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Background and Aim: Therapeutic drugmonitoring (TDM) has evolved over the

years as an important tool for personalized medicine. Nevertheless, some

limitations are associated with traditional TDM. Emerging data-driven model

forecasting [e.g., through machine learning (ML)-based approaches] has been

used for individualized therapy. This study proposes an interpretable stacking-

based ML framework to predict concentrations in real time after olanzapine

(OLZ) treatment.

Methods: The TDM-OLZ dataset, consisting of 2,142 OLZ measurements and

472 features, was formed by collecting electronic health records during the

TDM of 927 patients who had received OLZ treatment. We compared the

performance of ML algorithms by using 10-fold cross-validation and the mean

absolute error (MAE). The optimal subset of features was analyzed by a random

forest-based sequential forward feature selection method in the context of the

top five heterogeneous regressors as base models to develop a stacked

ensemble regressor, which was then optimized via the grid search method.

Its predictions were explained by using local interpretable model-agnostic

explanations (LIME) and partial dependence plots (PDPs).

Results: A state-of-the-art stacking ensemble learning framework that

integrates optimized extra trees, XGBoost, random forest, bagging, and

gradient-boosting regressors was developed for nine selected features

[i.e., daily dose (OLZ), gender_male, age, valproic acid_yes, ALT, K, BW,

MONO#, and time of blood sampling after first administration]. It

outperformed other base regressors that were considered, with an MAE of

0.064, R-square value of 0.5355, mean squared error of 0.0089, mean relative

error of 13%, and ideal rate (the percentages of predicted TDM within ± 30% of

actual TDM) of 63.40%. Predictions at the individual level were illustrated by

LIME plots, whereas the global interpretation of associations between features

and outcomes was illustrated by PDPs.
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Conclusion: This study highlights the feasibility of the real-time estimation

of drug concentrations by using stacking-based ML strategies without

losing interpretability, thus facilitating model-informed precision dosing.

KEYWORDS

olanzapine, drug concentration, therapeutic drug monitoring, stacking, machine
learning, electronic health record, interpretability, model-informed precision
dosing

1 Introduction

As the foundation of personalized medicine, traditional

therapeutic drug monitoring (TDM) has multiple

advantages, including the simple interpretation of results and

intuitive dosing adjustments by using the “direct or inverse rule

of three,” or dosing nomograms (Guo et al., 2013). However, its

implementation commonly requires waiting for a steady state,

and might be hindered owing to a lack of access to dedicated

staff, expensive equipment, and analytical methods (Guo et al.,

2013; Leung et al., 2019; Zhu et al., 2021b). Moreover, the test

results are influenced by the sampling time, dosage regimens,

and covariates, and the possible delayed return of

measurements may also raise barriers to TDM (Guo et al.,

2013; Leung et al., 2019; Zhu et al., 2021b). Model-informed

precision dosing (MIPD) is an emerging, integrative term that is

defined as the use of mathematical models to individualize

predictions and streamline the TDM process by integrating

multi-level patient-specific data (Darwich et al., 2021). It

provides quantitative decision support to clinicians for

personalized dosing adjustment to improve the outcomes of

drug treatment in patients. A typical application of MIPD

involves a variety of approaches to modeling, such as

pharmacometric models of biology, pharmacology, and

physiology. Emerging data-driven approaches, such as

Artificial Intelligence (AI), have attracted considerable

attention in recent years (Ribba et al., 2020).

Machine learning (ML) is a subfield of AI, and ML

algorithms can be roughly classified into three categories: 1)

Supervised, 2) unsupervised, and 3) those based on

reinforcement learning. In principle, the role of ML tools in

MIPD has two notable aspects. One is that they can partner with

other MIPD tools (e.g., pharmacometrics) to significantly reduce

computational cost, e.g., by applying ML as an alternative, initial

step for covariate screening in population pharmacokinetic

(popPK) analysis (Koch et al., 2020). In case of large datasets

or complex models, it can also greatly enhance the efficiency of

the selection of the popPK model (Sibieude et al., 2022). A

previous study has reported that an ensemble model that

integrates artificial neural networks and non-linear mixed-

effects modeling (NONMEM) generates more powerful

predictions than either method (Poynton et al., 2009).

Furthermore, owing to the potential roles of ML and AI in

connecting big data to pharmacometrics (McComb et al., 2022),

these combined approaches have been used to accurately

estimate pharmacokinetic parameters (e.g., drug exposure and

drug clearance) (Tang et al., 2021; Woillard et al., 2021).

Nevertheless, various complex mathematical models for drugs

and diseases generally need to be understood and chosen to use

these methods, where this may render the modeling process

laborious and time consuming (Zhu et al., 2021a). Besides, the

model validation methods in ML are not routinely used during

the development of pharmacometrics models (McComb et al.,

2022), which may hinder the integration of ML and

pharmacometrics. The other notable aspect of the role of ML

in MIPD is the straightforward prediction of drug

concentration or drug dose. This enables simple

individualized treatment by changing such influential factors

as the dose or dosing intervals. A previous study used the extra

trees-based regression algorithm to establish a predictive model

for dose-adjusted concentrations of lamotrigine (Zhu et al.,

2021a). Guo et al. (2021) established an eXtreme gradient

boosting (XGBoost) model for the prediction of the active

moiety of risperidone in the next TDM based on the initial

TDM. Both of these studies evaluated a variety of ML models.

Even though different types of regression algorithms are

available for such ML tasks, individual regressors may

deliver similar or even identical performance to them.

Besides, a major drawback of the single model-based approach

is its instability, which can degrade performance and induce a

larger bias compared with ensemble methods, which improve

performance by combining diverse forecasts from multiple

models (Bourel and Segura, 2018; Kalagotla et al., 2021).

The aforementioned limitations have motivated researchers

to develop novel ensemble methods, which can be classified into

two types, i.e., homogeneous and non-homogeneous methods

(Bourel et al., 2017). Homogeneous ensemble methods, such as

the random forest (RF) (Breiman, 2001), bagging (Breiman,

1996), and boosting (Freund and Schapire, 1997; Schapire

et al., 1998), combine single-type base learning algorithms to

build homogeneous base learners. Non-homogeneous methods

(also called heterogeneous ensemble methods or consensus

methods) combine multiple models with different natures,

like stacking (i.e., meta-ensembling) (Wolpert 1992; Bourel

et al., 2017), and each base model is built upon the same

training data. In this paper, we restrict ourselves to stacking

with stratified five-fold cross-validation. It has the advantage of

a meta-learner that combines the outputs of base learners as
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new input features for training and testing, where this improves

the predictive performance of these joint models (Kalagotla

et al., 2021).

