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Noncircular two-dimensional microcavities support directional output and strong confinement of light,
making them suitable for various photonics applications. It is now of primary interest to control the
interactions among the cavity modes since novel functionality and enhanced light-matter coupling can be
realized through intermode interactions. However, the interaction Hamiltonian induced by cavity
deformation is basically unknown, limiting practical utilization of intermode interactions. Here we present
the first experimental observation of resonance-assisted tunneling in a deformed two-dimensional
microcavity. It is this tunneling mechanism that induces strong inter-mode interactions in mixed phase
space as their strength can be directly obtained from a separatrix area in the phase space of intracavity ray
dynamics. A selection rule for strong interactions is also found in terms of angular quantum numbers. Our
findings, applicable to other physical systems in mixed phase space, make the interaction control more
accessible.

A
symmetrically deformed microcavities (ADM’s) made of dielectric material can serve as versatile platform
in photonics applications. Coming in various shapes such as ellipse, quadrupole, stadium, Limaçon and
rounded triangle, they can provide directional output1–10, increased energy storage11 and enhanced output

coupling efficiencies3, which are preferred features for micro- and nano-photonics devices. Recently, deforma-
tion-induced interactions among cavity modes have also drawn much interest in search of new functionality and
enhanced light-matter coupling. From the interaction between an isotropic high-Q mode and a directional low-Q
mode, a new mode can be engineered with the desired assets, high-Q and good directionality7,12. Intermode
interactions can also lead to topological singular points called the exceptional points13, the unusual properties of
which have recently been much investigated as in divergent Petermann factor14–16 for enhance photoemission,
single particle sensors17 and nontrivial lasing threshold and reversed pump dependence18,19.

The analysis of intermode interactions in ADM’s have been mostly performed through numerically solving the
wave equations in case-by-case basis. It is because the Hamiltonian responsible for the interactions is completely
unknown in those deformed microcavities. There has been no practical method to predict the strength of
intermode interaction beforehand. Meanwhile, theoretical advances on interstate interactions have been made
for abstract objects such as quantum maps20–24, where a fictitious Hamiltonian can be constructed to calculate the
interaction strength by using the theory of the resonance assisted tunneling (RAT)23.

RAT is one type of the dynamical tunneling, a quantum-mechanical tunneling phenomenon to occur between
dynamically separated classical trajectories25. RAT is a universal phenomenon expected to occur in any weak-
perturbed systems of near-integrable or mixed phase space since the theory of RAT does not depend on the details
of the Hamiltonian. In contrast to the chaos-assisted tunneling26–33 mediated by chaotic sea, RAT is enhanced by
the presence of nonlinear resonances between regular trajectories. The concept of RAT was initially employed in
physical chemistry34 for explaining vibrational level splittings. It has also been studied in one-dimensional time
periodic quantum maps such as the kicked Harper model and the kicked rotor20–24. RAT theory has then been
employed in analyzing a wide range of physical systems such as periodic-driven pendula35, Rydberg atoms under
periodic perturbation36, quantum accelerator modes37 and multi-dimensional molecules38,39. Despite a large
number of theoretical studies on RAT, however, there have been no experiments yet directly verifying the
RAT theory.

Here in this paper we report the first experimental observation of RAT in intermode interactions in a weakly
deformed two-dimensional microcavity. We examine the strong interactions between two unperturbed-basis
modes (UBM’s) (Supplementary Note 2). We observe that their interaction strength is proportional to the square
of the separatrix area of the phase-space nonlinear resonance chain involved in the interaction. Strong interac-
tions then occur when UBM’s satisfy a certain selection rule, namely that their angular mode numbers differ by an
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integer multiple of the number of islands in the associated nonlinear
resonance chain. Furthermore, the proportionality constant or the
prefactor is found to depend only on the nonlinear resonance indices.
These findings are definitive evidences for RAT. Our results provide
a practical way to predict the intermode interactions in a broad range
of physical systems in mixed phase space, making the interaction
control more accessible.

