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Vertebrates have evolved a complex immune system required for the identification of and
coordinated response to harmful pathogens. Migratory species spend periods of their life-
cycle in more than one environment, and their immune system consequently faces a greater
diversity of pathogens residing in different environments. In facultatively anadromous
salmonids, individuals may spend parts of their life-cycle in freshwater and marine
environments. For species such as the brown trout Salmo trutta, sexes differ in their life-
histories with females more likely to migrate to sea while males are more likely to stay and
complete their life-cycle in their natal river. Salmonids have also undergone a lineage-specific
whole genome duplication event, which may provide novel immune innovations but our
current understanding of the differences in salmonid immune expression between the sexes is
limited. We characterized the brown trout immune gene repertoire, identifying a number of
canonical immune genes in non-salmonid teleosts to be duplicated in S. trutta, with genes
involved in innate and adaptive immunity. Through genome-wide transcriptional profiling
(“RNA-seq”) of male and female livers to investigate sex differences in gene expression
amplitude and alternative splicing, we identified immune genes as being generally male-biased
in expression. Our study provides important insights into the evolutionary consequences of
whole genome duplication events on the salmonid immune gene repertoire and how the
sexes differ in constitutive immune expression.

Keywords: facultatively anadromous, immunity, gene expression, gene duplications, sexual dimorphism, salmonids
INTRODUCTION

Species that migrate face a range of challenges. First, the physical act of migration can be
metabolically and energetically demanding, resulting in trade-offs with other metabolically
intensive physiological processes, such as immunity, when resources are limiting (1–3). Second,
migratory species move through different environments and hence may be exposed to different
pathogens and parasites (4, 5). For aquatic species that exhibit diadromy—the ability to move
between marine and freshwater environments—an efficient immune system is required to cope with
org February 2021 | Volume 12 | Article 5687291
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the challenges imposed by living in, and moving between,
different osmotic environments with different pathogen and
parasite communities.

In vertebrates, a sophisticated immune system has evolved
that performs two vital functions: 1) the recognition and
distinction of invasive pathogenic organisms from normal cells
(“self”), and 2) coordinating an appropriate response through
triggering pathways responsible for the synthesis of effector
molecules that directly or indirectly reduce or remove the
pathogenic threat (6, 7). Aside from detection of non-self-
pathogenic organisms, the immune system also functions in
the removal of abnormal cells and thus provides an important
role in reducing the development and onset of disease.

Given the importance of the immune system in preventing
infection and establishment of disease, there is strong selection
pressure acting on immune genes. In response to these pressures,
immune genes are generally fast evolving (8, 9). Additional
innovations in immune potential can also arise through
tandem duplication, retrotransposition, larger scale duplication
of chromosomal regions or entire chromosomes, as well as whole
genome duplication events (WGD). For example, two rounds of
WGD events are suggested to have contributed to the genesis of
the adaptive immune system in vertebrates (10). Indeed, WGD
events produce duplicated copies of all genes, which selection can
act on resulting in retention or removal of one or both copies. In
terms of removal, as with general duplication events, gene loss
can occur through reduced purifying selection resulting in
functional divergence between the copies. Accumulation of
deleterious mutations may eventually lead to one copy
becoming non-functional (11). Gene loss may also be adaptive.
For example, loss of gene function in a duplicated copy may be
adaptive in response to environmental challenges (12, 13),
including pathogens (14, 15). Alternatively, after duplication of
a gene, functional divergence can occur whereby one copy
evolves a slightly different or entirely novel function relative to
the other copy. Functional divergence can result in
subfunctionalization, whereby individual copies specialize on
different components of the same function originally
performed by the ancestral gene pre-duplication (i.e., “division
of labor”), or neofunctionalization, whereby one copy may evolve
a novel function (16).

As stated previously, the continuous expression and
activation of immunity can be metabolically costly, resulting in
trade-offs with fecundity and longevity (17). In particular, the
sexes can differ in their levels of immune function with greater
immunocompetence generally evident in females in comparison
to males (18–23). Lower immunocompetence in males has been
attributed in proximate terms to differences in circulating levels
of hormones and their effects, such as androgen, and in ultimate
terms to differences in life-history strategies, with males investing
more in reproduction and associated secondary sexual characters
while females invest in immune function and longevity (24).
Moreover, in facultatively migratory species, differences are often
evident between the sexes in the rate or timing of migration (25–
28), which in turn has implications for exposure to pathogens
and parasites and investment in immune defense. Differences in
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the level of immunity between the sexes can be detected at the
transcriptional level (22, 29–31), whereby genes associated with
the immune system may differ in their expression between the
sexes. Approaches such as genome-wide transcriptomics (“RNA-
seq”) are important tools for high-resolution detection and
profiling of genes that differ in expression amplitude, as well as
splicing, between the sexes. Such approaches have been applied
to improve our understanding of genes underlying sexually
dimorphic traits in a variety of taxa (32–35), including
immunity (36).

An interesting study system for understanding the evolution
and expression of the immune system and how it differs between
the sexes are the salmonids, a group of culturally, economically
and ecologically important teleost fish (37). The salmonids
consist of approximately 70 species across 11 genera that have
evolved flexible life-histories with a diversity of ecological
adaptations that allow for migration to, and survival in, a
range of freshwater and marine aquatic environments (38).
There is a gradient from entirely non-anadromous species
(which complete their entire life cycles in fresh water) through
facultatively anadromous species to species that are almost
entirely anadromous (39–44). Within facultatively anadromous
species, rates of anadromy and other migratory tactics can vary
between populations, and even among individuals within
populations, particularly between the sexes with females more
likely to undergo migration than males (42, 43, 45, 46).

