the
nonequilibrium region increases proportionally. Additionally, ln Ψ, ln Ψ2,xx and ln Ψ3,1,x decrease
as ln Si increases linearly. (II) As the Mach number increases, all of the nonequilibrium effects
increase, the global nonequilibrium effects Ψ increases in a linear relationship approximately, while
the global nonorganized energy Ψ2,xx and global nonorganized energy flux in the x direction Ψ3,1,x
grow exponentially. (III) With the decrease of the thermal conductivity, the global nonequilibrium
effects Ψ gradually decreases and tends to be a constant, and Ψ3,1,x grows linearly with the increasing
κ. (IV) With the decrease of viscosity, the global nonequilibrium effects Ψ decreases gradually and
then approaches a constant, and there is a linear growth relationship between Ψ2,xx and µ. (V) As
the specific heat ratio increases, the global nonorganized energy Ψ2,xx decreases in a linear ship,
while the nonorganized energy flux Ψ3,1,x increases in an exponential form. The physical mechanisms
are analyzed and explained for the above phenomena. This work is helpful for obtaining a deeper
understanding of the fine structures of shock waves and the nonequilibrium statistical mechanics.
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Appendix A

In this work, the governing equation of the DBM is the multiple-relaxation-time discrete Boltzmann
equation as follows [39],

∂ fi
∂t

+ viα
∂ fi
∂rα

= −M−1
il Slk

(
f̂k − f̂ eq

k

)
+ Ai, (A1)

where t is the time, rα is the physical space, vi denotes the discrete velocity with i = 1, 2, · · · , N, and
N = 16 is the total number of discrete velocities, fi and f eq

i represent the discrete distribution function
and its equilibrium counterpart in velocity space, respectively. f̂i and f̂ eq

i represent discrete distribution
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function and its equilibrium counterpart in kinetic moment space, respectively. The parameter Slk
is the element of the matrix S = diag [S1, · · · , Sk, · · · , SN ] and controls the relaxation speed of f̂i
approaching f̂ eq

i . Besides, we choose the two-dimensional-sixteen-velocity (D2V16) model,

vi =


cyc : va (±1, 0) , 1 ≤ i ≤ 4,
cyc : vb (±1,±1) , 5 ≤ i ≤ 8,
cyc : vc (±1, 0) , 9 ≤ i ≤ 12,
cyc : vd (±1,±1) , 13 ≤ i ≤ 16,

(A2)

with ηi = ηα, ηb, ηc, and ηd for 1 ≤ i ≤ 4, 5 ≤ i ≤ 8, 9 ≤ i ≤ 12, and 13 ≤ i ≤ 16, respectively.
Figure A1 delineates the sketch of D2V16 .
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Figure A1. Sketch for the discrete velocity model.

It is proved that the discrete equilibrium distribution function should satisfy the following seven
kinetic moments [39], ∫∫

f eqdvdη = ρ = ∑ i f eq
i , (A3)∫∫

f eqvαdvdη = ρuα = ∑ i f eq
i viα, (A4)∫∫

f eq
(

v2 + η2
)

dvdη = ρ
[
(D + I) T + u2

]
= ∑ i f eq

i

(
v2

i + η2
i

)
, (A5)∫∫

f eqvαvβdvdη = ρ
(
δαβT + uαuβ

)
= ∑ i f eq

i viαviβ, (A6)∫∫
f eq
(

v2 + η2
)

vαdvdη = ρuα

[
(D + I + 2) T + u2

]
= ∑ i f eq

i

(
v2

i + η2
i

)
viα, (A7)∫∫

f eqvαvβvχdvdη = ρT
(
uαδβχ + uβδαχ + uχδαβ

)
+ ρuαuβuχ = ∑ i f eq

i viαviβviχ, (A8)∫∫
f eq (v2 + η2) vαvβdvdη

= ρδαβ

[
(D + I + 2) T + u2] T + ρuαuβ

[
(D + I + 4) T + u2]

= ∑i f eq
i
(
v2

i + η2
i
)

viαviβ

, (A9)

to recover the Navier-Stokes equations. The above seven relations can be uniformly written as

f̂ eq
i = Mij f eq

j , (A10)

where Mij is the element of the matrix, M =
(

M1 M2 · · · M16

)T
, containing the blocks,

Mi =
(

Mi1 Mi2 · · · Mi16

)
, in terms of M1i = 1, M2i = vix, M3i = viy, M4i = v2

i + η2
i , M5i = v2

ix,

M6i = vixviy, M7i = v2
iy, M8i = (v2

i + η2
i )vix, M9i = (v2

i + η2
i )viy, M10i = v3

ix, M11i = v2
ixviy,

M12i = vixv2
iy, M13i = v3

iy, M14i = (v2
i + η2

i )v
2
ix, M15i = (v2

i + η2
i )vixviy, and M16i = (v2

i + η2
i )v

2
iy.
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Moreover, on the right hand of Equation (A1) is the collision term Ωi = −M−1
il Slk