Olanzapine (OLZ) is a commonly prescribed second-

generation antipsychotic for the treatment of psychotic

conditions (e.g., schizophrenia and bipolar disorder). The

FIGURE 1
Flowchart of this study.
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unlicensed or off-label use of OLZ is common in pediatrics (Zhu

et al., 2018). The large inter-individual pharmacokinetic

variations in OLZ, which are influenced by genetic and

environmental factors (Arnaiz et al., 2021), make TDM an

essential part of personalizing OLZ treatment in any age

group, especially the pediatric population (high-level

recommendation to use TDM according to guidelines of the

Arbeitsgemeinschaft für Neuropsychopharmakologie und

Pharmakopsychiatrie consensus) (Hiemke et al., 2018). Several

studies, using popPK and multiple regression analyses, have been

conducted to reveal the sources of the pharmacokinetic

variability of OLZ by integrating various covariates (e.g., age,

gender, body weight, and concomitant medications) (Deng et al.,

2020; Xiao et al., 2021; Zang et al., 2021). All of these studies

involved low-dimensional data, with a small sample size and few

patient-related variables. By taking OLZ as an example in this

work, we preliminarily mine the possible relevant covariates based

on a TDM-OLZ dataset derived from real-world multi-dimensional

electronic health records (EHRs) for pharmacometrics analysis. We

use this to develop an MIPD tool—the state-of-the-art interpretable

stacking ensemble learning framework—that integrates different

types of base learners for the accurate, real-time estimation of

drug concentrations.

2 Materials and methods

2.1 Brief introduction to the proposed
approach

Figure 1 illustrates the flowchart of this work. We acquired the

EHR data to construct the original dataset (i.e., the TDM-OLZ

dataset) during the TDM of OLZ of 927 patients, who had received

OLZ treatment in the latter half of 2018, at the Affiliated Brain

Hospital of Guangzhou Medical University in Guangzhou, China.

We then conducted data preprocessing, and chose the base

regression model as well as the relevant features based on the

derivation cohort. Following this, we compared the overall

predictive performance of the stacked regressor and base

regressors in the context of omitting and imputing missing

values as well as model optimization by using multiple

evaluation metrics for the validation cohort. Finally, we provide

explanations of the model at the individual and the feature levels.

2.2 Original dataset

The original dataset consisted of features (i.e., patient-specific

attributes) and labels [i.e., the TDM measurements of OLZ;

abbreviation: C (OLZ)]. Their values were extracted based on

patient identifier numbers and a time series of TDM blood

sampling after OLZ was first administered. Some features were

static variables, which are normally declared as constants during

hospitalization (e.g., gender and genotypes), whereas others were

dynamic variables that were susceptible to substantial changes over

time [e.g., alanine transaminase (ALT) and C (OLZ)].

The serum concentration of OLZ was determined by using a

previously reported analytical method developed by our

laboratory, where the calibration curve was linear over a wide

range of concentrations of 2–200 ng/ml (Xiao et al., 2021). In

particular, we replicated the static values across time, excluded

OLZ concentrations below the lower limit of quantification, and

assumed that TDM measurements of other medications were

zero if they had not been co-administrated. This finally yielded an

original dataset of 2,142 × 473 matrices, containing 2,142 TDM

measurements of OLZ and 472 features (Figure 1). The

retrospective data collection was approved by the Ethics

Committee of the Affiliated Brain Hospital of Guangzhou

Medical University ([2021] NO.027).

2.3 Data preprocessing

Before using the data for training, data preprocessing

(i.e., appropriately scaling and transforming the entire dataset)

was performed to obtain high-quality data containing as much

useful information as possible to facilitate training and testing.

The steps of preprocessing were as follows:

Step 1. : omitting features with more than 50% missing values.

It was inevitable that some values of the samples for some features

in the dataset derived from the EHR system were missing. One strategy

to address this issue is to remove the features with missing values.

However, this might lead to the removal of a large number of rich

features and the loss of valuable information for ML algorithms. In this

study, we included all features that occurred in at least 50% of the

samples (Meyer et al., 2018).

Step 2. : missing value imputation by using the k-nearest neighbor (kNN)

method.

Another means of dealing with those missing data is kNN imputation

(Beretta and Santaniello, 2016). In this work, we used the 3NN schema to

find the three neighbors closest to the query points, and then imputed

them based on their weighted mean values. In this case, the closer the

neighbor of a query point was to it, the greater was its weight. The

distance metric used was Minkowski distance, and is defined as:

⎛⎝∑n
i�1

∣∣∣∣xi − yi

∣∣∣∣p⎞⎠1/p

where p is the power parameter for the Minkowski metric. We

used its default value of two, which is equivalent to using the

Euclidean distance.

Step 3. : one-hot encoding of categorical variables.

Converting ordinal categorical features into numerical values is

commonly required for most ML algorithms, whereas nominal
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categorical features should be handled by using the one-hot encoding

technique. In this technique, new variables (also known as dummy

variables) are created for every nominal categorical feature, while

the number of newly created dummy variables depends on the

number of categories present. This technique was applied to all

categorical features in our original dataset. After performing one-hot

encoding, we dropped the first category for each feature because one

of the categories could be generated from the others, and hence no

more information could be added to the modeling process if this extra

category was retained.

Step 4. : Min–max normalization on continuous variables.

The generalization performance and stability of ML models are

highly dependent on the quality of the input data (Rahman et al., 2022).

We used min–max rescaling to normalize the continuous feature

variables to the range [0, 1] via the following formula:

x′ � (x − x min)/(x max − x min)

where x min and x max denote the minimum andmaximum values

of the feature, respectively.

Step 5. : log transformation of labels.

Given the wide range of OLZ measurements, we used the log

transformation of the labels to make them more symmetric, or to

render their distribution similar to a normal distribution, to ensure

reliable and stabilized numerical forecasts. This method transforms

the data to the range (0, 1] through the following formula:

y′ � log10(y)/log10(y max)
where ymax denotes the maximum value of the label.

2.4 Selecting the base regression model

2.4.1 Splitting dataset
A transformed dataset in 2,142 × 448 matrix format was

generated after data preprocessing (Figure 1). The number of

features decreased to 447. Subsequently, 80% of the samples

(1,713 measurements) from the transformed dataset were

randomly selected as the “derivation cohort” for model

construction and feature selection, and the remaining 20%

(429 measurements) were used as the “validation cohort” for

testing.