Survival for prolonged periods in different aquatic
environments, which contain different pathogenic threats,
requires an immune system that can detect and respond to a
diverse array of immune challenges. These factors likely placed
strong selection pressures that shaped immune system evolution
but additional immune novelty in salmonids may be the result of
the salmonid-specific WGD event. The common ancestor of
salmonids underwent an autotetraploidization event
approximately 80–100 mya (47–49), which is believed to have
contributed to genomic and phenotypic innovation as well as
speciation within the salmonids (50). While the timing of the
WGD event and first appearance of the anadromy during
salmonid evolution are highly temporally detached, speciation
rates were shown to be elevated within anadromous salmonids
compared to non-anadromous salmonids with ecological factors,
such as climate cooling, rather than the WGD suggested as the
primary drivers of anadromy-linked diversification (47). The
sequencing of the Atlantic salmon (Salmo salar) genome
revealed that approximately 25% of the genome is undergoing
delayed rediploidization, which is associated with major
chromosomal rearrangements (48). Delayed rediploidization
has been ongoing in parallel with speciation events, which has
led to the proposal of ‘lineage-specific ohnolog resolution’
(LORe) as a mechanism to understand the impact of delayed
rediploidization on the functional divergence of ohnologs across
lineages that share a common ancestral WGD event (50). Under
LORe, species divergence occurs before the rediploidization
process is complete resulting in functional divergence of
ohnologs independently within each lineage. The alternative
model predicts rediploidization is completed prior to species
February 2021 | Volume 12 | Article 568729
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diversification resulting in functional divergence of ohnologs
within a shared ancestor (“Ancestral Ohnologue Resolution” or
“AORe” model).

Due to shared selection pressures acting on ohnologs within a
common ancestor, ohnologs that diverged in an ancestor are
predicted to possess conserved functions across modern lineages
(50). Recent genomic studies on salmonids have found evidence of
relatively high rates of retention of duplicated genes arising from
this most recent WGD (>50% of genes being found in functional
ohnolog pairs), as well as evidence of neofunctionalization, whereby
copies may diverge and are suggested to perform novel functions
(48, 51, 52). Indeed, the evolutionary consequences of such events
have served as impetus to examine functional divergence among
ohnologous genes with putative immunological roles in salmonids
(53–56). Despite these advances in our fundamental understanding
of salmonid immunology, we understand less for species, such as
the facultatively anadromous, brown trout (Salmo trutta). Recent
declines in sea migration of S. trutta populations in Ireland and
Scotland have raised concerns over the impact of disease and
parasites, such as sea lice, on brown trout health and population
performance (57–59). Given the enormous selection pressures
exerted by parasites on their hosts, host defenses, including
components of the host immune system, would be required to
adapt to tolerate or resist so as to increase host survival and fitness
(60). Therefore, increasing our understanding of brown trout
immunity is warranted.

Here we had three main aims: Firstly, to characterize
predicted immune genes found in the brown trout genome.
For this, we used comparative genomic approaches to identify
these genes in S. trutta based on homology with immune genes
annotated in model organisms, such as zebrafish (Danio rerio),
mouse (Mus musculus) and human (Homo sapiens). Given the
overall enlarged gene repertoire in salmonids due to the
salmonid-specific WGD event, as well as the strong selection
pressures placed on immune genes by pathogens from both
marine and freshwater environments, we would expect retention
of most canonical immune genes, as well as the potential
expansion of beneficial immune gene families. Secondly, we
aimed to investigate evolutionary patterns of functional
conservation and divergence, including gene loss in S. trutta
immune ohnologs. Our final aim was to identify immune genes
with sex-biased expression profiles. For this approach, we
performed transcriptomic analyses on the liver, an important
immunocompetent organ (61, 62), and quantified differences
between males and females in gene expression amplitude, as well
as alternative splicing, to identify molecular processes underlying
sex differences in immune transcription and regulation.
MATERIALS AND METHODS

Identification of Putative Brown Trout
Immune Homologs
To identify genes in brown trout with putative immune function,
we obtained gene lists for annotated immune genes in the
zebrafish, Danio rerio [obtained from Zebrafish Information
Frontiers in Immunology | www.frontiersin.org 3
Network (ZFIN) database; (63)], as well as for the mouse, Mus
musculus (obtained from Mouse Genome Informatics (MFI)
database (64) and human, Homo sapiens [obtained from
ImmPort (65)]. Using biomaRt [v. 2.45.8; (66)], we parsed the
Ensembl BioMart database to identify “high confidence”
orthologs found in the brown trout genome based on
homology (phylogenetic protein trees), as well as conserved
synteny (gene order conservation score and whole genome
alignment scores). The threshold for classification of a brown
trout gene as a ‘high confidence’ ortholog included: 1) a
minimum gene conservation score of 50, which indicates the
percentage of how many of the four closest neighbors of a gene
match been orthologous pairs (i.e., at least two (50%) of
neighboring genes match); 2) a minimum whole genome
alignment score of 50; and 3) a minimum protein percentage
identity of 50%. This approach identified 2,275 brown trout
genes with homology to immune genes in three model organisms
(Supplemental Information Table 1).

Identification of Putative Immune Genes
Across Salmonids
As a preliminary measure to understand immune gene
repertoires across salmonids, we investigated the presence of
homologues of putative brown trout immune genes in other
salmonid species. To identify homology relationships, we first
followed the approach outlined by Gillard et al. (51), and
obtained protein sequences for the predicted proteomes from
Ensembl [release 101; (67)] for twelve teleost fish, including the
zebrafish (Danio rerio; GRCz11: GCA_000002035.4), three-
spined stickleback (Gasterosteus aculeatus; BROAD S1),
Japanese medaka (Oryz ias la t ipe s ; ASM223467v1 :
GCA_002234715.1), Northern pike (Esox Lucius; Eluc_v4:
GCA_004634155.1), Atlantic herring (Clupea harengus;
Ch_v2.02: GCA_900700415.1), Atlantic cod (Gadus morhua;
gadMor1), and guppy (Poecilia reticulata; GCA_000633615.2),
and the salmonids, rainbow trout (Oncorhynchus mykiss;
Omyk_1.0: GCA_002163495.1), Coho salmon (Oncorhynchus
kisutch; Okis_V2: GCA_002021735.2), Chinook salmon
(Oncorhynchus tshawytscha; Otsh_v1.0: GCA_002872995.1),
Atlantic salmon (Salmo salar; ICSASG_v2: GCA_000233375.4),
and brown trout (Salmo trutta; fSalTru1.1: GCA_901001165.1).
From Ensembl, we also obtained two mammalian outgroups,
human, Homo sapiens (GRCh38.p13: GCA_000001405.28), and
mouse, Mus musculus (GRCm38.p6: GCA_000001635.8). For
protein FASTA files downloaded from Ensembl, we extracted the
longest protein isoform per gene per species using the
OrthoFinder script “primary_transcripts.py” [v.2.3.11; (68,
69)]. We used OrthoFinder to assign groups of orthologs based
on protein sequence similarity. Multiple sequence alignment was
performed for protein sequences within each orthogroup using
MAFFT. Maximum-likelihood trees were estimated using
FastTree as implemented within OrthoFinder. OrthoFinder
constructed a total of 47,752 orthogroups of which 22,101 were
species-specific groups (Supplemental Information Table 2).
The percentage of genes per species represented in the
orthogroups was high (92%–97.5%). We parsed these
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orthogroups using the putative brown trout immune genes
identified through the Ensembl-based analysis (n = 2,275
genes) and identified putative immune homologs present in
1,227 orthogroups (Supplemental Information Table 3). As a
secondary measure to understand immune gene expansions and
losses within the salmonids, we ran OrthoFinder using only the
five salmonid proteomes, as well as Northern pike, the closest
related species that did not undergo a fourth WGD event (70).
While other salmonid genomes are publicly available, we
restricted our analysis to Ensembl-generated datasets to
account for gene models being predicted using a similar
annotation pipeline (Supplemental Information Table 4). The
presence of single copy orthologs in both Northern pike and all
sequenced salmonids suggests that gene loss occurred in a
common ancestor of modern salmonids soon after the WGD
event or multiple independent losses have occurred across
the salmonids.

