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A B S T R A C T   

Background: The newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a 
worldwide pandemic of human respiratory disease. Angiotensin-converting enzyme (ACE) 2 is the key receptor 
on lung epithelial cells to facilitate initial binding and infection of SARS-CoV-2. The binding to ACE2 is mediated 
via the spike glycoprotein present on the viral surface. Recent clinical data have demonstrated that patients with 
previous episodes of brain injuries are a high-risk group for SARS-CoV-2 infection. An explanation for this finding 
is currently lacking. Sterile tissue injuries including stroke induce the release of several inflammatory mediators 
that might modulate the expression levels of signaling proteins in distant organs. Whether systemic inflammation 
following brain injury can specifically modulate ACE2 expression in different vital tissues has not been 
investigated. 
Methods: For the induction of brain stroke, mice were subjected to a surgical procedure for transient interruption 
of blood flow in the middle cerebral artery for 45 min and sacrificed after 1 and 3 days for analysis of brain, lung, 
heart, and kidney tissues. Gene expression and protein levels of ACE2, ACE, IL-6 and IL1β were measured by 
quantitative PCR and Western blot, respectively. The level of soluble ACE2 in plasma and bronchial alveolar 
lavage (BAL) was measured using an immunoassay. Immune cell populations in lymphoid organs were analyzed 
by flow cytometry. Post-stroke pneumonia in mice was examined by bacterial cultures from lung homogenates 
and whole blood. 
Results: Strikingly, 1 day after surgery, we observed a substantial increase in the protein levels of ACE2 in the 
lungs of stroke mice compared to sham-operated mice. However, the protein levels of ACE2 were found un-
changed in the heart, kidney, and brain of these animals. In addition, we found increased transcriptional levels of 
alveolar ACE2 after stroke. The increased expression of ACE2 was significantly associated with the severity of 
behavioral deficits after stroke. The higher protein levels of alveolar ACE2 persisted until 3 days of stroke. 
Interestingly, we found reduced levels of soluble ACE2 in plasma but not in BAL in stroke-operated mice 
compared to sham mice. Furthermore, stroke-induced parenchymal and systemic inflammation was evident with 
the increased expression of IL-6 and IL-1β. Reduced numbers of T-lymphocytes were present in the blood and 
spleen as an indicator of sterile tissue injury-induced immunosuppression. 
Conclusions: We demonstrate specific augmented alveolar ACE2 levels and inflammation in murine lungs after 
experimental stroke. These pre-clinical findings suggest that patients with brain injuries may have increased 
binding affinity to SARS-CoV-2 in their lungs which might explain why stroke is a risk factor for higher sus-
ceptibility to develop COVID-19.   
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1. Introduction 

Angiotensin-converting enzyme (ACE) 2 is present in mammalian 
tissues and plays an important role in the resolution of inflammation and 
cellular homeostasis under inflammatory conditions. The stimulation of 
ACE2 with specific activators is protective in specific diseases, such as 
brain injury induced by an ischemic stroke (Bennion et al., 2015; Mecca 
et al., 2011). However, recent data have demonstrated that SARS-CoV-2, 
the coronavirus causing COVID-19, utilizes ACE2 for entering into the 
epithelial cells (Hoffmann et al., 2020). The ensuing infection is 
accompanied by inflammatory lung injury and death and has caused a 
worldwide epidemic since its start at the end of 2019 (Pedersen and Ho, 
2020). Although the lungs are the major target of the virus, its spread to 
the heart, kidney, and brain has also been observed in human patients 
(Trypsteen et al., 2020). This multi-organ target of the virus infection 
has been associated with the dysfunction of affected organs and poor 
survival (Chen et al., 2020). 

Stroke-induced immune activation can affect multiple vital organs 
and augment the progression of specific co-existing inflammatory dis-
eases. Previous findings have shown that the induction of stroke in 
murine models of brain ischemia can activate immune cells and promote 
the progression of inflammatory heart disease (Roth et al., 2018). 
Moreover, brain injury can modulate the functions of the intestine and 
its immune components, supporting the hypothesis of multi-organ fail-
ure after stroke (Singh et al., 2016a, 2018). In addition, stroke patients 
may present signs of severe immunosuppression and inflammation that 
often lead to hospital-acquired respiratory infections (Shi et al., 2018). A 
recent study by Austin et al. has demonstrated an increased number of 
mononuclear granulocytes in bronchoalveolar lavage fluid (BAL) and 

