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population.

ersisters are the remaining, genetically unaltered population of bacterial cells that,

after an initial die-off, survive prolonged antibiotic treatment with a basically
unchanging or slowly decreasing population density due to their lack of metabolic
activity (1). In comparison, resistant cells grow in the presence of the antibiotic (as long
as adequate carbon sources are available) due to mutations. Tolerant cells grow prior
to antibiotic addition and then survive longer than exponentially growing cells in the
presence of the antibiotic, but their population usually continues to decrease appre-
ciably (1), and the phenotype is a population-wide phenomenon (2). Given the simi-
larity of these three phenotypes (Fig. 1), there has been a great deal of confusion about
the metabolic activity of persister cells (3-5) and the relation of persistence to toler-
ance. One possible explanation of why some groups claim that persister cells are
metabolically active whereas others present evidence that they are dormant is that the
way in which one generates these populations matters, i.e,, some groups are studying
metabolically active and growing tolerant cell populations (and mistakenly calling them
persister cells) by using procedures such as nutrient switches to generate their popu-
lations of interest. In contrast, others are studying dormant persister cell populations
that are obviously nongrowing.

The experimental evidence that indicates that persister cells are nongrowing dates
back to the original research that defined and originated the field. Hobby et al. (6) first
demonstrated that penicillin is ineffective against metabolically inactive cells by creat-
ing nongrowing Staphylococcus aureus cells by reducing the culture temperature.
Bigger (7) then confirmed these results that persister cells are dormant via three
experiments that showed that penicillin is ineffective against persister cells if growth is
stopped by reducing the culture temperature, by removing nutrients, or by adding
boric acid. Later studies have confirmed this work by demonstrating that persister cells
lack transcription, translation, and proton motive force (8) as well as by showing
reduced metabolic activity by sorting cells based on weak production of an unstable
green fluorescent protein under the control of a ribosomal promoter (9). Studies that
claim that persister cells are metabolically active, like that by Wakamoto et al. (10),
usually have a major flaw in this context (11); in this case, the cells that survived the
prodrug isoniazid due to low activity of the enzyme required to activate the prodrug
(catalase) are not proof that persister cells are metabolically active but instead are proof
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FIG 1 Major mechanisms used by bacteria to survive antibiotics. Resistance is the use of the active defense
mechanism of mutation to withstand antibiotic (Ab) stress; surviving cells grow in the presence of the
antibiotic, and offspring inherit the phenotype. The mutations include those that inactivate antibiotics by
increasing efflux, by target modification, and by direct antibiotic modification. Persistence is the cessation
of cellular activity (i.e., dormancy) that allows cells to not grow in the presence of antibiotics but basically
to not change in concentration. The persistence phenotype is not inherited, and cells revert rapidly to
wild-type growth once the antibiotic stress is removed and nutrients are presented. Tolerance is due to
slow growth prior to the antibiotic stress, and the slow-growing cells utilize universal defense mechanisms
(e.g., RpoS, superoxide dismutase [SOD], and heat/cold shock proteins) to counter various environmental
stresses such as carbon shifts and lack of nutrients. Upon antibiotic addition, the concentration of tolerant
cells decreases continually, and the phenotype of tolerance is noninherited.

of the noise that is inherent in cellular metabolism. Hence, persister cells are dormant
and nongrowing.

Many researchers have used the designations type | and type Il persister cells since
the Balaban group coined the terms (12). Type | persister cells are dormant and are true
persister cells; these type | persisters were reported to have a growth lag of 14 h in
fresh medium (12), whereas others found a lag of about 2 h (23). Critically, the type I
“persisters” of the Balaban et al. publication (12) had a low growth rate prior to
antibiotic addition. Furthermore, these cells had an inherited phenotype after several
rounds of ampicillin treatment, and the cells could grow in the presence of ampicillin.
Hence, we believe that these type Il cells are not persister cells for three reasons: (i) true
persister cells have no inherited phenotype, (ii) they do not grow in the presence of
antibiotic, and (iii) they do not grow in the absence of antibiotic.