In order to understand how RAT comes about in ADM’s, let us
briefly recapitulate the RAT theory. In an integrable multi-dimen-
sional system, classical trajectories appear as invariant tori on the
Poincarè surface of section (PSOS), a phase-space representation of
classical motion. The Husimi functions, the phase-space projections
of quantum eigenstates, are then localized along these tori. In the
presence of perturbation, invariant tori are deformed following the
Kolmogorov-Arnold-Moser (KAM) scenario and some orbits evolve
into a chain-like nonlinear resonance structure. According to the
RAT theory, a nonlinear resonance structure can then strongly
enhance a tunneling process between the UBM’s localized along
nearby invariant tori when specific conditions are satisfied (see
Fig. 1 for illustration). This type of enhanced dynamical tunneling
is called RAT20,21,40.

In the RAT theory, an effective Hamiltonian describing the
motion near nonlinear resonances can be derived by means of the
secular perturbation theory. In a two-dimensional system, the
Hamiltonian can be decomposed as

H~H0 I1,I2ð ÞzV I1,I2,h1,h2ð Þ, ð1Þ

in terms of action-angle variables {hi, Ii}, where H0 is an integrable
Hamiltonian and V is a perturbation. A resonance arises when

p
dH0

dI1
~q

dH0

dI2
for co-prime positive integers p and q, referred to

as resonance indices below. Following the standard secular perturba-
tion theory, we can then derive a pendulum-like effective
Hamiltonian near the p5q resonance as

Hp:q~
I{Ip:q
� �2

2Mp:q
zVp:q cos ph, ð2Þ

where I 5 I1, h~h1{
q
p

h2, M{1
p:q ~ d2H0

�
dI2

� ���
I~Ip:q

with Ip5q the

action at the resonance (see Supplementary Note 1 for derivation
details). The amplitude Vp5q characterizes the coupling strength
between eigenstates of the integrable Hamiltonian H0. The effective
Hamiltonian results in a p-resonance chain, a chain-like structure of
p islands in the phase space.

Weakly deformed two-dimensional (2D) microcavities are noth-
ing but weakly perturbed 2D systems and thus the RAT theory can be
applied. The Hamiltonian can be expressed in the form of Eq. (1)
although we do not know the exact form of V (I1, I2, h1, h2). Hence,
the effective Hamiltonian is also given by Eq. (2). This identification
immediately leads to two important predictions.

First, the interaction term in Eq (2) suggests a selection rule that
UBM of an angular mode number m can be strongly coupled to
another UBM of an angular mode number m 1 i 3 p (i integer)20,21,23

Figure 1 | Nonlinear resonance chains in the phase space. For our 2D-ADM to be discussed below, PSOS is constructed in terms of action angle

variables s and sin x, where a ray is reflected off the cavity boundary with an incidence angle x at the normalized arc-length coordinate s (0 # s # 1) along

the boundary from the major axis. Cavity deformation is given by a parameter g 5 0.1. Nonlinear resonance chains with p 5 6 and 8 are easily noticed.

The separatrix of the p 5 6 resonance chain is illustrated. KAM tori 1 and 2 associated with two UBM’s are indicated around p 5 6 resonance chain.

RAT can then occur between these UBM’s mediated by the p 5 6 resonance chain.

Figure 2 | Mode dynamics diagram in our ADM. Relative frequencies

D(ka) of l 5 1, 2, 3 and 4 modes are plotted with respect to a reference

frequency in the range from ka , 100 to 180 when g 5 0.10 in our ADM.

The AC between l 5 2 and 3 modes around ka , 114 is investigated in

detail in our experiment. Spatial mode distributions as well as Husimi

functions of the modes marked as (i) , (iv) are presented in

Supplementary Note 4.
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with a strength proportional to Vi
p:q (Supplementary Note 3) in

ADM’s with small deformation. Second, we can make a connection
between the classical phase space and the perturbative amplitude or
the coupling strength Vp5q. Consider a phase space constructed with
the action angle variables I and h, which are sin x and s in Fig. 1,
respectively. We can easily calculate the area Sp5q enclosed by the
separatrix associated with the (p5q) nonlinear resonance chain, as
illustrated in Fig. 1. The result is

Vp:q~
S2

p:q

256Mp:q
ð3Þ

(see Supplementary Note 3 for the derivation). The implication of
this result is far reaching. For ADM’s, we now have an interaction
Hamiltonian given by the second term, Vp5q cos ph, in Eq. (2) with its
coupling strength Vp5q given by the classical phase space or more
specifically the PSOS, which is easily obtained by ray tracing. Only
quantity we do not know is the prefactor Mp5q. However, the pre-

factor can be measured in an experiment as to be discussed below. It
can then be used to predict the coupling strength for other intermode
interactions as long as they are mediated by the same resonance
chain.

