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Abstract: In this paper, we have modified the Detrended Fluctuation Analysis (DFA) using the
ternary Cantor set. We propose a modification of the DFA algorithm, Cantor DFA (CDFA), which uses
the Cantor set theory of base 3 as a scale for segment sizes in the DFA algorithm. An investigation
of the phenomena generated from the proof using real-world time series based on the theory of the
Cantor set is also conducted. This new approach helps reduce the overestimation problem of the
Hurst exponent of DFA by comparing it with its inverse relationship with α of the Truncated Lévy
Flight (TLF). CDFA is also able to correctly predict the memory behavior of time series.

Keywords: Cantor set; fractals; homeomorphism; detrended fluctuation analysis; Hurst exponent

1. Introduction

A ternary Cantor set is a set built by removing the middle part of a series when
divided into three parts and repeating this process with the remaining shorter segments. It
is the prototype of a fractal [1]. A fractal is a geometric object that has similar statistical
properties to itself on all scales. If a fractal object is successively magnified, it looks similar
or exactly like the original shape of the fractal. A similar pattern exhibited at increasingly
smaller scales is often known in fractal mathematics as self-similarity [2,3]. In time series,
self-similar phenomena describe the event in which the dependence in the time series
decays more slowly than an exponential decay. Typically, it follows a power-like decay [4].
Scaling methods exist for quantifying the power-law exponent of the decay function such as
Rescaled Range Analysis (R/S), Detrended Fluctuation Analysis (DFA) and the Truncated
Lévy Flight (TLF).

The Rescaled Range Analysis (R/S) method by Hurst subdivides integrated time
series into adjacent segment sizes and examines the range (R) of the integrated fluctuations.
Then, a measure of dispersion, usually standard deviation (S), is determined as a function
of segment size. A power law governs the approximate relationship between the Rescaled
Range Analysis’ statistic (R/S) and the segment size [5].

The Detrended Fluctuation Analysis (DFA) by Peng et al. (1994) is a technique that
quantifies the same power-law exponent of the R/S method. Addressing difficulties in
determining correct power-law exponents of the R/S method in non-stationary time series
resulted in the introduction of the DFA. Unlike the R/S method, the DFA uses a local
detrending approach (usually linear regression) in the segments of the integrated series.
For time series with higher-order trends, polynomial fit replaces the linear regression
approach of the DFA [6]. This provides its power-law exponents’ protection against
effects of nonstationarity and pollution of time series by external signals while eliminating
spurious detection of long memory [7]. Empirical evidence has shown that the DFA
performs well compared to other variance scaling methods including the R/S methods
when estimating power-law exponents.
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Usually, characterizing stochastic processes empirically requires the study of determin-
ing asymptotic probability density distributions (pdf) and temporal correlations. Brownian
motion models the evolution of a particle’s position over time with the assumption that
the movement of the particle follows a diffusive process with Gaussian distribution. This
model did not describe accurately real-world time series because kurtosis of associated
pdf is greater than that of the Gaussian distribution [8,9]. The Truncated Lévy Flight (TLF)
model originated as a means to address the difficulties of the Brownian motion for working
in long-range correlation scales. The scaling exponent (0 < α ≤ 2) of the TLF measures
the memory behavior in time series that follows a diffusion process with Gaussian and
non-Gaussian distributions [10].

In [11], a clear comparison was made between DNA and economics by the authors,
showing the underlining similarities that allow researchers to model seemingly different
phenomena using the same or slightly modified models. In the same manner, these variance
scaling models have the added advantage of being used to model long memory effects
in different fields where stochastic processes occur [2,7]. Thus, be it DNA sequencing,
financial markets, geophysical time series etc., scaling methods have been used to detect
long/short memory behaviors.

Scaling approaches serve as means of characterizing the dependence of observations
separated in time series dominated by stochastic properties. Applications with DFA have
been done in DNA sequences [6,12,13], neural oscillations [14], detection of speech pathol-
ogy [15], heartbeat fluctuation in different sleep stages [16], describing cloud breaking [17],
gearbox fault diagnosis [18], analysis of fetal cardiac data [19], streamflow in the Yellow
River Basin in China [20], evaluation near infrared spectra of green and roasted coffee
samples [21], just to mention a few.