Expression of Brown Trout Immune Genes
To examine the functional expression of putative immune genes
of S. trutta, we obtained available RNA-seq libraries for eight
tissues from the NCBI (National Center for Biotechnology
Information) Short Read Archive (SRA) database (BioProject:
PRJEB33055). For each sample, we quantified transcript
abundance using the quasialigner, Salmon [v.0.12.0; (71)].
Using these transcript abundances, we calculated gene-level
counts using tximport [v.1.14.2; (72); Supplemental
Information Table 5] and corrected for library-sizes using
DESeq2 [v.1.26.0; (73)]. For each tissue, we quantified the total
number of immune genes expressed per tissue, as well as
compared relative abundance of immune gene expression for
each tissue against non-immune genes.

Identification of Putative Immune
Ohnologs
To identify putative immune ohnologs, we first extracted within-
species paralogs for brown trout using the Ensembl BioMart
database (filter: “with_strutta_paralog”). Ensembl employs a
pipeline that through protein trees can time and predict the
last common ancestor for paralogs. We then subsetted putative
immune genes identifying putative species-specific paralogs (n =
456), genus-specific (n = 344), as well as paralogs predicted to
have arisen in the Salmoninae ancestor, which may represent
paralogs generated as a result of the Salmonid-specificWGD. For
each of these “Salmoninae” paralogs present in the brown trout
genome, we subsetted and retained paralogs that shared at least
85% protein sequence similarity. We then obtained the Northern
pike ortholog of each putative paralog. We extracted paralog
pairs where only a single non-duplicated pike ortholog was
evident, which matched only two paralogs in brown trout. For
this, we kept only Northern pike orthologs that shared at least
85% sequence similarity to each of the brown trout paralogs. We
also investigated the physical genomic coordinates of each
ohnolog identifying that collinearity among putative immune
ohnolog pairs is a global feature of the data, consistent with these
genes being ohnologs. We therefore consider these brown trout
Frontiers in Immunology | www.frontiersin.org 4
paralogs as putative ohnologs. We found no significant difference
(paired two sample t-test; p > 0.05) in predicted protein length
between each ohnolog pair or their respective non-duplicated
ortholog in Northern pike. This approach resulted in the
identification of 434 ohnolog pairs (n = 868 genes) with
potential immune function. We also extracted Atlantic salmon
homologs of putative immune ohnolog pairs in brown trout and
compared overlap with the S. salar ohnolog pairs described by
Bertolotti et al. (74). Of the 434 brown trout immune ohnolog
pairs, 408 pairs shared homologs in Atlantic salmon. Of this
number, 88% (n = 362) were also identified as ohnolog pairs
within the analysis of Bertolotti et al. providing independent
evidence for the classification of such immune genes as ohnologs.

Ohnolog Analysis of Immune Genes
Assessment of Putative Functional Conservation and
Divergence
For each ohnolog pair, we estimated the evolutionary distance
between each pair and the non-duplicated ortholog in Northern
pike using distmat from EMBOSS [v.6.6.0; (75)] (in terms of
amino acid substitutions per 100 amino acids; Supplemental
Information Table 6). This allowed for the determination of
copies that were more conserved or diverged in terms of protein
sequence while accounting for variation in predicted amino acid
length. To explore variation in functional domain architecture,
we obtained InterPro functional domains assigned to predicted
proteins for each pair from Ensembl BioMart (67). We then
counted and compared the number of assigned domains for each
ohnolog pair to identify any differences, which may be consistent
with the genes performing different functions. As variation in
protein length may explain variation in protein domains, we also
compared predicted protein lengths between ohnologs
identifying no significant difference in length (paired two
sample t-test; p = 0.6).

Assessment of Variation in Expression Profiles
Between Ohnologs
Using the gene-level counts generated by eight tissues, we
generated co-expression clusters for putative immune ohnologs
using Clust [v.1.10.8; (76)]. Here differences in expression
profiles between ohnologs may reflect functional divergence,
which has been determined in other salmonid species (48, 49,
51, 77). To determine divergence, we extracted ohnolog pairs
that were assigned to different co-expression clusters and used
corrected counts per sample generated by Clust for visualization
purposes. Gene assignments to clusters are provided in
Supplemental Information Table 7.

Assessment of Variation in Selection Patterns Acting
on Ohnologs
To understand differences in selection acting on each pair, we
calculated dN/dS ratios between each brown trout ohnolog and
their respective non-duplicated Northern pike ortholog
(Supplemental Information Table 6). We first aligned
predicted protein sequences using clustal Omega [v.1.2.4; (78)]
and converted the aligned sequences to nucleic acids using
February 2021 | Volume 12 | Article 568729
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pal2nal [v.14; (79)] to obtain codon-based nucleic acid
alignments. We then ran codeML as part of PAML [v.4.9;
(80)] to estimate dN/dS ratios.