2.4.2 Selection method
We used 10-fold cross-validation to compare the

performance of 10 candidate regression models with default

hyperparameters in the derivation cohort by using the mean

absolute error (MAE), i.e., the average of the absolute value of the

residuals, calculated as (Zhu et al., 2021a):

MAE � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣

where yi and ŷi denote the predicted and measured values,

respectively. The five best-performing models were chosen as the

base regressors to establish the stacking-based model of

prediction.

2.4.3 Candidate models
All models, apart from the multiple linear regression

(MLR) model used as a reference, were non-linear. They

included extra trees-based regression (ETR), random forest

regression (RFR), bagging regression (BR), gradient-boosted

regression (GBR), AdaBoost regression (ABR), XGBoost

regression (XGBR), support vector regression (SVR),

k-nearest neighbor regression (KNR), and decision tree

regression (DTR). Non-linear models have been shown to

be suitable for non-linear and dynamic states of diseases

because of the inevitable noise contained in the relevant

datasets (Zhou et al., 2019; Zhu et al., 2021a). A brief

description of each of the candidate models is given in Table 1.

Given that the ensemble technique usually yields better

performance than a single model (e.g., SVR, KNR, DTR, and

MLR) (Yin et al., 2021), we provide a brief introduction to the

candidate models based on popular ensemble learning

techniques, including bagging and boosting. Unlike the

stacking technique that uses heterogeneous base learners,

bagging (also known as bootstrap aggregation, proposed by

Breiman, 1996) involves fitting multiple distinct decision trees

in parallel on numerous subsets (bags) of the same training

dataset by using bootstrapping-based sampling techniques. The

final predictions are obtained through the average value and

voting for regression and classification, respectively. This can

yield substantial gains in predictive performance and robustness

through a reduction in the variance of the models (i.e., avoiding

overfitting). SomeML algorithms use bagging techniques, such as

ETR, RFR, and BR. In boosting, on the contrary, all individual

models are built serially. That is, it is a sequential ensemble

method involving the sequential addition of learning models that

correct for the errors made by preceding models, and outputting

a weighted average of the predictions of the individual learners

(Yaman and Subasi, 2019). One benefit of using the boosting

technique is that it can simultaneously reduce the bias and

variance of the model (Cao et al., 2010). Some commonly

used ML algorithms have been developed based on the basic

idea of boosting, including GBR, ABR, and XGBR (Freund and

Schapire, 1997; Dal Molin Ribeiro and Coelho, 2020).

2.4.4 K-fold cross-validation
Cross-validation is commonly used to assess the performance

of learners (i.e., their capability of generalizing new and unseen

data) and compare models. K-fold cross-validation is a typical

cross-validation strategy, where K is any number (Kalagotla et al.,

2021). We used K = 10. The process of K-fold cross-validation

was straightforward:
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Step 1: The samples in the derivation cohort were randomly divided into

K folds (subsets), and this process was iterated K times.

Step 2: For each iteration, the model was tested on the Kth fold of the

dataset (i.e., the test set) while the remaining K—1 folds (i.e., the training

set) were used for training.

Step 3: Step 2 was repeated until each of the K folds had served as the

test set.

Step 4: The average cross-validation score in the test set across all K

folds was taken as the final result to compare the models.

2.5 Random forest-based sequential
forward feature selection

The proposed random forest-based sequential forward

feature selection was implemented as detailed below (Pan

et al., 2017; Yao et al., 2020; Zhu et al., 2021a).

2.5.1 Measure of feature importance based on
random forest

The features were ranked in descending order of importance

scores of the corresponding impurity-based variable obtained by

the random forest algorithm. The importance of each variable

was computed as the normalized total reduction in the criterion

(i.e., impurity function) due to it. If the decrease was large, the

variable was considered important, and vice versa. The reduction

in the variance of the node samples, which determines the

impurity of the regression node, was selected as the criterion

of feature selection for regression. The following equations were

used to obtain the normalized feature importance (Akter et al.,

2021):

1) Impurity:

G(m) � 1
Nm

∑
i∈N

(Yi − �Ym)2

whereNm and �Ym denote the sample size and the sample mean of

the current node m, respectively.

2) Assuming that a tree T is split at node k. The reduction in

impurity after splitting k into left and right daughter nodes

kleft and kright under a proposed split for a feature is:

nk � pkGk − pkleftGkleft − pkrightGkright

where pk, pkleft , and pkright are the ratios of observations in nodes

k, kleft, and kright, respectively, while Gk, Gkleft, and Gkright are the

impurities of nodes k, kleft, and kright, respectively.

3) Importance of feature i:

fi �
∑j∈nodes split on feature i nj∑k∈all nodes nk

4) Normalized importance of feature i in tree T:

normfi � fi∑j∈all features fj

5) Importance of feature i calculated in all trees Ttotal:

TABLE 1 Brief descriptions of 10 candidate regression models, including the related packages and their parameters (default settings).

Model Package Key hyperparameters

ETR scikit-learn 0.23.2 (from sklearn.ensemble import
ExtraTreesRegressor)

“n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, ‘”min_samples_split”: 2,
“max_features: auto”

RFR scikit-learn 0.23.2 (from sklearn.ensemble import
RandomForestRegressor)

“n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2,
‘”max_features”: auto

BR scikit-learn 0.23.2 (from sklearn.ensemble import
BaggingRegressor)

“n_estimators”: 10, “max_depth”: 1.0, “max_samples”: 1.0

GBR scikit-learn 0.23.2 (from sklearn.ensemble import
GradientBoostingRegressor)

“n_estimators”: 100, “max_depth”: 3, “min_samples_leaf”: 1, “min_samples_split”: 2, “alpha”:
0.9, “learning_rate”: 0.1, “max_features”: None

ABR scikit-learn 0.23.2 (from sklearn.ensemble import
AdaBoostRegressor)

“n_estimators”: 50, “loss”: linear, “learning_rate”: 1.0

XGBR xgboost 1.3.3 (from xgboost import XGBRegressor) “n_estimators”: 100, “max_depth”: None, “min_child_weight”: None, “gamma”: None,
“colsample_bytree”: None, “subsample”: None, “reg_alpha”: None, “reg_lambda”: None,
“learning_rate”: None

SVR scikit-learn 0.23.2 (from sklearn.svm import SVR) “C”: 1.0, “gamma”: scale, “epsilon”: 0.1, “kernel”: rbf

KNR scikit-learn 0.23.2 (from sklearn.neighbors import
KNeighborsRegressor)

“weights”: uniform, “n_neighbors”: 5, “p”: 2

DTR scikit-learn 0.23.2 (from sklearn.tree import
DecisionTreeRegressor)

“criterion”: squared_error, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2,
“max_features”: None

MLR scikit-learn 0.23.2 (from sklearn.linear_model import
LinearRegression)