Results
Design of experiment. The specific physical system we consider is a
2D-ADM made of a liquid jet column of ethanol (refractive index n
5 1.357) doped with laser dye styryl (LDS) molecules as fluorophore.
The details of our liquid jet microcavity are described in Methods
(also in Ref. 41). In short, the cavity boundary shape is approximately
a quadru-octapole given by r wð Þ^a 1zg cos 2wzEg2 cos 4w

� �
,

where a^ 15:1+0:1ð Þmm the mean radius and E~0:42+0:08. The
deformation parameter g can be continuously tuned from 0 to 26%
by changing the jet ejection pressure.

In order to figure out the spectral regions to investigate in experi-
ments beforehand, it is necessary to survey the interactions among
UBM’s in our system in numerical simulations. We employed the
boundary element method42 and calculated the quasi-eigenvalues
and associated Husimi functions for the same size and shape as
our liquid-jet microcavity. The real part of the quasi-eigenvalues
are presented in terms of the size parameter ka with k 5 2p/l the
wavevector. In our system, the size parameter is inversely propor-
tional to the so-called effective Planck constant �hef f as 1=�hef f ~nka.

Figure 2 shows intermode dynamics when g 5 0.10. For this, we
first numerically find high-Q mode spectra in the range from

Table I | Comparison between the observed angular mode number difference Dm and the resonance index p (the number of islands) of the
resonance chain structure involved in various intermode interactions in our ADM

l interaction Dm p Dm 5 np

2 vs. 3 strong 6 6 satisfied
3 vs. 4 strong 6 6 satisfied
1 vs. 2 weak 8 8 satisfied
2 vs. 4 weak 12 6 satisfied
1 vs. 3 weak 14 6 not satisfied
1 vs. 4 weak 20 8 not satisfied

Figure 3 | Interaction strength compared with the separatrix area
squared. (a) Cavity-modified fluorescence spectrum near l 5 835 nm

(ka^114) at g 5 0.089. Peaks corresponding to l 5 1, 2, 3 and 4 modes are

marked by arrows. (b) Separatrix area squared S2
6:1 (red solid curve) of the

651 resonance structure is compared with the measured AC gaps (blue

filled circles) between l 5 2 and 3 modes near ka^114 and the ones (black

open circles) from wave calculation for various deformation. For

comparison, S651 (black dashed) and S3
6:1 (black dot-dashed) curves are

also displayed.

Figure 4 | Determining the interaction prefactor. The calculated AC gaps

(blue dots) for the interactions between the modes (l1, l2) 5 (1, 2),

(2, 3) and (3, 4) for 0.06 , g , 0.10 are presented in the ka 2 S2 space. All of

these interactions are mediated by the 6-island resonance structure (p5q)

5 651. They are well fit by the rescaled formula in the text to yield a

common prefactor ~M6:1 of 0.26 6 0.01. The experimental data in Fig. 3(b)

corresponds to a blue line marked by ‘l 5 2&3’. The fit surface is a

hyperbolic paraboloid.
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ka^100 to 180 and identify uncoupled mode groups labeled by
radial mode order l (51, 2, 3, 4) in the increasing order of their free
spectral ranges in an uncoupled region (marked by a yellow bar)
around ka , 133. We then define a sequence of reference frequencies
of a regular spacing and measure the relative frequencies D(ka) of
each mode group with respect to the reference frequencies. The
relative frequencies of all four mode groups are plotted in the mode
dynamics diagram in Fig. 2. Detailed information on the uncoupled
mode labeling and the relative frequency measurement is described
elsewhere43.

Each mode group in Fig. 2 more or less follows a diabatic line
unless it encounters other mode groups. Diabatic lines are shown as
dashed lines with associated l values denoted in Fig. 2. When mode
groups encounter each other, they exhibit avoided crossings (AC’s).
The AC gap – defined as the smallest energy separation of two
interacting levels or mode groups – is approximately twice the coup-
ling strength between them (see below for more explanation). By
inspecting the AC gap, we can qualitatively identify two types of
interactions, strong (circled red) vs. weak (not circled) interactions.