Empirical evidence has shown that the DFA has the tendency of overestimating
the scaling exponent [2,22]. We have not come accross any literature at the moment
that describes a definite approach in the segment division step of the DFA algorithm.
However, we observe that estimates of power-law exponents are influenced by the scale
of choice [23,24]. Our goal in this work is to propose a definite non-overlapping segment
division approach in the DFA algorithm (CDFA) that utilizes the theory of the ternary
Cantor set. We show that using this approach we are able to rightly determine the correct
scaling exponent to detect the memory behavior of the time series as well as reducing
the over-fitting nature of the DFA. This approach has the advantage of generalizing the
segment division step in the DFA algorithm. The Hurst exponents obtained from the CDFA
method are then compared with the exponents of the DFA and the TLF on real time series.

In Section 2, we present proof of the relationship between the continuum of Hurst
exponents of the DFA and Cantor set. We also present the scaling methods TLF, DFA and
CDFA in this section. In Section 3, we present results and discussions from our investi-
gation noting that for noise-like time series, anti-persistence, white noise and persistence
behavior in time series imply 0 ≤ H < 0.5, H = 0.5 and 0.5 < H ≤ 1 respectively. The over-
estimation of DFA’s Hurst exponent decreasing with the Cantor scales is also discussed in
this section. Section 4 concludes the paper.

2. Methods
2.1. The Truncated Lévy Flight (TLF)

We provide a brief overview of the Truncated Lévy Flight (TLF) model in this sub-
section. The most general representation of the Lévy stable distribution is denoted by the
characteristic function:

K(q, α) = exp{iµq − σα | q |α [1 + iβ.sign(q).φ(q, α)]} (1)

where,

φ(q, α) =

{
(2/π) ln(q), α = 1
− tan(πα/2), α 6= 1.
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The stability exponent α ∈ (0, 2] defines the asymptotic decay of the pdf. σ ∈ (0, ∞)
measures dispersion. Skewness parameter β ∈ [−1, 1] measures asymmetry of the distribu-
tion. µ ∈ (−∞, ∞) is a scalar which determines the “location” or shift of the distribution.
The sign x is the signum function of x ∈ R defined as sign(x) = x/|x|. The problem is that
the variance of the distribution in (1) is finite but is not stable. This is because, large cut-off
l results in slow convergence and a smaller cut-off l may result in abrupt tail [8]. In [25],
the author generated a TLF to address the convergence problem by using a decreasing
exponential cut-off function. Thus, the process in Equation (1) is truncated to obtain the
TLF given by:

T (q, α) =

{
c K(q, α), | q | ≤ l

0, | q | > l
(2)

for some normalizing constant c, stability exponent α ∈ (0, 2] and cut-off length l. The char-
acteristic function of the TLF in Equation (2) is given by

ln[T (q, α)] =
2πAl−αt

[
1 − ((ql/σ)2 + 1)α/2 cos(α arctan(ql/σ))

]
αΓ(α) sin(πα)

. (3)

To determine the best scaling exponent (α) from characteristic equation in (3), we
adjust the values of A, the cut-off parameter l and the scaling exponent α simultaneously
to fit the characteristic function to the data.

2.2. Detrended Fluctuation Analysis (DFA)

Given the noise-like time series ψ, we find the integrated series

Y = ∑
k
(ψk − < ψ >). (4)

to determine the Root Mean Squared Fluctuations (RMSF) from Equation (5) below

F(s) =

{
1
N ∑

j

[
Yj −Ys

j

]2
}1/2

(5)

A log–log plot of the RMSF against the series length s produces a directly proportional
relation given by

F(s) ∝ sH

logF(s)− Hlog(s) = K, (6)

where H := Hurst exponent of the DFA and Hmin ≤ H ≤ Hmax [4].

2.3. Cantor Detrended Fluctuation Analysis (CDFA)

In this subsection, we prove that the subspace [Hmin, Hmax] of Hurst exponents is
homeomorphic to [0, 1] of the Cantor set. We also present an illustration of the Cantor set
and the algorithm for the CDFA.

Theorem 1. A map f : [Hmin, Hmax]→ [0, 1] between the topological spaces of Hurst exponents
of noise-like time series and the Cantor set is a homeomorphism if it has the following properties:

• f is a bijection;
• f is continuous;
• the inverse function f−1 is continuous.