“fit_intercept”: True, “normalize”: deprecated, “n_jobs”: None, “copy_X”: True
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RFfi �
∑j∈all trees normfij

Ttotal

2.5.2 Sequential forward feature selection
To address the arbitrariness of the selection of the feature subset

and the instability of the results, we used sequential forward selection,

a well-known wrapper-based approach, to generate the optimal

feature subset (Yao et al., 2020). Feature selection based on

sequential forward selection is a bottom-to-top search method that

starts with an empty feature set. At each sequential step, the system

adds themost important feature selected according to a given criterion

to form a new feature subset (Marcano-Cedeño et al., 2010; Yao et al.,

2020). The relative feature importance obtained from random forest

was used as the evaluation criterion. In each subsequent iteration, the

pros and cons of the generated feature subset were evaluated

according to the performance of the regressor on the test set by

using 10-fold cross-validation and theMAE. The features sequentially

added should increase the score on the performance metric. The

optimal feature subset was considered to have been established when

“no considerable decline” in the MAE was observed.

2.6 Correlation analysis

The following two aims were considered: 1) To investigate

the association among the features to remove collinearly multiple

correlated features; and 2) to explore the positive or negative

relationships between the predictors and the labels.

We used the Pearson correlation coefficient, among the most

commonly used correlation coefficients, to calculate the linear

relationship between the given variables. It is expressed as follows:

R(x, y) � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√
where n denotes the number of pairs of variables x and y, xi and

yi denote the values of x and y, and �x and �y denote the means of

x and y, respectively.

2.7 Proposed stacking ensemble learning
framework

Figure 2 presents the architecture of stacking with stratified

five-fold cross-validation. The derivation cohort (D) and the

validation cohort (D′) were used for each base learner, and both

consisted of feature vectors (i.e., xi and x′
j, respectively) and the

corresponding original labels (i.e., yi and y′
j, respectively). F

denotes the number of input features, and S1→i and S1 → j′ denote

the numbers of samples in the derivation cohort and the

validation cohort, respectively.

The following steps were used to implement stacking

(Kalagotla et al., 2021):

Step 1: Split the derivation cohort into five stratified folds. For each base

learner m, use the first four folds for training and the rest for testing.

Repeat this five times. Finally, take all out-of-fold predictions together

as a new feature fm for fitting. Calculate the average value of predictions

made by the base learner m in the validation cohort for each fold, and

set this as a new feature fm for testing.

Step 2: Repeat step 1 for all base learners M (M = 5 in this study). Merge

all the new features (i.e., f1 , f2, . . ., and fM) created over the datasets D

and D9. The new dataset then contains M attributes. Keep the original

labels as the labels of this dataset.

Step 3: Select a model as a meta-learner (a linear regression model in

this study). Generate this by combining the predictions made by the

base learners to summarize the correct information. Train the meta-

model and evaluate it in the final, new, derivation cohort and the new

validation cohort.

2.8 Comparison of performance ofmodels

2.8.1 Evaluation of imputation and stacking
Given that multiple important features included in the stacking

model had some missing data points—for example, the variable for

ALT had 1,021 missing values—we performed imputation

evaluation by reconstructing the prediction models such that the

FIGURE 2
Proposed architecture of stacking with stratified five-fold cross-validation.

Frontiers in Pharmacology frontiersin.org07

Zhu et al. 10.3389/fphar.2022.975855

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.975855


missing data points in the optimal feature subset were omitted,

rather than imputed, to show whether imputation had generated a

bias. First, an omitted dataset derived from the original dataset with

the optimal feature subset, but with the missing data points omitted,

was generated. The omitted dataset was split and data preprocessing

was performed on it according to the aforementioned methods.

Second, the performance of the generated base regression models

was compared by using the two datasets, i.e., the transformed dataset

and the omitted dataset, both of which had the same optimal feature

subset. Third, the hyperparameters for each base model were

adjusted to yield better predictive performance via the grid

search method in scikit-learn. It evaluated the given

hyperparameter combinations of the model by using

“neg_mean_absolute_error” as the evaluation metric and 10-fold

cross-validation (Radzi et al., 2021). This technique allows

inexperienced data scientists to acquire recommendations for

tuning the parameters, but may be time consuming and

inefficient in case of a large number of parameters. Finally, the

performance of the proposed stacked ensemble model after the

optimization of the base models was compared with that of the base

models before optimization.

2.8.2 Evaluation metrics
Aside from the MAE, the following evaluation metrics were

used to quantitatively evaluate the performance of the models:

R-square (R2), mean squared error (MSE) (Cesar de Azevedo

et al., 2021), mean relative error (MRE) (%) (Zhu et al., 2021a),

and ideal rate (IR) (%) (Guo et al., 2021). These indices were

calculated as follows:

R2 � 1 − ∑n
i�1(ŷi − yi)2∑n
i�1(ŷi − �yi)2

MSE � 1
n
∑n
i�1
(yi − ŷi)2

MRE (%) � 1
n
∑n
i�1

(yi − ŷi)
ŷi

× 100%

IR (%) �
Number ofpredicted TDMwithin

± 30% of actual TDM
Total number of actual TDM

× 100%

where yi, ŷi, and �yi are the predicted, measured values, and the

mean values, respectively.

2.9 Model interpretability

Ensemble learning models are in general criticized as “black-

box” models (i.e., they are not interpretable) due to their

complexity. Furthermore, the good performance of a model

typically does not mean that its predictions are always correct.

Therefore, in AI-assisted clinical decisions, medical workers

usually ask such questions as “why should we trust the

predictions of black-box models?” and “what are the

mechanisms behind the model’s predictions?” There is thus a

need to solve the problem of model interpretability, the concept

of which involves the intuition behind the predictions of the

model, that is, the relationships between the inputs and the

outputs (Linardatos et al., 2020).

2.9.1 Local interpretable model-agnostic
explanations (LIME)

LIME is a perturbation-based method that was proposed by

Ribeiro et al. (2016) for the concrete implementation of local

surrogate models that are used to explain individual predictions

of black-box models. This technique mixes perturbed inputs and

the corresponding outputs of black-box models to generate a new

dataset weighted around the instance being explained. In the

perturbed dataset, an interpretable model is first trained, and the

learned model then approximates the key features by generating

their contributions to the outcomes of predictions in individual

instances. Mathematically, the explanations produced by the

LIME method can be expressed as follows:

ζ(x) � argmin
g∈G

L(f, g, πx) + Ω(g)
where ζ(x) represents local surrogate models with the

interpretability constraint, g denotes an explanation model (e.g.,

decision trees or linear regression models) for instance x that

minimizes the loss function L (e.g., binary cross-entropy or mean

squared error) that measures the discrepancy between the model g

and the original model f (e.g., an XGBoost model) in the

neighborhood πx (i.e., the proximity measure defining the extent

of the locality around instance x), G is the collection of all possible

explanations, and Ω(g) is a penalty for the model complexity.