Proposing an alternative method to produce persister cells, the Brynildsen group
subjected Escherichia coli cells to a nutrient shift (e.g., glucose to fumarate) and
found that the cells were moderately more tolerant to the fluoroquinolone ofloxa-
cin (~50-fold increase) (14). Unfortunately, rather than discerning “a mechanistic
persister formation pathway” as the authors claimed (14), they instead studied cells
growing exponentially (prior to antibiotic addition) as evidenced by the increase in
cell density from 10# cells/ml to 10° cells/ml over the course of 8 h after the nutrient
switch. Critically, growth on fumarate alone gave results similar to that of the switch
from glucose to fumarate (i.e., only 10-fold-fewer cells that were tolerant to the
antibiotic), which indicates that the phenomenon studied was simply the increase
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in antibiotic tolerance seen in a slow-growing population (15). Moreover, the
ensuing conclusions regarding persistence and the stringent response via guanos-
ine tetraphosphate (ppGpp) and DNA gyrase activity based on results from diauxic
growth are probably not valid for persisters (but may be valid for cells undergoing
nutrient stress). Also, since the changes in tolerant cell populations based on
diauxic growth were relatively modest (on the order of 10-fold), they are probably
not informative for work in the persister field, where cell populations change on the
order of 105 cells/ml (3).

This lack of a robust phenotype and the resulting cell growth may explain how
Amato et al. (14) mistakenly thought that they were studying persister cells, which by
all accounts in the field do not increase in population size. Hence, there may be
disagreement in the persister field about the degree of dormancy, but results in which
the cell density is increasing prior to antibiotic treatment should not be attributed to
persister cells.

Similarly, the lack of a robust phenotype (~20-fold change in antibiotic tolerance)
and their work with growing E. coli cells also led to the conclusion by the Brynildsen
group that cyclic AMP (cAMP) addition increases persistence (14). Based on changes in
actual persister cell populations of 235-fold, 19-fold, and 4,200-fold for three indepen-
dent lines of evidence related to cAMP, we have found that cAMP instead clearly
decreases persistence (16).

In a second paper, which relies on the nutrient shift method, the Brynildsen group
claimed to study persister cell formation in biofilms (17). Unfortunately, their results
show only modest (~13-fold increase) changes in the ability of nutritionally stressed
cells to tolerate antibiotics and show that the cells were growing exponentially prior to
antibiotic treatment; so, once again, persister cells were not studied, and the results
related to specific E. coli mutants are not valid for persister cells.

In a third paper, which relies on the effect of diauxic growth, the Brynildsen
group studied the effects of two antibiotics, ampicillin and ofloxacin, and linked the
“persistence” of E. coli to RelA, ClpA, SsrA, and SmpB as well as concluding that
there were differences in the mechanisms for the antibiotic tolerance of cells to the
two antibiotics (18). As before, the modest phenotypes (~25-fold increase) and the
use of growing cells (prior to antibiotic treatment) invalidate their conclusions for
persister cells.

In a fourth paper, which uses nontraditional “persister” cells (19), the Brynildsen
group studied “persister cells” generated in stationary cultures; they studied these cells
by using fluorescence-activated cell sorting (FACS) in which they utilized redox sensor
green staining for determining metabolic activity and mCherry dilution for determining
cell growth. Their main conclusion was that “persister cells” are derived from cells with
high redox activity and that inhibiting respiration reduces “persisters.” As with their
diauxic cultures, the problem with using stationary-phase cells is that the cells are still
growing (prior to antibiotic addition); hence, they are not persisters. For example, in Fig.
5g of reference 19, after treatment with potassium cyanide and ampicillin, persister
cells are not created since the population continues to decrease with time without the
biphasic pattern that is typical of persistence; instead, a pattern consistent with
tolerance is seen since the viable cell population continues to decrease. Indeed,
previous authors utilizing stationary cells recognize this population as tolerant, not as
persister cells (13, 20, 21), and transmission electron microscopy has demonstrated that
persister cells are phenotypically distinct from stationary-phase cells (22). Hence,
stationary-phase cells are not persister cells. As for other problems in the work by
Orman and Brynildsen (19), the authors diluted their sorted cells into rich medium prior
to the persister assay, which invalidates the persister assay since almost 50% of the
persister cells in stationary cultures lose their tolerant phenotype in several minutes
(23).