Sampling of Laboratory-Based Brown
Trout
To provide additional functional information on brown trout
immune genes, and to examine potential sex differences in
immune expression, we sampled livers from mature male and
female S. trutta for transcriptomic analyses (Supplemental
Information Table 8). For the present study, the fish used
originated from a larger experimental aquaculture project that
explored the expression of alternative life history tactics in brown
trout (81, 82). This wider set-up involved 18 different tanks all
connected within a recirculating aquaculture system (RAS), but
in the current analysis, all our sampled fish came from two
independent tanks (with each tank comprising fish from a
different genetic background). Full details on the origins of the
fish, fish husbandry procedures and other general information
are given in Archer et al. (81, 82).

Tissue Collection for Gene Expression
Analysis
All fish were dissected between May and June 2018 (the endpoint
of the larger experiment) when the fish were between two and
three calendar years old. We collected livers from each individual
fish and transferred the tissues to fresh 2 ml Eppendorf tubes
containing RNALater solution. Samples were kept for 24 h at
room temperature, and then stored at -80°C for later analysis.
Samples during dissection were visually checked for mature
testes or ovaries. For confirmation of genetic sex, we also
obtained caudal fin clips from each fish during dissection and
stored in 100% ethanol before subsequent genotyping.

RNA Extraction, Purification, and
Quality Assessment
Total RNA was extracted from a total of 37 tissues using TRIzol.
Specifically, we extracted RNA from fifteen livers frommales and
from 22 livers from females. For RNA extractions, we removed
each sample from -80°C long-term storage and incubated them
on ice to thaw. Using a pipette, the RNALater solution was
removed. We added 1ml of autoclaved phosphate-buffered saline
to each tissue to briefly wash them before using sterilized forceps
to transfer each washed tissue to an individual 2ml screw-cap
homogenization tube. To each sample, 200ul of TRIzol was
added and the sample was transferred to -80°C storage. Tissue
disruption was performed using a 2 mm steel bead and a
Tissuslyer II (Qiagen, UK). To each sample, a 2 mm steel bead
was added and samples were homogenized at 30 Hz for 30 s.
Post-homogenization, samples were visually inspected to ensure
thorough disruption. Total RNA was extracted using chloroform
followed by isopropanol precipitation. Precipitated RNA was
washed using three washes of ethanol before elution in the
elution buffer (Sigma, UK). Total RNA was purified using the
Sigma GenElute Mammalian Total RNA kit. Quality assessment
was initially performed using a NanoDrop ND-1000
Frontiers in Immunology | www.frontiersin.org 5
(ThermoFisher, UK) while an accurate assessment of quantity
was estimated using the Qubit fluorometer, followed by a
TapeStation 2200 (Agilent, UK).

Library Preparation and Sequencing
mRNA-enriched library preparation was performed for each
individual sample using the NEBNext® Ultra™ RNA Library
Preparation kit and sequencing performed on an Illumina
NovaSeq6000. Library preparation and sequencing was
performed by NovoGene, Hong Kong. Sequencing resulted in a
median of 26.1 million paired-end (PE) reads (2*150 bp) per
individual (min. 20.1 million PE reads; max. 34.2 million PE
reads). A combined total of 980 million PE reads were generated.
Summary of sample information is provided in Supplemental
Information Table 8.

Quality Assessment of Raw Sequences
We quality assessed raw FASTQ sequences using FastQC
[v.0.11.8; (83)] to identify adaptor contamination and
sequences of low quality. Raw reads were aligned against the
reference genome assembly (GCA_901001164.1) for Salmo
trutta using STAR [v.2.7.0a; (84)]. Alignment statistics were
calculated using samtools flagstat [v.1.9; (85)]. Summary
statistics of alignments were compiled using Qualimap [v.2.2.1;
(86)] and the output visualized using MultiQC [v.1.7; (87)].

Transcript Abundance, Gene-Level
Estimates, and Differential Expression
Analysis
We quantified transcript abundance using two complementary
approaches. Similar to the approach outlined above, using
Salmon, we quasialigned raw reads against cDNA sequences
for coding and non-coding genes available for S. trutta from
Ensembl. We calculated gene-level counts using tximport and
loaded these values into a DESeq2 object using DESeq2. Raw
gene-level counts are provided in Supplemental Information
Table 9. We performed a Wald test implemented by DESeq2 to
identify significantly differentially expressed genes between
males and females (Benjamini-Hochberg (BH) adjusted p <
0.05; Supplemental Information Table 10). To explore
similarities in expression profiles across all samples, a principal
component analysis was performed with DESeq2 for all samples
using gene-level counts for 33,228 genes expressed in the liver
following a variance stabilization transformation implemented
by DESeq2. As a complementary measure, for each individual,
we examined gene expression using a traditional aligner-based
approach. We aligned reads against the brown trout reference
genome assembly using STAR and extracted gene-level counts
from the resultant BAM files using HTSeq [v. 0.11.2; (88);
Supplemental Information Table 11]. We found an extremely
high correlation (Pearson’s correlation: r=0.9, p < 2.2e-16)
between the mean gene-level counts for both this approach, as
well as the Salmon approach outlined above. This is also true for
comparisons for individual samples across both approaches
(lowest r=0.83, highest r=0.97). As an additional measure, we
analyzed and compared the number of differentially expressed
February 2021 | Volume 12 | Article 568729
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genes identified with DESeq2 when using the output of either
transcript quantification approach (Supplemental Information
Table 12). We found that >85% of genes identified as
significantly differentially expressed between the sexes by
Salmon were also identified as significant by the STAR-HTSeq
approach. As quasi- and pseudoaligners, such as Salmon and
kallisto, have higher accuracy and consistency in transcript
quantification compared to traditional aligners (89), we report
only the findings of our Salmon analysis.