higher IL-1β expression in lung tissue of mice that were subjected to 
ischemia-induced brain injury (Austin et al., 2019). In this respect, it is 
highly conspicuous that recent studies have suggested that patients with 
cardiovascular diseases and stroke form a high-risk group for SARS-CoV- 
2 infection (Bravi et al., 2020; Fifi and Mocco, 2020; Nishiga et al., 2020; 
Ssentongo et al., 2020). Besides, there are a plethora of clinical studies 
that identified severe episodes of stroke in COVID-19 patients (Fatima 
et al., 2020; Katz et al., 2020; Kihira et al., 2020). However, whether 
post-stroke immune alterations and lung inflammation might increase 
the susceptibility of patients to SARS-CoV-2 infection is currently enig-
matic and requires careful examination. 

Hence, we hypothesized that brain injury-induced immunological 
alterations and systemic inflammatory conditions may modulate the 
expression of ACE2 in different vital organs and thereby, promote 
binding and infection of SARS-CoV-2. At present, there is no data 
available demonstrating the dynamics of membrane-bound and soluble 
ACE2 in murine tissues after sterile brain injury. Here, using an exper-
imental murine model of stroke we found that focal cerebral ischemia 
specifically increased the expression of ACE2 in the lungs but not in 
other vital organs. 

2. Results 

To study the impact of stroke on the dynamics of ACE/ACE2 in 
different vital tissues, we used a transient stroke-reperfusion mouse 
model which induces large focal brain lesions and severe neurological 
deficits (Suppl. Fig. 1A–C). Interestingly, Western blot analysis of mouse 
lungs showed a 2–fold increase in ACE2 protein abundance compared to 
the sham controls one day after post-ischemic-reperfusion injury. 

Fig. 1. Stroke increases ACE2 protein levels and gene expression in the lung. A. Graphical representation of the experimental protocol with timeline. B, E, H, K. 
Representative Western blots for lung, heart, kidney and brain ACE2, ACE, and β-actin protein in sham and stroke-operated mice after 1 day. C, D) Increased levels of 
ACE2 but not ACE in the mice lung after 1 day of stroke. F, G) No change in ACE2 but decreased levels of ACE in the mice heart after stroke. I, J) No change in the 
levels of ACE2 and ACE in the mice kidney. L, M) No change in the levels of ACE2 and ACE in mouse brains after 1 day of stroke. N, O) Increased gene expression of 
ACE2 but not ACE in mouse lungs 1 day after stroke. P) A positive correlation between composite deficits scores and lung ACE2 expression in stroke mice. ***p <
0.001, **p < 0.01, *p<0.05, Mann-Whitney U test, N = 7–8 per group. 
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However, ACE protein levels remained unchanged (Fig. 1B–D). We 
further investigated the levels of ACE2 and ACE in heart, kidney and 
brain tissue after stroke- or sham-surgery but only found reductions in 
ACE protein levels in heart of stroke mice compared to sham-operated 
mice (Fig. 1E–M). These results indicate a specific effect of stroke on 
the expression of ACE2 in murine lungs. We further sought to determine 
if ACE2 expression in murine lungs was regulated at the transcriptional 
level and performed qPCR analysis on lung tissues 1 day after stroke- or 
sham-surgery. Strikingly, the induction of stroke significantly increased 
the level of ACE2 mRNA in the lungs compared to sham-operated mice 
(Fig. 1N). Again, the expression of ACE mRNA was not altered between 
sham and stroke mice (Fig. 1O). Interestingly, stroke-induced severe 
neurological deficits in mice were positively correlated with the 
increased expression of alveolar ACE2 (Fig. 1P). 

Furthermore, we found an increased expression of the proin-
flammatory cytokines IL-6 and IL-1β mRNAs in murine lungs after stroke 
(Fig. 2B, C). These data suggest that stroke-induced peripheral inflam-
mation might increase ACE2, but not ACE levels, and generate an in-
flammatory milieu in the lungs of affected mice. Interestingly, our 
results also showed increased gene expression of the pro-inflammatory 
cytokines IL-6 and IL-1β in the ipsilateral compared to contralateral 
brain hemispheres in stroke mice (Fig. 2D, E). 