Other groups have also studied actively growing cells and attributed their results to
persister cells. The Heinemann group (24) also used the nutrient switch from glucose to
fumarate for E. coli to “generate large numbers of persisters present in nutrient rich
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environments.” Using proteomics, they concluded that “persister” cells depend on an
active RpoS system and that “persisters” are metabolically active. Clearly, the cell
population was tolerant to antibiotics, and their results are applicable to slow-growing
cells (their cells had a measured specific growth rate of 0.02/h prior to antibiotic
addition), but they were not studying persister cells, and their conclusion that persister
cells are metabolically active is not valid. Since their cell population was growing, they
found the expected result that the cells were metabolically active. Also, since the cells
were nutritionally stressed, they found the expected result that the RpoS-mediated
stress response was important for the antibiotic tolerance.

In a similar manner, using biofilms generated for only 24 h, the Beloin group also
rediscovered the importance of the RpoS-mediated stress response in nutritionally
stressed cells that have antibiotic tolerance (25). In addition, they concluded that
toxin/antitoxin systems were not involved in the antibiotic tolerance and that the
stringent response (i.e., ppGpp) played less of a role than the stress response. Critically,
their survival data for their biofilm population showed a dependence on antibiotic
concentration, which clearly indicates that they were not studying persister cells (1);
hence, their conclusions about the importance of RpoS versus the stringent response
and of toxin/antitoxin systems are not valid for persister cells.

As an illustration of another important reason for differentiating persister cells
from tolerant cells (26), the Balaban group has shown that tolerant cells can arise
from cyclic antibiotic treatments that result in mutations that affect the duration of
the lag phase (27). Persister cells, of course, tolerate antibiotics without undergoing
mutation.

In conclusion, to distinguish between tolerant and persister cells and to avoid
attributing traits of growing tolerant cells to dormant persister cells, groups should
utilize the following techniques. (i) They should measure the number of putative
tolerant cells (i.e., those cells that grow slowly prior to antibiotic treatment and then
decrease slowly in the presence of the antibiotic) over a period of time; the number of
persister cells should not increase prior to antibiotic treatment and should basically not
change rapidly in the presence of the antibiotic, whereas the population of tolerant
cells will increase prior to antibiotic addition and continue to decrease in the presence
of the antibiotic (1). (ii) They should measure the number of putative tolerant cells as
a function of antibiotic concentration above the MIC; the number of persister cells
should not be a function of the antibiotic concentration as it is increased above the
MIC, whereas the number of tolerant cells will decrease (1). (i) They should ensure that
the number of putative persister cells is not increasing; the number of persister cells will
not increase in cell number in the absence of antibiotics and nutrients (but growing
cells will increase in cell number). (iv) They should ensure that at no point is the
persister population in contact with a medium that contains nutrients, even if only
briefly (i.e., wash cells with nutrient-free buffer where required). In our lab, the surest
way that we have found to produce high numbers of E. coli persister cells is to produce
a toxin from a plasmid (28) or to pretreat the cells with compounds that reduce protein
production (8). If the number of tolerant cells is increasing prior to antibiotic treatment,
the authors will rediscover the well-known attributes of growing cells that are having
their metabolism reduced; for example, they will discover that the growth/tolerance of
the cells is dependent on stress sigma factors like RpoS. Therefore, the insights
generated by the study of growing, tolerant cells are indeed worthwhile for the benefit
of understanding nutritionally stressed cells; however, these findings should not be
attributed to persister cells. Additionally, the terms persister and tolerant should not be
used interchangeably, and authors should strive to indicate more clearly what type of
research they are conducting. Using this rubric, i.e., distinguishing which cell popula-
tion is being studied, many of the confusing aspects of persistence research, such as
whether the cells have active metabolism, become clear: tolerant cells have some
aspects of active metabolism, whereas persister cells, as originally determined, are
dormant.
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