If two topological spaces admit a homeomorphism between them, we say they are
homeomorphic: they are essentially the same topological space.
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Proof. Let Hmin ≤ H ≤ Hmax and 0 ≤ y = f (H) ≤ 1, then the map f : [Hmin, Hmax] →
[0, 1] gives

Hmin − Hmin ≤ H − Hmin ≤ Hmax − Hmin (7)

0 ≤ H − Hmin
Hmax − Hmin

≤ 1. (8)

Thus,

y = f (H) =
H − Hmin

Hmax − Hmin
. (9)

Now, we need to prove that the map f is homeomorphic to the Cantor set.
The map f (H) is said to be bijective if and only if f (a) = f (b) for all a, b implies that

a = b. From
f (a) =

a− Hmin
Hmax − Hmin

and f (b) =
b− Hmin

Hmax − Hmin
,

f (a) = f (b)

=⇒ a− Hmin = b− Hmin

=⇒ a = b.

Thus, the map f (H) is a bijection.
The map f (H) is continuous at some value c in its domain if f (c) is defined, the limit

of f as H approaches c exists and the function value of f at c equals the limit of f as H
approaches c. The function f (c) is defined as

f (c) =
c− Hmin

Hmax − Hmin
. (10)

The limit of f as H approaches c equals

lim
H→c+

f (H) = lim
H→c−

f (H) =
c− Hmin

Hmax − Hmin
. (11)

The left- and right-sided limits are equal from (11). Therefore,

lim
H→c

f (H) =
c− Hmin

Hmax − Hmin
. (12)

Hence we observe that the right hand side of Equation (10) is equal to right hand side
of Equation (12). Thus, it follows that

lim
H→c

f (H) = f (c) =
c− Hmin

Hmax − Hmin
.

Thus, the map f is continuous at some value H = c for a differentiable fractal.
The inverse function of f (i.e., f−1(H)) exists.

y = f (H) =
H − Hmin

Hmax − Hmin
(13)

(Hmax − Hmin)y = H − Hmin (14)

H = Hmin + (Hmax − Hmin)y (15)

Interchanging H and y gives

y = f−1(H) = Hmin + (Hmax − Hmin)H, (16)

the inverse function of f (H).
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The inverse map f−1 is continuous at some value s in its domain if f−1(s) is defined,
the limit of f−1 as H approaches s exists and the function value of f−1 at s equals the limit
of f−1 as H approaches s. f−1(s) is defined as

f−1(s) = (1− s)Hmin + sHmax. (17)

The limit of f−1 as H approaches s equals

lim
H→s+

f−1(H) = lim
H→s−

f−1(H) = Hmin + (Hmax − Hmin)s. (18)

⇒ lim
H→s

f−1(H) = Hmin + (Hmax − Hmin)s. (19)

Since the right hand side of Equation (17) equals the right hand side of Equation (19) it
implies that,

lim
H→s

f−1(H) = f−1(s) = (1− s)Hmin + sHmax.

Thus, the inverse map f−1 exists and is continuous at some value H = s.
Therefore, the map f (H) is a homeomorphism and H ∈ [Hmin, Hmax] is homeomorphic

to [0, 1] of the Cantor set for noise-like time series.

2.3.1. Illustration of the Cantor Set

In this subsection, we take real-world noise-like time series and remove middle thirds
up to four (4) levels so that it is similar to the Cantor set. This phenomenon is depicted in
Figure 1 [26]. It shows that the segments appear the same at different scales in successive
magnifications of the Cantor set from levels C0 to C6. C0 depicts the original time series
with no missing parts and C6 represents the remaining time series after removing middle
thirds for the sixth time. For the sake of experimentation, we limit our scope to levels from
C0 to C3.

Figure 1. Fractal behavior of a ternary Cantor set.

2.3.2. Definition

The subset of intervals of the Cantor set is defined recursively as:

1. C0 = [0, 1];

2. C1 =
(

1
3 , 2

3

)
;

3. Cn = Cn−1
3 ∪

(
2
3 + Cn−1

3

)
for n ≥ 2.