LIME supports explanations for structured datasets (e.g., tabular)

and unstructured datasets (e.g., image and text), covering regression

and classificationmodels. For the regression and classificationmodels

that use tabular (i.e., matrix) data, the interpretations of LIME results

are similar. LIME works internally as follows:

1) Given an observation, generate a fake dataset based on it with

slight value modifications, and then permute the fake dataset.

2) Compute distance metrics (or similarity metrics) between

original observations and permuted fake data. The similarity

πx(z) is calculated as:

πx(z) � exp( − D(x, z)2
σ2

)
3) Apply our original complex ML model to make a prediction

on this new permuted fake data.

4) Select M number of features that best describe our complex

ML model’s performance on permuted fake data.
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5) Fit a simple model (e.g., linear or logistic regression) to the

permuted fake data, explaining the complex model outcome

with M features from the permuted fake data weighted by its

similarity to the original observation.

6) Use the resulting feature weights derived from that simple

model to explain local behavior.

We used the “LimeTabularExplainer” class and the

“explain_instance ()” function available from the

“lime_tabular” module in the LIME algorithm to observe two

prediction-related behaviors of the stacking model by using

representative drawings of two samples from the validation

cohort. In this study, we specified the parameter attributes of

“mode” and “feature_names” in the “LimeTabularExplainer”

class to be regression and the list of feature names of the

training data, respectively. Besides, we set the random_state

parameter values to 0, 1, and 10, to observe the stability of

model interpretation. Default settings were used for some other

important parameters of this class, including “kernel_width

(None),” “kernel (None),” and “feature_selection (auto).”

Some important parameters of the “explain_instance ()”

method also retained their default settings, including

“model_regressor (None, i.e., defaults to ridge regression),”

“distance_metric (euclidean),” “sampling_method (gaussian),”

and “num_samples (5000).”

2.9.2 Partial dependence plot (PDP)
Unlike LIME, the PDP is a global model-agnostic method.

It shows the marginal effect of one or two features on the

model (Friedman, 2001). A PDP tells us whether a linear,

monotonic, or more complex relationship between the

predicted response and a feature exists by considering all

instances. This method of global interpretation can also

explore how these features interact, whereby the degree of

variation in the predicted outcome may be measured. The

partial dependence function for regression can be described as

follows:

f̂s(xs) � Exc[f̂(xs, xc)] � ∫ f̂(xs, xc)dP(xc)

where xs denotes the set of features of interest for which the

function above should be plotted, xc denotes the complement

set that contains all other features used in the ML model f̂,

and dP denotes the marginal distribution. The union of two

feature vectors xs ∪ xc is the total feature space x. The

function f̂s(xs) is then estimated by calculating averaging

predictions with actual feature values of xc in the training data

at given values of xs. This is also known as the Monte Carlo

method:

f̂s(xs) ≈ 1
n
∑n
i�1
f̂(xs, x

i
c)

where n denotes the number of instances in the dataset and xi
c

denotes all observations from the dataset of features that are not of

interest to us. Finally, the PDP visualizes the averaged relationship

between the features and the predicted outcome, which is

conventionally displayed by a trend line. In this study, we used

the sklearn.inspectionmodule to create one-way and two-way PDPs.

2.10 Software and implementation

All ML models were constructed by using the scikit-learn

(version 0.23.2, https://scikit-learn.org/stable/index.html) and

XGBoost (version 1.3.3, https://xgboost.readthedocs.io/en/

latest/) packages in Python (version 3.8.5, https://www.python.

org) (Pedregosa et al., 2011; Chen and Guestrin, 2016). All

statistical analyses and visualizations were implemented by

using packages of pandas (version 1.1.3, https://pandas.pydata.

org), numpy (version 1.19.2, https://numpy.org), scipy (version

1.5.2, https://scipy.org), matplotlib (version 3.3.2, https://

matplotlib.org), seaborn (version 0.11.0, https://seaborn.

pydata.org), missingno (version 0.5.0, https://libraries.io/pypi/

missingno), and lime (version 0.2.0.1, https://libraries.io/pypi/

lime). All experiments were performed in the Jupyter notebook

(version 6.1.4, https://jupyter.org) launched by Anaconda

software (version 1.10.0, https://www.anaconda.com).

3 Results

3.1 Dataset overview

Table 2 summarizes the 472 features (303 categorical features

and 169 continuous features) of the complete original dataset.

They included general patient information, information relating

to substance abuse, history of diagnosis and disorders, blood

types, phenotypes, genotypes and gene polymorphisms, dosage

regimens, combined drugs, and the results of TDM

measurements of other medications and biochemical analyses

when OLZ concentrations were simultaneously determined.

Table 3 shows the distributions of the labels and the partial

features in the entire original dataset, respectively. Figures 3A,B

show comparisons of the frequency histograms and

quantile–quantile (Q–Q) plots of the C (OLZ) and the log-

transformed C (OLZ), indicating that log transformation

tended to make the distributions more symmetric and normal.

The data were rescaled to the range from 0.143 to 1.000.

Of the 169 continuous features, 54 with fewer than 50%

missing values were reserved, and are illustrated in Figure 3C.

This was in addition to four features that did not contain any

missing values (see Table 3). The missing values of features are

shown in Figure 3C by white lines in each column of the matrix

chart with sparklines to the right, indicating the completeness of
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the data. Missing value imputation and min–max normalization

were then applied to these continuous features.

By dropping the first column after one-hot encoding on the

303 categorical features of the original dataset, the number of

categorical variables increased to 389. A new, transformed, dataset

containing 58 continuous features and 389 categorical features was

created.

3.2 Base regression models

Table 4 shows the MAE of the predictions by the candidate

regression models of the log-transformed C (OLZ) on the

derivation cohort of the entire transformed dataset. An overall

comparison of these models in the test set indicated that most

ensemble learning models were superior to single ML models.

TABLE 2 A summary of features in the original dataset.