Further, to investigate if the induction of stroke changes the levels of 
soluble ACE2, we measured the ACE2 concentrations in plasma and BAL 
using an immunoassay. Strikingly, we found reduced levels of ACE2 in 
plasma but not in BAL of stroke-operated mice compared to the sham 
controls after 1 day (Fig. 2F, G). In addition, mice subjected to stroke had 

a reduced number of circulating and splenic T lymphocytes which is an 
indicator of stroke-induced systemic immunosuppression (Fig. 2H, I). 
Post-stroke pneumonia is one of the comorbidities that can induce lung 
inflammation and change the expression of different signaling proteins. 
To verify this, we analyzed the presence of pneumonia-associated 
symptoms in mice using bacterial cultures and physiological parame-
ters. We found that the induction of large focal brain lesions in mice 
reduced their body weight and temperature but did not show positive 
bacterial growth from lung and blood tissues on day 1 (Suppl. 
Fig. 2A–E). 

Furthermore, we studied the longevity of ACE2 abundance in the 
lungs of mice after 3 days of stroke. Western blot analysis still showed 
increased abundance of ACE2 protein but not ACE in murine lungs after 
stroke compared to sham-operated animals (Fig. 2J–M). However, as 
opposed to day 1 no reduction in the plasma ACE2 was found after 3 
days of stroke (Fig. 2N). 

In conclusion, our results showed that sterile brain injury can 
modulate the levels of ACE2 on alveolar membranes and in the circu-
lation. This may explain the higher susceptibility of stroke patients for 
COVID-19. 

3. Discussion 

ACE and ACE2 are the key enzymes of the renin-angiotensin system 
which regulate blood pressure and salt-fluid balance in the body 
(Donoghue et al., 2000). ACE2 is a homologue of ACE and counterbal-
ances pathways of inflammation in specific tissue injuries (Rodrigues 

Fig. 2. Stroke induces inflammation and peripheral immunosuppression and reduces soluble ACE2 levels. A. Graphical representation of the experimental protocol 
with timeline. B, C. Higher gene expression of IL-6 and IL-1β cytokines in the lung of stroke mice. D, E. Increased gene expression of brain IL-6 and IL-1β in ischemic 
(Ipsi) hemispheres compared to non-ischemic hemispheres (Contra). F, G. Reduced levels of ACE2 in plasma but not BAL after 1 day of stroke compared to sham 
controls. H, I. Reduced number of T lymphocytes in blood and spleen of stroke mice. J. Graphical representation of the experimental protocol with timeline. K. 
Representative Western blots for lung ACE2, ACE, and β-actin protein in sham and stroke mice after 3 days. L, M. Increased levels of ACE2 but not ACE in the mice 
lung after 3 days of stroke. N. No change in the levels of ACE2 in plasma after 3 day of stroke compared to sham controls. O. Graphical abstract demonstrating stroke- 
induced alterations in systemic immunity and ACE2 levels. ***p < 0.001, **p < 0.01, *p < 0.05, Mann-Whitney U test, N = 4–8 per group. 
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Prestes et al., 2017). A higher expression of ACE2 is protective in lung 
injury, and the stimulation of this pathway with chemical activators has 
been shown to reduce LPS-induced lung edema and inflammatory tissue 
damage (Li et al., 2016). A recent study by Imai et al. suggested that the 
loss of ACE2 in a mouse model of acid-induced lung injury leads to the 
worsening of lung inflammation and increased lung edema (Imai et al., 
2005). 