The ternary Cantor set is defined as C = [0, 1] \ (∪∞
n=1Cn). The level C0 indicates

the interval we begin with. For C1, [0, 1] is divided into 3 sub-intervals and the middle
sub-interval

(
1
3 , 2

3

)
is removed. For C2, each of the remaining intervals from C1 are divided

into 3 sub-intervals and their middle sub-intervals
(

1
9 , 2

9

)
and

( 7
9 , 8

9
)

are removed. This
procedure can continue indefinitely by removing open middle third sub-interval of each
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interval obtained in the previous level. Due to issues with the dimension of the Cantor
sets (i.e., dimension of 0.631 < 1), we rescale the integrated series ψt by dividing each
observation by the maximum data point:

ψt =
Ψt

max(Ψt)
.

s.t. ψt ∈ [0, 1].

2.3.3. Algorithm of the CDFA

Here, we present a modification of the DFA algorithm called CDFA to generalize the
segment division step of the DFA. The CDFA algorithm consists of four (4) main steps:

1. given the time series ψt of length N, find the integrated series shifted by the mean
< ψ >,

Yj =
j

∑
i=1

(ψi − < ψ >).

2. the cumulatively summed series Yj is then segmented into equal non-overlapping
segments of various sizes ∆s. ∆s is based on the Cantor set theory scale (∆s = 3n,
n ≥ 0). The number of non-overlapping segments is calculated as:

N∆s ≡ int
(

N
∆s

)
= int

(
N
3n

)
.

The Cantor set scaling function is computed for multiple segments to highlight both
slow- and fast-evolving fluctuations that control the structure of the time series.

3. Root Mean Squared Fluctuation (RMSF) is computed for multiple scales of the inte-
grated series:

F(∆s) ≡
{

1
2N∆s

2N∆s

∑
j=1

[
Yj −Y∆s

j

]2
}1/2

where j denotes the sample size of segments N∆s. We compute RMSF from j = 1
to 2N∆s not N∆s. We sum from beginning to end and from end to beginning, then
an average of the values is calculated so that every data point is considered. Con-
versely, the large segments interweave many local periods with both small and large
fluctuations and therefore average out their differences in magnitude.

4. the least squares regression fit of F(∆s) versus the Cantor scales ∆s on a log–log scale
produces the power-law notation computed for multiple scales:

F(∆s) ∝ (∆s)Hc

log(F(∆s)) = Hclog(∆s) + log(C),

where Hc := Hurst exponent of the CDFA which measures memory behavior in the
noise-like time series.

2.3.4. Real Time Series

In Figure 2, the time series multifractal (upper panel), monofractal (middle panel) and
white noise (lower panel) used in the experiment are noise-like biomedical time series with
8000 rescaled sample data points each [27]. The red trajectory depicts the random walk of
the respective series. Observe that the fractal depicted by the multifractal time series at the
peak looks very similar to the entire monofractal time series. Thus, comparing the series in
the upper panel to the middle panel, the multifractal series has many fractals compared to
the one for the monofractal series. We determine DFA’s Hurst exponents for the remaining
series after removing the middle thirds of each series at each level. It should be noted that
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the white noise time series has a structure independent of time with Hurst exponent close
to H = 0.5 whereas noise-like monofractal and multifractal time series exhibit persistence
behavior s.t. 0.5 < H ≤ 1.

Figure 2. Biomedical time series plots.

3. Results

Below are tables of results of power-law exponents from the implementation of the
DFA algorithm on the respective time series. Note from Figure 1 that

1. C0 denotes the entire time series (with 8000 data points) and produces one Hurst
exponent H1 shown in row 1 of Tables 1–3;

2. C1: after removing middle third of the time series for the first time, we have two(2) set
of data with respective data points 2666 and 2667 and corresponding Hurst exponents
H1 and H2 as shown in row 2 of Tables 1–3;

3. C2: we have four (4) data sets remaining after deleting middle third for the second
time. The data sets have 888, 889, 888 and 889 observations, respectively. Thus, we
obtain four(4) Hurst exponents, namely, H1, H2, H3 and H4 as shown in row 3 of
Tables 1–3;

4. C3: deleting middle third for the third time produces eight (8) partitions of data with
296 data points each. Each of the data sets produces a Hurst exponent resulting in
eight (8) exponents H1, H2, H3, H4, H5, H6, H7, and H8 in total. These exponents
are shown in the last rows of Tables 1–3.