Items Features

General patient information (four features) Gender, age, body weight (abbreviation: BW), height

Substance abuse (three features) Smoking history, drinking history, history of other substance abuse

Diagnosis and disorder history (three features) Diagnosis of schizophrenia, diagnosis of bipolar affective disorder, allergic history

Blood types (two features) ABO blood type, Rh blood type

Phenotypes, genotypes, and gene polymorphisms
(13 features)

MTHFR (C677T) polymorphism, MTHFR phenotype, HLA-B*1502 genotype, CYP2C19 genotype, CYP2C19
phenotype, CYP2D6 genotype, CYP2D6 phenotype, CYP2D6 (G4180C) polymorphism, CYP2D6 (G2988A)
polymorphism, CYP2D6 (C2850T) polymorphism, CYP2D6 (G1846A) polymorphism, CYP2D6 (C100T)
polymorphism, ApoE genotype

Dosage regimens (three features) Daily dose of OLZ [abbreviation: daily dose (OLZ)], dosage regimen of OLZ, daily dose frequency of OLZ

Combined drugs (280 features) Valproic acid, risperidone, rifampicin, warfarin, clozapine, sertraline, fluvoxamine, perphenazine,
carbamazepine, fluoxetine, etc.

Results of TDM measurements of other medications
(24 features)

Concentrations of valproic acid [abbreviation: C (Valproic acid)], sertraline, fluoxetine, fluvoxamine,
risperidone, oxcarbazepine, venlafaxine, clozapine, lamotrigine, perphenazine, aripiprazole, etc.

Information relating to biochemical analyses (140 features) Time of TDM blood sampling after first administration of OLZ (abbreviation: time of blood sampling after first
administration), alanine transaminase (abbreviation: ALT), serum potassium (abbreviation: K), serum sodium
(abbreviation: Na), absolute monocyte count (abbreviation: MONO#), white blood cell count (abbreviation:
WBC), red blood cell count (abbreviation: RBC), serum creatinine (abbreviation: Cr), uric acid (abbreviation:
UA), creatine kinase (abbreviation: CK), C-reactive protein (abbreviation: CRP), total cholesterol (abbreviation:
TC), etc.

TABLE 3 Distribution of partial continuous and categorical data in the original dataset (n = 2,142).

Continuous data Values
[median
(min–max)]

Missing
[n
(%)]

Categorical data Values Distribution
[n
(%)]

C (OLZ) (ng/ml) 26.43 (2.00–127.31) 0 (0%) Gender Male 1235 (57.66%)

Age (years) 47 (12–94) 0 (0%) Female 907 (42.34%)

BW (kg) 61 (26–121) 462 (21.57%) Smoking history Yes 308 (14.38%)

Daily dose of OLZ (mg) 15 (1.25–30) 0 (0%) No 1347 (62.89%)

Time of TDM blood sampling after first administration of
OLZ (days)

18 (0–483) 0 (0%) Unknown 487 (22.73%)

ALT (U/L) 18 (3–632) 1021
(47.67%)

Diagnosis of schizophrenia Yes 999 (46.64%)

Na (mmol/L) 140.3 (121.0–150.0) 1046
(48.83%)

No 1143 (53.36%)

K (mmol/L) 3.99 (2.20–5.21) 1046
(48.83%)

Co-administration of valproic
acid

Yes 778 (36.32%)

Cr (μmol/L) 70 (28–203) 1067
(49.81%)

No 1364 (63.68%)

MONO# (×109/L) 0.49 (0.07–2.07) 985 (45.99%)

C (Valproic acid) (mg/L) 0.00 (0.00–150.00) 231 (10.78%)
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FIGURE 3
Frequency histograms (A) andQ–Qplots (B) of C (OLZ) and the log-transformed C (OLZ). (C)Chart of thematrix of missing data for 54 features,
with fewer than 50% missing values in the original dataset.

TABLE 4 An overall comparison of the candidate models in terms of the MAE at a 95% confidence interval (CI) in the derivation cohort of the
transformed dataset.

Candidate models MAE in
the training set

95% CI of
MAE in the
training set (+/-)

MAE in the test set 95% CI of
MAE in the
test set (+/-)

ETR 2.005×e−7 1.773×e−7 0.060 0.011

XGBR 0.008 0.001 0.066 0.011

RFR 0.025 0.001 0.066 0.008

BR 0.028 0.001 0.071 0.011

GBR 0.059 0.001 0.071 0.009

SVR 0.063 0.001 0.076 0.009

KNR 0.067 0.001 0.086 0.016

DTR 2.005×e−7 1.773×e−7 0.086 0.013

ABR 0.080 0.003 0.086 0.010

MLR 0.055 0.001 2.767×e+8 5.208×e+8
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The top five regression models: the ETR, XGBR, RFR, BR, and

GBR, were chosen as base models for stacking.

3.3 Best feature combination for
prediction

Figure 4A shows changes in the predictive performances

of the base regression models with various compositions of

feature subsets selected by the random forest-based sequential

forward feature selection strategy. A flexible and simple model

generally has as few features as possible but delivers the best

possible predictive performance. To discard irrelevant

features, we identified the point (corresponding to the top

10 features selected) at which no considerable reduction

occurred in the MAE in the test sets of all the base models

when extra features were added to them. The top 10 features

were ranked in terms of relative importance as follows

(Figure 4B): daily dose (OLZ) (1.0000), gender_male

(0.1484), age (0.0491), valproic acid_yes (0.0414), ALT

FIGURE 4
(A) Evolution of prediction errors for various compositions of feature subsets selected by the random forest-based sequential forward feature
selection strategy. The corresponding 95% CIs of the MAE obtained by 10-fold cross-validation are represented by the colored areas. (B) Relative
feature importance of the top 10 features.

FIGURE 5
Heatmap of the Pearson correlations between the log-transformed C (OLZ) and the finally selected features.
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(0.0323), K (0.0288), C (valproic acid) (0.0273), BW (0.0262),

MONO# (0.0255), and time of blood sampling after first

administration (0.0251).

Among these 10 features, valproic acid_yes and C (valproic

acid) were found to be multi-collinear (Pearson r = 0.801, p <
0.001). As such, only the more important feature, “valproic

acid_yes,” was retained in the optimal feature subset.

Figure 5 shows the correlations between the log-transformed

C (OLZ) and the finally selected features. The daily dose (OLZ)

was identified as a key positive factor associated with the log-

transformed C (OLZ), showing a moderate correlation

coefficient of 0.65. The other features showed either weak

positive correlations (e.g., ALT and time of blood sampling

after first administration) or weak negative correlations (e.g.,

gender_male, age, valproic acid_yes, K, BW, andMONO#) with

the log-transformed C (OLZ).