Selection rule. To verify the existence of any selection rule for these
interactions, we need to know the angular mode numbers m’s of the
UBM’s associated with the interacting quasi-eigenmodes and
compare their difference Dm with the number of islands p in the
related resonance chain structure. We can infer the angular mode
number m by inspecting the spatial mode distribution of the quasi-
eigenmode in the uncoupled regions (Supplementary Figure 1). In
each mode group, m increases by 1 when we move up in ka by one
free spectral range along the diabatic line in Fig. 2. The radial mode
number l, also called the mode order, of the associated UBM can be
identified by counting the number of anti-nodes in the radial
direction. We can also identify the resonance chain (thus p)
involved in the interaction by comparing the PSOS and the
Husimi functions of the quasi-eigenmodes in the uncoupled region
(Supplementary Figure 2).

The result of our examination on the relation betweenDm and p in
several strong- and weak-interaction cases is summarized in Table I.
For all of the strong interaction cases in Fig. 2, the angular mode
number difference Dm is equal to the number p of the islands in the
resonance chain structure as projected by the selection rule in the
RAT theory. This is not the case for the weak interaction between l 5

1 and 3 modes (between l 5 1 and 4 modes) since the resonance index
p of 6 (8) is not divisors of the observed Dm of 14 (20). On the other
hand, the seemingly weak interaction between l 5 1 and 2 (l 5 2 and
4) modes satisfies the selection rule. In fact, the interaction is also
induced by RAT, but as shown in Supplementary Note 3, the coup-
ling V8:1 V2

6:1

� �
itself is small, resulting in a weak interaction.

Evaluation of interaction strength. For verification of the relation
between the coupling strength and the separatrix area, we measured
the AC gap of l 5 2 and 3 unperturbed modes for various
cavity deformation by using the cavity-modified fluorescence
spectroscopy44. The cavity medium was doped with LDS 821
molecules at a concentration of 0.03 mM/L, covering a spectral
range around l^832 nm (ka^114). The cavity deformation g
was varied from 0.065 to 0.12. A representative spectra is shown in
Fig. 3a, where among four different mode groups l 5 2 and 3 modes
exhibit an AC with its gap dV indicated when g 5 0.089.

In Fig. 3b, the observed AC gap dV (blue-filled circles) is plotted in
the unit of the size parameter as a function of the cavity deformation
g (the upper labels). The decay rates of l 5 2 and 3 modes, expected to
be less than 1 GHz, are negligible compared to the gap size, which is
more than 36 GHz, and thus the gap size is approximately twice the
coupling strength between l 5 2 and 3 modes. The nonlinear res-
onance involved with this mode interaction is 651 (p 5 6, q 5 1)
resonance as illustrated in PSOS in Fig. 1. The PSOS here incorpo-
rates the augmented ray dynamics45 in order to include the Goos-
Hänchen shift coming from the openness of the dielectric cavity. For
comparison, the AC gaps (black open circles) from the wave calcula-
tion and the values of S2

6:1 (red solid curve) obtained from the PSOS
are also presented in Fig. 3b. We find that our experimental and
numerical results well confirm the S2-dependence of the coupling
strength. Interestingly, the AC gaps follow the S2 curve even in the
moderate perturbation regime with 0.10 , g , 0.12, where the
separatrix shows mild stochasticity. We have not found any inter-
mode interactions violating the relation dV / S2 but satisfying the
selection rule.

Discussion
In order to be able to predict the intermode interaction strength from
Sp5q by using Eq. (3), we also need to know the proportionality
constant or the prefactor Mp5q. As discussed above, it is not theoret-
ically known for our system. However, we can determine it by the
slope of the linear fit in Fig. 3b, where S2 is obtained from the PSOS
presented in a dimensionless (s, sin x) phase space. Note we can

rescale Eq. (3) as Vp:q~ kað Þ p2
�

64
� �

~S2
p:q

.
~Mp:q

� �
in ka unit

(Supplementary Note 3), where both ~Mp:q and ~Sp:q are dimensionless
and ~Sp:q is the separatrix area in the (s, sin x) phase space.