It should be noted that the same data points from partitioning correspond to the white
noise, monofractal, and multifractal time series. The Hurst exponents also follow respectively.

Table 1. DFA’s Hurst Exponents of White noise time series.

Levels Hurst Exponents

C0 H1 = 0.50
C1 H1 = 0.50, H2 = 0.45
C2 H1 = 0.54, H2 = 0.45, H3 = 0.52, H4 = 0.42

C3
H1 = 0.50, H2 = 0.54, H3 = 0.4, H4 = 0.49, H5 = 0.59, H6 = 0.43, H7 = 0.42,

H8 = 0.57

From Table 1, we observe closeness of the Hurst exponents of the white noise series to
H = 0.5 for all levels from C0 to C3. This confirms the phenomena that are exhibited in the
fractal nature of the Cantor set in white noise time series. No matter how many sections of
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a white noise series are removed, the left-over series still exhibits similar characteristics as
the whole white noise series.

Table 2. DFA’s Hurst exponents of monofractal time series.

Levels Hurst Exponents

C0 H1 = 0.79
C1 H1 = 0.80, H2 = 0.68
C2 H1 = 0.81, H2 = 0.69, H3 = 0.74, H4 = 0.68

C3
H1 = 0.65, H2 = 0.80, H3 = 0.63, H4 = 0.72, H5 = 0.78, H6 = 0.68,

H7 = 0.67, H8 = 0.79

Table 2 present Hurst exponents between 0.5 and 1 (0.5 < H ≤ 1) for long memory
monofractal time series for levels C0, C1, C2 and C3. The phenomena exhibited in the
monofractal time series from the table above are similar to the fractal nature of the Cantor
set. The series left behind after removing the middle thirds of the monofractal time series
exhibits similar statistical properties as the whole.

Table 3. DFA’s Hurst exponents of multifractal time series.

Levels Hurst Exponents

C0 H1 = 0.86
C1 H1 = 0.86, H2 = 0.75
C2 H1 = 0.75, H2 = 0.88, H3 = 0.70, H4 = 0.78

C3
H1 = 0.82, H2 = 0.69, H3 = 0.77, H4 = 0.97, H5 = 0.69, H6 = 0.70,

H7 = 0.91, H8 = 0.90

Hurst exponents of the multifractal time series lie within the range 0.5 < H ≤ 1 for
all levels C0, C1, C2 and C3 from Table 3. This illustrates the fractal phenomena depicted
by the Cantor set where successive magnification of the Cantor produces a copy of itself.
This can be seen in Figure 1. Thus, self-similar behavior persists after removing the middle
thirds of the whole series up to the level C3. Results from Tables 1–3 confirm that successive
magnification of noise-like time series shows a similar pattern at increasingly smaller scales.
Thus, the statistical characteristics of part of noise-like series are similar to that of the whole.
This phenomenon is commonly known in fractals as self-similarity.

Figures 3–8 shows the log–log fits of RMSF and scales of the white noise, monofracal
and multifractal bio-medical series using the DFA and the CDFA. The first two (2) plots
(i.e., Figures 3 and 4) present fits of the white noise using the DFA and CDFA. The next
two (2) plots (i.e., Figures 5 and 6) illustrate the fit of monofractal series using the DFA and
CDFA. The last two(2) plots (i.e., Figures 7 and 8) show fits of the multifractal series using
the DFA and the CDFA.

Table 4 above has six (6) columns of results in total. The first column (H) represents
the Hurst exponents of the DFA, the second column (Hc) denotes the Hurst exponents of
the CDFA and the difference between the exponents in the first two columns are found
in the third column. The column for α denotes the scaling exponents of the TLF. The last
two columns represent the multiplication of the Hurst exponents of the DFA (H) and the
scaling exponent of the TLF (α), as well as the multiplication of the Hurst exponents of the
CDFA (Hc) and the scaling exponents of the TLF. Upon investigating Hurst exponents of
white noise, monofractal and multifractal time series using the DFA and CDFA, we observe
differences in their exponents, as shown in Table 4. Hurst exponent of white noise time
series changes slightly but that of the monofractal and multifractal time series changes
about 1%. The slight changes in the exponents are a result of subdividing the time series as
multiples of 3 (ternary base) at each level using the CDFA. This helps to curb the problem
of overestimation associated with DFA. Notwithstanding the differences between the
exponents, they still depict the same processes modeled herein (i.e., noise-like time series).
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The exponent of the white noise is close to 0.5 whereas that of the noise-like monofractal
and multifractal series lie within the range 0.5 < H ≤ 1, depicting long-memory behavior.