Differential Intron Usage Between
the Sexes
While the sexes may express genes at different amplitudes, they may
also express different isoforms of the same gene. We used the intron-
splice analyzer leafcutter [v.0.2.8; (90)] to investigate differences
between the sexes. Briefly, for each sample, we aligned raw reads
against the brown trout genome assembly (GCA_901001165.1) using
STAR (–outSAMstrandField intronMotif, –twopassMode Basic). We
extracted splice junctions using bam2junc.sh and generated intron
clusters using leafcutter.py (parameters: –minclureads 50, –
maxintronlen 500000, –minreads 5). We then performed
differential intron analysis using leafcutter_ds.R whereby for a
cluster to be included it must be identified within at least five
individuals within each sex (parameters: –min_samples_per_intron
5, –min_samples_per_group 5) to allow for investigation of genes
with signatures of differential intron usage between the sexes.
Leafcutter implements a log likelihood ratio test comparing a null
model that assumes there is no difference between groups and an
alternative model, which does. We adjusted resulting p values for
multiple testing (False Discovery Rate < 0.05; Supplemental
Information Table 13).

Gene Ontology Term Enrichment Analysis
of Immune and Sex-Biased Genes
Gene Ontology term enrichment analysis and visualization of
outputs were performed using modified scripts generated by
Colgan et al. (91). As the zebrafish is a model organism with
extensive functional annotation of genes, we assigned GO terms
for genes in the Danio rerio genome to putative S. trutta
orthologs using biomaRt. We performed GO term enrichment
analysis using topGO [v.2.34; (92)] with the ‘weight01’ algorithm
and a node size of 20. The background universe consisted of all
genes (n = 29,527) annotated with a Gene Ontology term.

For functional annotation of putative S. trutta immune genes,
we performed a Fisher’s Exact test to identify enrichment of GO
terms for species-specific duplications, genus-specific and putative
immune ohnologs (Figure 1). For sex-biased immune genes, we
performed Gene Ontology term enrichment analysis using a
Kolmogorov-Smirnov (K-S) test. For all tests, we corrected for
multiple testing using the Benjamini-Hochberg procedure and
only reported terms as significant with an adjusted p < 0.05.

Statistical Tests
For comparison between metrics associated with ohnologs,
including variation in raw gene expression, predicted amino acid
length, dN/dS ratios and evolutionary distance to non-duplicated
Frontiers in Immunology | www.frontiersin.org 6
ortholog outgroup, we used base statistical functions in R (v. 3.5.1).
For pairwise comparison of means, we used Welch Two sample t-
tests or Wilcoxon rank sum test. We tested for correlations using
Pearson’s product moment correlation coefficient.
RESULTS

Functional Annotation of Salmo trutta
Immune Genes
Through comparison with annotated immune genes in zebrafish,
mouse and human, we identified 2,275 putative homologs
encoded by the brown trout genome (Supplemental
Information Table 1). As expected, due to the salmonid-
specific WGD event, the number of genes with putative roles
in the immune system were elevated in salmonids in comparison
to non-salmonid fishes (Figure 2) with the analysis by
OrthoFinder indicating an additional 1,132 homologous
sequences based on sequence similarity alone. However, as the
immune orthologs identified by Ensembl are assigned based on
additional synteny-based information, we consider the 2,275 of
higher confidence and therefore, we based the rest of our
analyses on these genes.

To identify if putative S. trutta immune genes are transcribed
and therefore can be considered functional, we first investigated
gene expression of all potential immune genes across eight
available tissues (PRJEB33055). Collectively, we identified
evidence of expression for 2,233 genes out of 2,275 (98.1% of
immune genes) with 1,587 genes (69.8% of putative immune
genes) expressed across all tissue types (Figure 3; Supplemental
Information Table 5). We identified significantly higher
expression (Wilcoxon test: p < 0.05) of immune genes in
comparison to non-immune genes for all tissues examined,
including immunocompetent organs, such as the spleen,
kidney and liver, as well as the gills, which are an entry point
for infection.

Functional Conservation and Divergence
in Immune Genes
To understand the evolutionary consequences for the immune
system post salmonid-specific WGD, we compared the predicted
brown trout gene complement to that of the Northern pike, E.
lucius. Using the 2,275 putative immune genes in the brown trout
genome, we obtained 2,000 ‘high-confidence’ orthologs in
Northern pike. Of this number, 1,444 were present as 2:1
orthologs of Northern pike genes with 868 genes (434 pairs;
Supplemental Information Table 6) annotated by Ensembl as
paralogs with the time of duplication estimated within the
Salmoninae, suggesting that these genes may be produced by
the salmonid-specific WGD and represent ohnologs. Of the
other 2:1 duplicate pairs, 30 (n = 60 genes) and 27 (n = 54
genes) were estimated to have duplicated within the genus Salmo
and within S. trutta, respectively. The remainder may represent
older duplication events, form part of expanded gene families in
brown trout or represent gene losses in Northern pike. In terms
of potential immune gene loss, we identified 253 immune genes
February 2021 | Volume 12 | Article 568729
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with 1:1 copies in both S. trutta and Northern pike. Of these 253
genes, OrthoFinder also identified 127 as single copy
across salmonids.

To investigate patterns of functional conservation and
divergence among immune ohnolog pairs, we first examined
structural variation between ohnolog pairs in terms of the
number of functional domains. Of the 434 immune ohnolog
pairs, all proteins were annotated with at least one functional
domain with 42 pairs differing in the number of functional
domains with the more diverged copy generally having fewer
domains suggestive that predicted proteins for at least ~11% of
immune ohnolog have the potential to perform different functions.
Overall, however, there was no significant difference in the number
of predicted functional domains that each copy had (Wilcoxon test:
p > 0.05; Figure 4). Similarly, there were no significant differences
(Wilcoxon test: p > 0.05) in the mean gene, CDS or predicted
protein length of ohnolog pairs. We also investigated variation
between the pairs in terms of divergence from the single copy
ortholog in Northern pike. Here, the more diverged copies based on
evolutionary distance had significantly higher dN/dS ratios (paired
two-sample t-test: p < 0.05; Figure 4) in comparison to more
Frontiers in Immunology | www.frontiersin.org 7
conserved copies but overall indicated that both copies for those
pairs analyzed were under strong purifying selection (dN/dS < 0.25).