FIGURE 6
Comparison of the prediction performance of our models on the validation cohorts under different conditions in terms of the MAE, R2, MSE,
MRE, and IR.
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3.4 Performance analysis of models

The omitted dataset was generated in a 752 × 10 matrix

format to evaluate the influence of kNN imputation of the

missing values of the optimal feature subset on the

performance of the model. Based on a ratio of division of 8:2,

the omitted dataset was divided into the derivation and the

validation cohorts, containing 601 and 151 samples,

respectively. Furthermore, the predictive performances of the

base models after data omission and imputation were compared

on the respective validation cohorts (n = 151 and n = 429,

respectively). As is shown in Figure 6, the base models after data

imputation on the whole generated values of the MAE and MSE

similar to, but those of R2 and MRE better than, those of the

models after data omission. Thus, the imputed dataset was

considered during modeling owing to its larger number of

samples.

We also compared the performance of the base models

before and after hyperparameter optimization on the validation

cohort of the transformed dataset. Table 5 presents the

optimized hyperparameters of each base model. Overall, the

optimal base models exhibited enhanced generalization

performance by reducing overfitting, as illustrated by the

improvements in several indices such as the MAE and IR

(Figure 6).

Finally, the state-of-the-art proposed stacking model

provided an overall better performance than the other optimal

base models, with MAE, R2, MSE, MRE, and IR values of 0.064,

0.5355, 0.0089, 13%, and 63.4%, respectively (Figure 6).

Moreover, Figure 7 illustrates no clear patterns, and shows

that the residuals were symmetrically distributed, which satisfies

the assumption of a normal distribution. This shows that the

proposed stacking model is appropriate and a good fit for the data.

Notably, Figures 8A,B demonstrate more accurate

predictions in the intermediate-to-high range of C (OLZ)

(≥15.17 ng/ml; i.e., the 25% quartile of OLZ concentrations in

the validation cohort) than in its low range (<15.17 ng/ml).

3.5 Interpretation of the proposed
stacking model

Figures 8C,D show the explanation of decisions behind the

predictions for the selected samples (ID 1174 and ID 1570) in

terms of different random_state values. It shows significant

differences in predictive performance in these two samples. To

TABLE 5 Optimized hyperparameters of each base model.

Base model Hyperparameters

ETR ‘n_estimators’: 251, ‘max_depth’: 30, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘max_features’: sqrt

XGBR ‘n_estimators’: 271, ‘max_depth’: 8, ‘min_child_weight’: 4, ‘gamma’: 0, ‘colsample_bytree’: 1.0, ‘subsample’: 1.0,
‘learning_rate’: 0.19

RFR ‘n_estimators’: 102, ‘max_depth’: 23, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2

BR ‘n_estimators’: 106, ‘max_features’: 0.9, ‘max_samples’: 1.0

GBR ‘n_estimators’: 178, ‘max_depth’: 8, ‘min_samples_leaf’: 1, ‘min_samples_split’: 3

FIGURE 7
Residuals plots: Plot of residuals versus the predicted values (A), and normal plot of the residuals (B).
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FIGURE 8
Assessing the forecasting performance of the proposed stacking model in terms of different ranges of C (OLZ) on the validation cohort:
Histograms of various metrics in the context of the low and intermediate-to-high ranges (A), and a scatterplot of the relative error (RE)% versus the
observed C (OLZ) in the intermediate-to-high range (B), where the red dotted lines denote theMRE, the colored areas denote the ±30% (green color)
and ± 50% (yellow color) ranges of the RE, and the dotes labeled by sample ID 1174 and ID 1570 represent themaximumRE of prediction and the
maximum observed C (OLZ), respectively. Interpretation of the results of prediction of samples ID 1174 (C) and ID 1570 (D) by the LIME algorithm
using different random_state values. The four views for each sample, from left to right, show the predicted values of the explanation and the stacking
models, the feature coefficients (the orange and blue colors depict positive and negative relationships, respectively), the feature values in this sample,
and the local explanation plot of these features.
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interpret these results, we conclude that relatively higher

values of C (OLZ) can be attributed to the following

reasons: 1) The high values of daily dose (OLZ) and time

of blood sampling after first administration, 2) the lower value

of MONO#, and 3) female patients (gender) or without the co-

administration of valproic acid. The other factors, such as age,

BW, and ALT, also affected the predictive behaviors of the

model, whereby a large difference in performance on the

above samples was noted. We reproduced similar results

each time we reran the code with different random_state

values for the same data sample, indicating that the

explanations of our model were trustworthy.

Having determined the key features, we examined their

effects on the predicted outcomes to improve our

understanding of the use of ML-derived algorithms for the

precision dosing process. Figure 9A shows the relationships

between the selected features (x-axis) and log-transformed C

(OLZ) (y-axis), revealing that changes in the normalized values

of several continuous feature variables [e.g., the daily dose

(OLZ) and age] exhibited non-linear relationships with

changes in the log-transformed C (OLZ). Figure 9B shows

the interactions between the daily dose (OLZ), as the most

important feature, and the other features as well as their

influence on our predictions. For example, for a normalized

daily dose (OLZ) greater than 0.60, the log-transformed C (OLZ)

in the elderly population was higher than that in child and

adolescent populations. Within this range, it was nearly

independent of the BW.

FIGURE 9
(A) One-way PDPs for features included in the stacking model. (B) Two-way PDPs of the interactions between the daily dose (OLZ) and other
features.
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4 Discussion

Unlike previous studies that used only homogeneous

ensembles (e.g., XGBoost) or simple weighted average

ensembles for ML-assisted TDM (Zhu et al., 2021a; Guo et al.,

2021; Hsu et al., 2021; Huang et al., 2021; Zheng et al., 2021; Lee

et al., 2022), our is the first study, to the best of our knowledge, to

explore the real-time estimation of drug concentrations by using

a stacking ensemble framework as an MIPD tool. Our work here

shows that stacking a heterogeneous ensemble, overall, is

superior to homogeneous ensemble-based methods (e.g.,

bagging and XGBoost models) on several comparisons of

model performance on the TDM-OLZ dataset. For example,

the proposed stacking model yielded MSE and IR values of

0.0089 and 63.4%, respectively, which were comparatively

better than that of any single base models. Furthermore, the

model generated MAE, R2, and MRE values of 0.064, 0.5355, and

13%, respectively, which were close to those of the best-

performing base models as filtered through the corresponding

metrics, i.e., the ETR with an MAE of 0.063, the XGBR with a

value of R2 of 0.5394, and the RFR and the BR with anMRE value

of 13%. Hence, the state-of-art stacking model outperformed the

individual regressors, and can be considered to be the optimal

model for predicting OLZ concentration. In this stacking model,

the five top-ranking homogeneous ensemble models (i.e., ETR,

XGBR, RFR, BR, and GBR) were used to construct the complex

but diverse base models, also called strong learners. They were

trained by using stratified five-fold cross-validation to ensure that

all data in the derivation cohort participated in training to avoid

overfitting (Wu et al., 2021; Sayari et al., 2022). A simple linear

regression model was used as the meta-model in model stacking,

and provided an intuitive and smooth interpretation of

predictions made by the base regressors, thus further reducing

the probability of overfitting (Zhang et al., 2021). Our study also

demonstrated that the stacking model could integrate the

complementary merits of the bagging and the boosting

models, thus achieving stable and significantly enhanced

predictions (Sesmero et al., 2015).