(
f̂k − f̂ eq

k

)
+ Ai,

where the part Ai is calculated as Ai = M−1
ij Âj. The parameter Âi is the element of the matrix

Â =
(
0, · · · , Â8, Â9, · · · , 0

)
with

Â8 = ρT
S8 − S5

S5

[
ux

(
4

∂ux

∂x
− 4

D + I
∂ux

∂x
− 4

D + I
∂uy

∂y

)
+ 2uy

(
∂uy

∂x
+

∂ux

∂y

)]
, (A11)

Â9 = ρT
S9 − S7

S7

[
uy

(
4

∂uy

∂y
− 4

D + I
∂ux

∂x
− 4

D + I
∂uy

∂y

)
+ 2ux

(
∂uy

∂x
+

∂ux

∂y

)]
. (A12)

The reason for the additional term Ai is as follows: the discrete Boltzmann equation is a simplified form
of the original Boltzmann equation. In the simplification process, our concerned physical quantities are
required to be unchanged, while much physical information about the higher-order kinetic moments is
lost, which may lead to inconsistency with physics. The additional term is proposed to recover the lost
relationship and make the DBM consistent with the Navier-Stokes equations in the hydrodynamic limit.
Besides, the second-order central difference scheme is adopted for the partial derivatives, ∂ux

∂x , ∂uy
∂x , ∂ux

∂y ,

and ∂uy
∂y in the above formulae. Meanwhile, the second order Runge–Kutta scheme is adopted for the

time derivative in Equation (A1) [43], and the second order nonoscillatory and nonfree-parameter
dissipation difference scheme is employed for the space derivatives [44].

In addition, the DBM contains more detailed nonequilibrium effects than a traditional Navier-Stokes
model [39], as the density, velocity, temperature and higher order kinetic moments can be obtained
simultaneously. The difference f̂ neq

i between the kinetic moments f̂i and its equilibrium counterpart
f̂ eq
i can be utilized in order to measure the hydrodynamic and thermodynamic nonequilibrium effects,

namely, f̂ neq
i = f̂i − f̂ eq

i . The influence of f̂ neq
i is amplified by the relaxation frequency Si in the collision

term. Specifically, Si has no influence for 1 ≤ i ≤ 4 because of the conservation laws, and it enhances
(reduces) the nonequilibrium effects for i ≥ 5 when Si is large (small). Moreover, for the DBM, it is
convenient to have a proper kinetic boundary condition for capturing the velocity slip and flow
characteristics in the Knudsen layer [45].

Appendix B

Via the Chapman-Enskog multiscale analysis, the velocity distribution function can be expanded
as a Taylor series near the equilibrium state, which takes the form

f = f eq + f (1) + f (2) + · · · , (A13)

where the superscripts (1) and (2) represent the first and second orders of the distribution apart from
the equilibrium state, respectively [35].

According to the Chapman-Enskog expansion, on the Navier-Stokes level, it is only necessary
to keep the first order terms, i.e., f = f eq + f (1), ∂

∂t = ∂
∂t1

and ∂
∂rα

= ∂
∂r1α

. Substituting them into
Equation (A1) results in

∂ f eq

∂t
+ vα

∂ f eq

∂rα
= −Si f (1) + Ai, (A14)

Under the condition of Pr = 1, where all the relaxation frequencies are same, the additional item Ai is
eliminated. Therefore, the first order velocity distribution function f (1) can be written as

f (1) = −τi

(
∂ f eq

∂t
+ vα

∂ f eq

∂rα

)
. (A15)
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In addition, the equilibrium distribution function f eq can be expressed by ρ, uα and T, the derivative
of f eq can turn into the derivative of ρ, uα and T.

f (1) = −τi

(
∂ f eq

∂t + vα
∂ f eq

∂rα

)
= −τi

[
∂ f eq

∂ρ

(
∂ρ
∂t + vα

∂ρ
∂rα

)
+ ∂ f eq

∂T

(
∂T
∂t + vα

∂T
∂rα

)
+ ∂ f eq

∂uβ

(
∂uβ

∂t + vα
∂uβ

∂rα

)]
= −τi f eq

[
Dρ

(
∂ρ
∂t + vα

∂ρ
∂rα

)
+ DT

(
∂T
∂t + vα

∂T
∂rα

)
+ Duβ

(
∂uβ

∂t + vα
∂uβ

∂rα

)]
,

(A16)

where Dρ = 1/ρ, DT =
[
− (D + 1) /2T + |vα − uα|2/2T2 + η2/2IT2

]
and Duβ

=
(
vβ − uβ

)
/T. Then

the first order approximation of the velocity distribution function f is obtained as

f ≈ f eq + f (1)

= f eq
{

1− τi

[
Dρ

(
∂ρ
∂t + vα

∂ρ
∂rα

)
+ DT

(
∂T
∂t + vα

∂T
∂rα

)
+ Duβ

(
∂uβ

∂t + vα
∂uβ

∂rα

)]}
.

(A17)
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