We found that ~Mp:q determined by the fitting depends only on the
indices (p, q) of the resonance chain that the interacting modes are
associated with. For example, in the range of 0.06 , g , 0.10, we
numerically observe AC’s between l 5 1 and 2 modes at ka^65,
between l 5 2 and 3 modes at ka^114 and between l 5 3 and 4
modes at ka^165, respectively, with all mediated by the same 651

Figure 5 | Our fluidic microcavity and Birkhoff coordinates used in obtaining PSOS. (a) Three-dimensional model and (b) an actual microscope image

(side view in false color) of our liquid jet column. A few-micron-thick segment at one of the extreme positions of surface modulation is excited by a

pump laser to form a two-dimensional microcavity. The cross sectional shape is a quadru-octapole described by a formula in the text. (c) Birkhoff

coordinates (s, sin x) are used in obtaining the PSOS in Fig. 1. A ray is reflected off the cavity boundary with an incidence angle x at the normalized

arc-length coordinate s(0 # s # 1) along the boundary from the major axis.

www.nature.com/scientificreports
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resonance chain with the common separatrix area ~S6:1. All of these
AC gaps are then well fit simultaneously by the above rescaled for-
mula with a common ~M6:1~0:26+0:01 as shown in Fig. 4. The
experimental data in Fig. 3b gives ~M6:1~0:26+0:02. Observation
of a common prefactor for those different AC’s, although a direct
consequence of the RAT theory, is still quite amazing. The fact that
the prefactor depends only on the resonance indices allow us to
measure the prefactor once and use it for other interactions mediated
by the same resonance chain.

As a final remark, it is noted that RAT is usually analyzed in the
literature with a dimensionless parameter ~S

�
�hef f varied. In our work,

�h{1
ef f ~nka and AC gaps are measured as the cavity deformation and

thus ~S is varied at several different ka values as in Fig. 4.
In summary, we have experimentally observed the resonance-

assisted tunneling in the intermode interactions in a weak-deformed
asymmetric microcavity. A selection rule for the strong interaction
mediated by RAT was confirmed. The coupling strength was found
to be proportional to the square of the separatrix area of the non-
linear resonance chain involved in the interaction. The prefactor was
dependent only on the resonance indices (p, q). The present findings
can be readily applied to other nonintegrable systems, such as nano-
electronic devices made of graphene quantum dots corresponding
to a two-dimensional quantum billiard46,47 and a Bose-Einstein
condensate under time-dependent perturbations48, for analyzing
dynamical tunneling and predicting intermode interactions.

Methods
Our fluidic microcavity is made of a liquid jet formed by ejecting ethanol vertically
through a deformed orifice of a near-elliptical shape. As the liquid column advances,
modulation in surface profile spontaneously occurs because the surface tension of
liquid acts as a restoring force for an initially noncircular cross section as illustrated in
Fig. 5a. A small segment of a few micron thickness of the liquid column at one of
extreme positions of surface modulation then acts as a two-dimensional microcavity
for the optical wave. The cavity boundary shape can be determined by forward
shadow diffraction of a laser beam incident on the jet column49, and it is approxi-
mately a quadru-octapole given by r wð Þ^a 1zg cos 2wzEg2 cos 4w

� �
, where

a^ 15:1+0:1ð Þmm and E~0:42+0:08. For spectroscopic observations, the liquid
contains dye molecules which emit fluorescence when optically excited. When the
small segment of the jet column comprising a deformed cavity is excited by a pump
laser as seen in Fig. 5b, the fluorescence from dye molecules is enhanced at cavity
resonances as shown in Fig. 3a. This enhancement comes from the cavity quantum
electrodynamics effect44. In this cavity-modified fluorescence spectrum from the
microjet cavity, we typically observe 4 , 5 groups of cavity resonances or modes. Each
mode group is a sequence of resonances with a well-defined free spectral range.

The PSOS in Fig. 1 is presented in Birkhoff coordinates (s, sin x), where a ray is
reflected off the cavity boundary at the normalized arc-length coordinate s(0 # s # 1)
along the boundary from the major axis with an incidence angle x as illustrated in
Fig. 5c. For each reflection we employed the augmented ray dynamics45 in order to
include the Goos-Hänchen shift. For the PSOS in Fig. 1, ka 5 115 is assumed.
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