Table 4. Comparison of scaling exponents of DFA(H) & CDFA(Hc) & TLF (α) on noise-like
time series.

Time Series H Hc Difference α Hα Hcα

White noise 0.5 0.4997 0.0003 1.97 0.985 0.9844
Monofractal 0.79 0.781 0.009 1.28 1.0112 0.9997
Multifractal 0.86 0.851 0.009 1.17 1.0062 0.9976

Figure 3. Log–log fit of white noise time series using DFA.

Figure 4. Log–log fit of white noise time series using CDFA.
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Figure 5. Log–log fit of monofractal time series using DFA.

Figure 6. Log–log fit of monofractal time series using CDFA.
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Figure 7. Log–log fit of multifractal time series using DFA.

Figure 8. Log–log fit of multifractal time series using CDFA.

4. Discussion

The results obtained from the Tables 1–4 suggest that segment size may not always be
hard-coded in the DFA algorithm based on the length of the time series in question. Espe-
cially for time series with odd lengths, the process can be automated using the fractal phe-
nomena of the Cantor set to obtain equal segment sizes and satisfactory Hurst exponents.

Furthermore, multiplying Hurst exponents of the DFA and CDFA with the scaling ex-
ponents (α) of the Truncated Lévy flight (TLF) suggests that Hc is a better estimate. For the
monofractal and multifractal noise-like time series, we observe that Hcα is approximately
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equal to 1 while Hα exceeds 1. This deviates from the inverse relationship between the
Hurst exponents and the scaling exponents of the TLF for Gaussian noise as discussed
in the paper [4]. This highlights the overestimation of the Hurst exponent of the DFA
approach that happens in practice.

5. Conclusions

In this work, we have proposed a modification to the DFA algorithm by utilizing the
theory of the tenary Cantor set in the segment division step. The Cantor DFA (CDFA) has
been compared to the α exponent of the truncated Lévy model and the Hurst exponent of
the DFA. We have in addition proved that the interval of the Hurst exponent of the DFA is
homeomorphic to the Cantor set. We confirm the results from the proof by illustrating the
fractal phenomena exhibited by the Cantor set using real-world time series in Tables 1–3.

Our results from numerical simulations show that the CDFA generates better estimates
of Hurst exponents. The CDFA proposed in this work automates the segment sizes in the
DFA algorithm using the number base 3 theory of the Cantor set, where the time series is
divided into multiples of 3 at each level. This modification helps to curb the overestimation
problem of the Hurst exponent (H) of the DFA by determining segment sizes based on
the fractal phenomena depicted by the Cantor set while correctly predicting the memory
behavior of the series in question.

The results are shown in Table 4 where the Hurst exponent of the CDFA is compared
with that of the DFA and the scaling exponents (α) of the TLF. In [4], a relationship
was established between the Hurst exponent of the DFA and the α exponent of the TLF.
The CDFA is also shown to satisfy this relation, thus making it possible to extract the α
exponent of the TLF from the Hurst exponent of the CDFA.

The CDFA approach can be applied to time series with odd lengths, time series
whose lengths are not easily divisible by even numbers, time series whose lengths do not
permit equal segmentation, etc. These kinds of series exist in several industries, including
financial, geophysics, health and the like. Another application of the CDFA would be to
act as a control model for the ordinary DFA to reduce the chances of overestimation of the
Hurst exponent.

Since this is a modification of the DFA, there is the need to simulate CDFA with
different data sets having varying characteristics for which the DFA has been shown to
correctly detect their scaling behavior. An example will be DNA sequences, financial
markets, etc., for further comparison of the model performance against the DFA.

For future work, we seek to investigate the robustness of the CDFA as stated earlier
by simulating the model with data sets from different fields, including, but not limited
to, DNA sequences, financial markets and geophysical data. In the case of “big data”, we
seek to extend the CDFA by “parallelizing” the sequential code of the CDFA (PCDFA) to
improve its efficiency in simulation.
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