To understand differences in gene expression profiles between
immune ohnolog pairs, we performed a hierarchical clustering
analysis to explore patterns of functional divergence. As a
provisional measure, we first constructed co-expression networks
using all putative immune genes identifying eight clusters consisting
of 823 genes (smallest cluster = 20 genes; largest cluster = 257
genes). For immune ohnologs (n = 434 pairs), our analysis clustered
302 immune ohnologs into seven respective co-expression clusters
(Figure 5). Of this number, 152 assigned genes belonged to ohnolog
pairs (i.e., 76 pairs), where both ohnologs could be assigned to a co-
expression network. The majority of these pairs (n = 55 pairs) were
assigned to the same co-expression network indicating that both
copies have conserved expression profiles across tissues suggestive
that functions may also be conserved. Twenty one immune ohnolog
pairs showed divergent co-expression profiles (Figure 5). For the
remainder of the genes (n = 150) assigned to a cluster, they
represent only one ohnolog from a pair where the other copy was
unassigned due to lack of variation in expression or lack of
expression across tissues.
FIGURE 1 | Expanded immune gene repertoire in the brown trout genome. Barchart displaying the top 50 significantly enriched ‘biological process’ associated
Gene Ontology terms for putative immune genes with more than one copy in the brown trout genome in comparison to non-duplicated single copies in the Northern
pike genome. For each significantly enriched term (Benjamini-Hochberg adjusted p < 0.05), the -log10 transformed p value is provided. For each term, the number of
genes annotated with that specific term in the predicted S. trutta proteome is provided. The blue dotted vertical line represents threshold of significance (-log10
transformed p = 0.05).
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Assessment of Gene Loss in Brown Trout
Immune Genes
Single copy genes present in salmonid genomes may be the result
of adaptive loss or loss of a duplicated copy through neutral
processes. First, using the reduced comparative dataset, we
identified 4,297 single copy orthologs (SCOs) shared across the
genomes of these six species. Of this number, 223 genes were
annotated as putative immune genes but there was no evidence
of significant enrichment of immune genes among all single copy
orthologs (X2

df=1 = 0:54, p = 0:46) : We identified these genes as
significantly enriched for the Gene Ontology term ‘toll-like
receptor signaling pathway’ (GO:0002224). In total, these genes
were identified as being significantly enriched (BH adjusted p <
0.05) for 26 terms with the most significant terms per GO
category being ‘erythrocyte differentiation’, ‘immune response’,
‘complement activation’ and ‘cell chemotaxis’.

Sexual Dimorphic Immune Expression
Evident Within Brown Trout Liver
Differences in Gene Expression Amplitude Between
the Sexes
To investigate overall differences in gene expression between the
sexes, we first performed a principal component analysis.
Principal component 1 (PC1) accounted for 23% of the
variance in the dataset with PC1 largely separating males and
females providing evidence of sex-biased expression profiles
evident in the brown trout liver (Figure 6). We also find
additional variation within PC2, which is likely attributed to
differences in genetic background between tanks. Second,
through differential expression analysis, we identified 3,689
genes as significantly differentially expressed (BH adjusted
Frontiers in Immunology | www.frontiersin.org 8
p‐value < 0.05) between the sexes (Supplemental Information
Table 10). Of this number, the majority (n = 1,969) had a female-
biased expression profile, which was a significant trend (binomial
test, p < 10-4). Differentially expressed genes between the sexes
were significantly enriched for 12 Gene Ontology terms with the
most significant per GO category being “nucleobase catabolic
process” (GO:0046113), “phosphatidylethanolamine binding”
(GO:0008429) and “nucleolus” (GO:0005730) (Supplemental
Information Tables 14-16).

In relation to immune expression, we detected 83% of putative
immune genes (n = 1,936 of 2,275) expressed in the liver. Of this
number, we identified 269 genes as significantly differentially
expressed (BH p< 0.05, Figure 7, Supplementary Information
Table 10) between the sexes. Thirty-five of these 269 genes were
annotated as single copy immune orthologs in the brown trout
genome. In contrast to the entire transcriptome, which generally
demonstrated female-biased expression, we detected more immune
genes with higher gene expression in males (n = 158), which was
more than expected by chance (binomial test, p < 0.03). Male-biased
immune genes were significantly enriched (Fisher’s exact test; BH-
adjusted p < 0.05) for 18 biological process-associated Gene
Ontology terms, including ‘erythrocyte development ’
(GO:0048821), ‘hemopoiesis’ (GO:0030097), and ‘response to
cytokine’ (GO:0034097). For female-biased immune genes, we
identified seven significantly enriched Gene Ontology terms
associated with hemopoiesis and neutrophil differentiation.

Evidence of Alternative Splicing Between Sexes
We identified 218 intron clusters corresponding to 176 genes with
evidence of significant alternative splicing (BH adjusted p‐value <
0.05; Supplemental Information Table 13) between males and
FIGURE 2 | Conservation of immune gene repertoire in salmonid genomes. Histogram displaying the number of putative immune genes found within representative
genomes of salmonid (Atlantic salmon, S. salar; Brown trout, S. trutta, Rainbow trout, O. mykiss, Coho salmon, O. kisutch, Chinook salmon, O. tshawytscha), and
non-salmonid teleost fish (Northern pike, E. lucius; Atlantic herring, C. harengus; guppy, P. reticulata; Japanese medaka, O. latipes; three-spined stickleback,
G. aculeatus; Atlantic cod, G. morhua).
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females. Of this number, 55 were also significantly differentially
expressed between the two sexes. We detected 15 alternatively
spliced genes with roles in the salmonid immune system. Four of
these genes were also differentially expressed between the sexes.

Conserved Sex-Biased Ohnolog Expression Among
Immune Genes
We investigated if ohnologs demonstrated sex-biased gene
expression and found 98 unique genes with sex-biased gene
expression of which 12 ohnolog pairs exhibited significant
differential expression for both genes (BH adjusted p < 0.05)
between the sexes. For the majority (n = 10) of these ohnolog pairs,
the ohnolog pairs have conserved differential expression whereby
expression in both copies was elevated in the same sex compared
to the other (n = 6 male-biased; n = 4 female-biased). Only for two
ohnolog pairs did we identify differences in expression profiles
between the ohnologs whereby the more conserved copies were all
increased in males compared to females, but the less conserved
copy had the opposite expression profile i.e., significantly reduced
in males compared to females.
Frontiers in Immunology | www.frontiersin.org 9
DISCUSSION