The interpretability of a model is vital for its clinical use. We

have mentioned that the proposed stacking model obtained more

“trustworthy” predictions in the intermediate-to-high range of

the C (OLZ) (≥15.17 ng/ml). Amuch higher variance at a lower C

(OLZ) was also noted, possibly due to the problem of overfitting

in the training process and a greater influence of uncontrolled

confounders, including errors in TDM measurement and the

genetic effects of gene polymorphisms (e.g., polymorphisms in

CYP1A2) associated with OLZ metabolism (Zhu et al., 2021a).

Moreover, the analysis of relative feature importance revealed

that daily dose (OLZ) was the most important feature, which was

consistent with the findings of the PDPs, where the log-

transformed C (OLZ) sharply increased with normalized daily

dose (OLZ). The PDPs also revealed that a decreasing trend in the

log-transformed C (OLZ) was associated with normalized age

values ranging from zero to approximately 0.65, and a small

increase was subsequently observed with an increase in the

normalized age. Deng et al. (2020) have reported that patients

younger than 60 years had higher C (OLZ) than patients older

than 60 years. A previous study by An et al. (2021) also revealed

that advanced age is related to a lower C (OLZ). However,

another prior study arrived at the opposite conclusions. The

authors there found that the effects of age on C (OLZ) became

pronounced with advanced age. They noted that patients aged

70–79 years had the highest median measured C (OLZ), and

concluded that patients older than 70 years should be subdivided

and considered for dose reduction (Castberg et al., 2017). Our

work, therefore, offers a new perspective on the explanation of

these conflicting findings. Other features, such as male (sex) or

co-administered valproic acid, were identified as having had a

negative influence on the predicted values of the log-transformed

C (OLZ), which aligns with previous reports (Bigos et al., 2008;

Zang et al., 2021). The two-way PDPs showed that the

interactions between the daily dose (OLZ) and most features

were pronounced in case of a high normalized daily dose (OLZ);

however, the interactional dependencies among them tended to

not be prominent as the normalized daily dose (OLZ) was

increased to a certain extent. To further explore the

comprehensive effects of these features on predictions of the

model, we used the LIMEmethodology to compare the predictive

behaviors of the stacking model on two discrepant samples

having the same feature values of the daily dose (OLZ),

gender_male, and valproic acid_yes. The other indicators (e.g.,

time of blood sampling after first administration, age, and

MONO#) profoundly affected the predictive accuracy of our

model in this case. One possible explanation for this is that

inadequately similar samples were learned by the model.

Our work also shows that the intersection between ML and

pharmacometrics might have the potential to advance data

sciences, as mentioned by Koch et al. (2020). For instance,

our model discovered some confounding factors (e.g.,

MONO#, K, and ALT) that influenced the pharmacokinetics

of OLZ, and this has not been reported in previous

pharmacometric studies. This indicated that these factors

could be used as potential covariates in future popPK studies

to explore their impact. On the other hand, the updating in

pharmacometrics is static which requires new models (McComb

et al., 2022). However, as an extension of this work, we have

designed an AI-assisted system to predict drug concentration,

where the dataset is updated according to automated data

crawling from the Hospital Information System (HIS),

followed by a dynamically updated ML model to predict

concentrations based on the selected predictors. The dosing

regimens are then adjusted, and new measurements and

predictions are performed. This process is recurrent, and

improves the self-learning of the ML model (Figure 10).

This work also has certain limitations. First, some relevant

characteristics of patients (e.g., polymorphisms in CYP1A2) were
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not included due to limitations of the test items. Previous studies

have revealed a significant influence of polymorphisms in the

CYP1A2 gene on C (OLZ) and clinical outcomes (Czerwensky

et al., 2015). However, a recent meta-analysis of the impact of

CYP1A2 genetic polymorphisms on the pharmacokinetics of

CYP1A2-metabolized antipsychotic drugs did not confirm this

association (Na Takuathung et al., 2019). More feature variables

of patients, especially these controversial factors, should be

considered in future ML modeling. Second, despite a lack of

consensus on model validation methods, the comparison of the

predictive performance of the proposed stacking model and the

pharmacometrics-based models on the external validation

dataset may be worthy of further study. Third, some features

are known to have effects on the C (OLZ). For example, smokers

have been reported to exhibit significantly lower steady-state

plasma concentrations of OLZ and N-desmethyl-olanzapine,

and clear OLZ 55% faster than non-smokers/past smokers

(Bigos et al., 2008; An et al., 2021). However, smoking history

was excluded in the optimal feature subset of our model,

owing to the small size of samples. This led to a slight

imbalance in the feature categories (e.g., the proportion of

smoking history was only 14.38%), and they were trained

using few iterations. Besides, the flexibility of the

implementation of our ML may be hindered due to the

single-center study. Therefore, more data collected from

routine TDM should be considered in future work to

construct a retrospective, multicenter, large-scale, high-

quality TDM database to optimize the model. Finally, each

method of interpreting ML has inherent limitations. For

example, the LIME approach might result in unstable

interpretations, and PDPs might not work well if features

in the given subsets are strongly correlated with one another.

Thus, there is the room for improvement in techniques to

interpret the results of ML methods (Linardatos et al., 2020).

5 Conclusion

In this study, we proposed a stacking ensemble learning

framework to improve predictions of drug concentrations. The

novel two-layer stacking ensemble, consisting of the ETR, XGBR,

RFR, BR, and GBR models as the first layer and a linear regression

model as the second layer, was generated based on a TDM-OLZ

dataset that we derived from real-world multi-dimensional EHR data.

Overall, the state-of-art stacking ensemble learning model

outperformed the base models in terms of the MAE, R2, MSE,

MRE, and IR on the validation cohort. Moreover, specific and

practical interpretations of the results of the proposed model were

obtained by using the interpretable learning methods LIME and PDP.

This can help advance clinical data analysis by partnering with

pharmacometrics. In conclusion, our study demonstrated the promise

of using a stacking ensemble learning framework to advance MIPD.

However, the proposed methodology needs to be further developed.
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