ACE2 is utilized as a binding receptor by SARS-CoV2 for its entry into 
nasal and lung epithelial cells and the infection can induce acute res-
piratory distress syndrome (ARDS) in affected patients (Hoffmann et al., 
2020; Ziegler et al., 2020). In addition, higher expression of ACE2 has 
been found on the lung epithelial cells of COVID19 patients (Chua et al., 
2020). The tissues with higher expression of ACE2 are the major targets 
of SARS-CoV2 that may promote multi-organ failure in patients with 
COVID19 (Xu et al., 2020). In addition, a lower expression of alveolar 
ACE2 in young children compared to adults has been associated with a 
lower prevalence of COVID19 in children (Bunyavanich et al., 2020; 
Saheb Sharif-Askari et al., 2020). Based on the fact that SARS-CoV2 
infection co-exists with reported cases of cardiac disease and stroke 
patients (Shi et al., 2020; Zhai et al., 2020), we hypothesized that brain 
injury may also modulate the ACE2 expression in different vital tissues 
such as lung, heart, kidney, and brain. Indeed, our results suggest a rapid 
and specific increase of ACE2 expression and pro-inflammatory cyto-
kines in murine lungs after ischemic brain injury. The increase of ACE2 
levels within 1 day of brain injury suggests fast kinetics of signaling to 
induce protein expression changes in the lungs. The increase in alveolar 
ACE2 protein levels was evident after 3 days of brain injury. Interest-
ingly, our data did not show the increase in ACE2 levels in murine heart, 
kidney and brain on 1 day after brain tissue injury. Considering the 
longer incubation time (5–12 days) of SARS-CoV2 infection (Lauer et al., 
2020), investigations on alveolar ACE2 alterations in the chronic phases 
of brain injury will be important for future investigations. The molecular 
mechanisms underlying this response in the lungs after stroke are 
currently unclear, but, based on our data and related studies of others 
increased post-stroke lung inflammation might be a possible explanation 
(Austin et al., 2019). Physiologically, the augmented ACE2 levels in 
inflamed lungs after brain ischemia may help to counterbalance the 
subsequent inflammatory lung injury (Imai et al., 2005). Nevertheless, 
in the presence of a virus that exploits this anti-inflammatory enzyme for 
cell entry and infection, this protective mechanism might prove fatal. 

One of the clinical features of SARS-CoV-2-infected patients is the 
ensuing cytokine storm that leads to ARDS (Mehta et al., 2020). In the 
last months, several clinical studies have shown a higher serum level of 
cytokines such as IL-1β, IL-6 and TNF-α in virus-infected patients 
compared to the healthy controls (Conti et al., 2020; Han et al., 2020). 
Our results show that brain injury can also increase the expression of the 
pro-inflammatory cytokines IL-1β and IL-6 in the injured brain hemi-
spheres and the lungs. In addition, sterile tissue injury can initiate the 
release of damage-associated molecular patterns (DAMPs) and thereby 
propagate parenchymal and systemic inflammation (Singh et al., 
2016b). These DAMPs might serve as activation signals for lung 
epithelial, endothelial, and immune cells. However, which specific 
molecules modulate ACE2 expression in the lungs after brain injury is an 
open question and requires further research. 

The potential role of soluble ACE2 as a therapeutic target for SARS- 
CoV-2 infection is intensively discussed in the scientific community 
(Tang et al., 2020). Recent experimental data have demonstrated the 
effectiveness of recombinant human ACE2 in blocking SARS-CoV-2 
binding to membrane ACE2 and thereby blocking virus invasion 
(Monteil et al., 2020). The safety and use of soluble ACE2 therapy in 
humans has been successfully tested in a phase 1 clinical trial (Haschke 
et al., 2013) and is now examined in a clinical trial to treat COVID-19 
patients (Clinicaltrials.gov #NCT04335136). In this respect, it is 
possible that decreased concentrations of soluble ACE2 in serum, as seen 
in our experimental animals and as shown in stroke patients (Bennion 
et al., 2016) together with increased levels of alveolar ACE2 after stroke 

may promote virus binding to lung epithelia. Interestingly, our experi-
ments also showed reduced levels of plasma ACE2 after 1 day of stroke 
compared to sham surgery. Recently, a study by Bennion et al. demon-
strated the increase in the activity of plasma ACE2 after brain ischemia 
in a rat model of experimental stroke (Bennion et al., 2015). These 
differences to our results might be due to the utilization of different 
animal models (mice vs rat) and measurement methods for ACE2 anal-
ysis (amount vs activity). Moreover, post-stroke immunosuppression 
and pneumonia are the key co-morbidity factors contributing to poor 
outcomes and increased mortality in affected individuals (Kalra et al., 
2015). The mouse model of stroke used in our study also indicated a 
pronounced post-stroke lymphopenia similar to what is commonly 
observed after human stroke. However, in our study the symptoms of 
pneumonia were absent in the used mouse model of stroke. Collectively, 
we suggest that increased ACE2 levels in lungs, systemic immunosup-
pression and reduced circulating ACE2-levels may act together to in-
crease the prevalence of severe courses of COVID-19 in patients with 
preexisting brain injuries. 

In conclusion, our results demonstrate that in the lungs of brain- 
injured mice ACE2 is rapidly upregulated and accompanied by 
increased inflammatory responses. The results described in this study 
may help to understand the possible mechanisms behind the known 
increased susceptibility of brain-injury patients to lung infections, 
especially in the cases with simultaneous brain tissue injury and COVID- 
19. 
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