Migratory species, such as anadromous salmonids, require
efficacious and adaptable immune systems to survive in a
diversity of environments. Here we provide an important
insight into the immune gene repertoire, as well as
conservation and differences in gene expression across tissue
types, for the facultatively anadromous brown trout S. trutta.
Our findings indicate duplications and expansions of genes
involved in immunological functions, such as chemotaxis and
immune cell differentiation. Second, we assessed immune
ohnologs for evidence of functional divergence in terms of
domain architecture and gene expression profiles, identifying
the majority to have conserved functional expression across
tissue types in brown trout, while, surprisingly, only a few
immune ohnolog pairs differed in terms of gene expression or
the number of functional domains. We also identify evidence of
immune gene loss in the salmonids. Lastly, we quantified sex-
biased differences in immune gene expression in the brown trout
liver, identifying the majority of differentially expressed immune
FIGURE 3 | Functional validation of S. trutta immune expression across tissues. UpSet plot of immune gene expression across eight tissue types in brown trout. For
each tissue, the plot contains a bar chart displaying the total number of immune genes expressed per tissue, as well as a histogram displaying the number of genes
identified as expressed across tissues.
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genes to have male-biased expression. Our findings provide a
novel insight into the immune complement of an ecologically
and commercially important salmonid.

Immune Gene Repertoire in Brown Trout:
Retention and Expansion of Canonical
Immune Genes
For teleost species that have undergone more recent whole
genome duplication events, such as the salmonids, retention of
duplicated genes may increase immune potential. In the brown
trout genome, we identified high confidence orthologs for known
canonical immune genes demonstrating that brown trout have
essential genetic components of both innate and adaptive
immune systems, as well as expansions (Figures 1 and 2). This
number increases if we include protein homologs identified by
OrthoFinder but additional synteny-based analyses would be
required to confirm these genes as putative immune homologs.
As our comparative analysis was mainly restricted to model
species with well annotated immune repertoires, novel immune
genes or genes highly diverged within the salmonids or restricted
to Salmo trutta will not be reported. Gene expression analysis
using eight available tissues indicates the vast majority of
predicted immune genes as functional with expression evident
across tissues (Figure 3). Retained duplicate copies were
enriched for Gene Ontology terms associated with both innate
and adaptive immunity. Among the most significantly enriched
terms was neutrophil chemotaxis (Figure 1). Neutrophils are
innate immune cells that are among the first responders to
pathogen infection and inflammation and are a key aspect of
the salmonid immune system. The response of these cells to
chemical stimuli, known as chemotaxis, is important for the
Frontiers in Immunology | www.frontiersin.org 10
rapid response and subsequent migration of neutrophils to the
site of signal origin (93). Neutrophils possess antimicrobial and
phagocytic activity with the latter differing across teleost species
(94). The expansion in brown trout of genes involved in
chemotaxis may allow for the increased recognition of more
diverse chemical stimulants, which may be beneficial for their
migratory life-history that involves use of freshwater, brackish
and marine environments.

Due to the complexity of the life-histories expressed by brown
trout, immune repertoires are required for regulation and
maintenance of immune expression during migration, an
energetically stressful period, as well as to survive in both
freshwater and marine environments, which can contain
unique pathogenic threats (95). Variation in the strength of
selection acting on duplicated genes can result in amino acid
and/or regulatory divergence leading to the evolution of new
functions or indeed, the process of pseudogenization and gene
loss. Here, we found no significant difference in the overall
number of functional domains between immune ohnologs in
brown trout (Figure 4), as well as differences in expression
profiles across tissues (Figure 5). However, for certain pairs,
we did find evidence of domain architecture variation, as well as
differences in expression profiles across tissues. We find variation
in terms of functional domains for 42 pairs, and while future
experimental validation is required, such pairs represent
interesting candidates for investigating functional divergence in
immune ohnologs. Similarly, 21 ohnolog pairs demonstrate
divergence in gene expression profiles across eight tissues
examined (Figure 5). As our analysis involved eight tissues
rather than 15, which were previously used for Atlantic salmon
(48) and rainbow trout (49), our power to detect divergent
A B

FIGURE 4 | Assessment of functional divergence between S. trutta immune ohnolog pairs. (A) The number of predicted functional domains within the predicted protein
coded for by each immune ohnolog. (B) For each ohnolog, dN/dS ratios were calculated for each and their respective non-duplicated ortholog in Northern pike.
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expression profiles may be reduced. Similarly, previous studies
on salmonids explored conservation of ancestral function
ohnologs through the construction of genome-wide co-
expression networks, where one salmonid copy clustered by
expression profile with that of a non-duplicated ortholog in the
closely related, Northern pike, suggestive that one copy may
retain and perform a conserved function across taxa. We did not
explore such patterns in our analysis for brown trout due to the
limited tissues available for both brown trout, of which only five
were also available for Northern pike.

Of the ohnolog pairs with evidence of divergent gene
expression profiles, such genes were annotated with a range of
immunological function, including antiviral defense (DHX58,
zinc finger protein 148), apoptosis (RAC2), inflammation
regulation (MAPK8, PDE4B, Roquin-1), anti-microbial
Frontiers in Immunology | www.frontiersin.org 11
response (Akirin-2, ARHGEF2), T-cell activation (LCK, HLX)
as well as tumor suppression (PRKCA, FAM49B, IMPDH1).
Specific ohnolog pairs of interest included pairs where both
genes were annotated as chemokine receptor type 7. In
mammals, CC-chemokine receptor 7 (CCR7) is part of the G
protein-coupled receptor family and can function in the
activation of naive B and T lymphocytes with additional
research suggesting the receptor may function in antiviral
defense (96). In teleosts, the functions of chemokine receptors
are less well understood but a CCR7 homolog has been
previously characterized in the rainbow trout, O. mykiss, where
based on sequence similarity, the predicted protein is suggested
to perform a similar function to that of mammalian homologs
(97, 98). The second ohnolog pair of interest were annotated as
tyrosine-protein kinase Lyn. Lyn belongs to a Src- family of
A

B

FIGURE 5 | Assessment of divergence in S. trutta immune ohnolog expression profiles. (A) Clustering based on gene-level counts assigned 302 immune genes,
which consist of one member of an ohnolog pair, to seven co-expression networks assigned based on the expression profile of each gene across eight tissue types.
Each co-expression cluster is represented by a single line graph whereby the y-axis consists of gene-level counts normalized by Clust and the x-axis consists of
eight tissues obtained from a single double haploid female. (B) Heatmap of expression profiles for ohnolog pairs where both ohnologs were assigned to different co-
expression networks based on expression profiles across eight tissue types. Ensembl gene ID and description (separated by hyphen) are provided on the y-axis with
number in parentheses indicating the cluster the gene was assigned to. The x-axis represents the eight tissues used to construct the co-expression networks.
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tyrosine kinases found in immune cells that can negatively
regulate important signaling pathways (99). The gene is also a
key mediator of pathways involved in B cell activation (99, 100) a
function suggested as conserved in teleosts (101).
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While extensive retention and functional divergence of ohnologs
have been characterized in other salmonids, gene loss can also
occur. Two primary molecular processes can lead to gene loss: as a
consequence of an abrupt mutational event, such as an error in
crossing over during meiosis, or through the slow accumulation of
mutations during pseudogenization after an initial loss-of-function
mutation (12). Comparative genomic studies have revealed biased
patterns in gene loss in terms of functional bias with genes involved
in certain cellular processes, such as DNA repair and transcription,
more likely to be represented among genes where a copy has been
lost (102, 103). In relation to WGD events, there is also evidence of
genomic positional biases in terms of gene loss (104). Clusters of
single copies may be due to reliance on similar transcriptional
regulation machinery or architecture. Here through comparative
analyses, we find gene loss conserved across salmonids. The
conservation of synteny across salmonid genomes would suggest
that loss of putative immune genes is non-random, as has been
shown for other species (12). Future work will benefit from
understanding the molecular, cellular and evolutionary
consequences of gene loss in these species.

Sexual Dimorphism in Trout Immune
Expression
Sexes share largely the same genome but express it differently giving
rise to different morphological and behavioral phenotypes. Here we
investigated differences in gene expression in the liver, an organ
FIGURE 6 | Sexually dimorphic gene expression in S. trutta liver. Principal
component analysis for gene-level counts revealed sexually dimorphic gene
expression in S. trutta liver. Principal component (PC1) explained 23% of
variance with males and females clearly separating. Each dot on the
scatterplot represent a single individual sample and are color-coded by sex
(female = blue; male = orange).
FIGURE 7 | Sexually dimorphic immune expression in S. trutta liver. Heatmap displaying significantly differentially expressed immune genes between the sexes.
Relative variation in immune gene expression is represented by a color gradient (gray = low, white = medium, red = high). Each column represents an individual trout
with a vertical black line separating male from female samples. Each row represents expression level for an individual immune gene.
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previously used to understand salmonid metabolism gene
expression (51), response to environmental stressors (105), as well
as genes underlying sexual dimorphism (106). While the liver may
have traditional roles in metabolism and antioxidant activity, a
growing body of literature on mammalian and teleost immunology
has provided important insights into the role of the liver in the
innate immune response, immune tolerance and hematopoiesis (74,
107–112), as well as creating hostile molecular environments for
parasites to migrate through (113, 114). Here we identified
differential immune gene expression both in terms of expression
amplitude (Figures 6, 7) and splicing between the sexes. Immune
genes exhibited a general male-bias in expression, which was in
contrast to overall gene expression in the liver being female-biased.
Immunological studies on sex differences in immune function in
brown trout have suggested reduced immune function in mature
males (115, 116), and therefore, females would have been expected
to have higher immune gene expression compared to males. While
our fish were laboratory reared and not directly immune challenged,
they were maintained in normal lab environments (i.e., clean but
not sterile) and therefore, we would expect a background level of
immune gene expression. Sex-biased differences in expression could
be due to anticipation of immune challenge. As male brown trout
are less likely to undergo sea migration, remaining resident and
completing their life-cycle in freshwater environments, pathogens
present in freshwater environments are more likely to encounter
males than females and therefore, parasite-mediated selection in
brown trout may result in variation in environment-dependent
immune expression between sexes. Indeed, males do suffer more
severe infestations by freshwater ectoparasites in comparison to
females (117), yet our understanding of immune potential and
function is lacking.

An interesting finding among the genes with sex-biased
differences was the presence of putative single copy orthologs.
As sexes largely share the same genome but have different fitness
optima and may express some genes differently, this can result in
sexually antagonistic loci, which increase fitness when expressed in
one sex but are detrimental in the other. Sex-biased gene
expression has been suggested as a mechanism to resolve such
conflict (118, 119). Aside from transcriptional regulation,
modifications in genomic architecture, such as sex-dependent
dominance (120), maintenance of sexually antagonistic loci on
sex chromosomes (121) or duplication events (122, 123) may also
resolve conflict. It is interesting therefore that since the salmonid
WGD, duplicate copies of immune genes have been lost either
through adaptive or neutral processes that may now be sexually
antagonistic. The application of population genetic approaches, in
combination with sex-biased gene expression, have been used to
reveal genomic signatures of loci associated with sexual conflict
(118, 124), which could be applied to future studies in brown trout
and other salmonids to provide important insights into the
evolutionary processes shaping sex differences.

CONCLUSION

Salmonid genomics is a rapidly advancing field and is providing
comprehensive insights into genes underlying phenotypically
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plastic traits, such as sea age at maturity, as well as genomic
structures resolving sexually antagonistic loci (28, 120). Here we
explore the consequences of a salmonid-specific WGD on
immune gene repertoire in brown trout, finding that brown
trout has an enlarged immune gene complement relative to non-
salmonids, with many immune ohnologs retained that have
conserved immune expression profiles between the pairs. We
find preliminary signatures of some ohnologs coding for proteins
that may have potential divergent functions between the pairs,
but functional validation is required to determine the exact role
these genes may play in the brown trout immune system. Lastly,
we add to a growing body of research that explores key
physiological differences among the sexes through the
identification of differences in immune expression.

Our findings provide important insights into immune gene
evolution and expression in a culturally, economically and
ecologically important species. Like many species, brown trout
face an uncertain future due to changing climates with increasing
temperatures potentially leading to reduced sea migration rates
(82) as well as potentially impacting immune function (125)
while pathogens, such as sea lice, associated with increasing
aquaculture, are also suggested to contribute to migratory
declines (126). Improved understanding of immune potential,
expression and function may benefit management strategies and
conservation schemes for wild populations to assist in the
maintenance of at-risk facultatively anadromous populations.
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