
Design and rationale for examining
neuroimaging genetics in ischemic stroke
The MRI-GENIE study

ABSTRACT

Objective: To describe the design and rationale for the genetic analysis of acute and chronic cere-
brovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic
stroke (AIS) within the scope of the MRI–GENetics Interface Exploration (MRI-GENIE) study.

Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network
(SiGN). In total, 12 international SiGN sites contributedMRIs of 3,301 patients with AIS. Detailed
clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and
genome-wide genotyping data were available for all participants. Neuroimaging analyses include
the manual and automated assessments of establishedMRI markers. A high-throughput MRI anal-
ysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be
developed in a subset of scans for both acute and chronic lesions, validated against gold stan-
dard, and applied to all available scans. The extracted neuroimaging phenotypes will improve
characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including
CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing
will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular
disease.

Conclusions: TheMRI-GENIE study aims to develop, validate, and distribute theMRI analysis plat-
form for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel
genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and
(3) personalized stroke outcome assessment. Neurol Genet 2017;3:e180; doi: 10.1212/

NXG.0000000000000180

GLOSSARY
ADC 5 apparent diffusion coefficient; AIS 5 acute ischemic stroke; CE 5 cardioembolic; CCS 5 Causative Classification of
Stroke; CCSc 5 causative CCS; DICOM 5 Digital Imaging and Communications in Medicine; DWI 5 diffusion-weighted
imaging; DWIv 5 DWI volume; FLAIR 5 fluid-attenuated inversion recovery; GISCOME 5 Genetics of Ischemic Stroke
Functional Outcome; GWAS5 genome-wide association studies; ICC5 intraclass correlation coefficient; LAA5 large artery
atherosclerosis; MGH 5 Massachusetts General Hospital; MRI-GENIE 5 MRI–GENetics Interface Exploration; mRS 5
modified Rankin Scale; PHI 5 protected health information; QC 5 quality control; SAO 5 small artery occlusion; SiGN 5
Stroke Genetics Network; SNP 5 single nucleotide polymorphism; SWI 5 susceptibility-weighted imaging; TOAST 5 Trial of
Org 10172 Acute Stroke Treatment; VLSM 5 voxel-based lesion–symptom mapping; WMHv 5 white matter hyperintensity
volume; XNAT 5 eXtensible Neuroimaging Archive Toolkit.

Genome-wide association studies (GWAS) have been instrumental in elucidating the genetics of
complex vascular traits (ischemic stroke1,2 and coronary artery disease3,4) and their risk factors
(blood pressure,5 atrial fibrillation,6 hyperlipidemia,7 and diabetes mellitus8). Despite recent
advances in prevention and treatment, stroke remains a leading cause of adult neurologic
disability and death in the United States and worldwide.9 Recent GWAS have uncovered several
risk loci for ischemic stroke and its subtypes,10,11 specifically PITX2 and ZFHX3 for cardioem-
bolic (CE) stroke,11,12 HDAC911,12 and TSPAN211 for large artery stroke, and ALDH211 for
small artery stroke. These results highlight the necessity for large-scale collaborations such as
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METASTROKE and Stroke Genetics Net-
work (SiGN) to identify risk loci for these
complex diseases.

Improving our understanding of the mech-
anisms underlying stroke is crucial, as treat-
ment options remain limited for this
debilitating disease. Unlike clinical diagnosis
of stroke, cerebrovascular phenotypes detected
on brain MRI can be characterized with high
validity and quantified with good precision
using advanced neuroimaging analysis techni-
ques.13 Targeting these specific endopheno-
types will lead to substantial pathophysiologic
insight into stroke mechanisms and foster
future advances in individualized therapy and
prevention.

The MRI–Genetics Interface Exploration
(MRI-GENIE) study aims to bridge current
knowledge gaps by facilitating genetic discov-
ery and developing novel therapeutic and
preventive strategies in stroke through auto-
mated, multimodal MRI analysis. Leveraging
the existing infrastructure of SiGN and har-
nessing its expertise, MRI-GENIE focuses on
the subset of richly phenotyped and genotyped
participants for whom clinical MRIs have been
obtained. This article outlines the premises,
methodology, and aims of MRI-GENIE.

METHODS MRI-GENIE capitalizes on SiGN, an ongoing

multicenter, NIH-funded collaboration within the community

of stroke neurologists, geneticists, and neuroimaging analysts,

which enabled the initial development of the SiGN Imaging

Platform.14 We have amassed the largest-to-date collection of

ischemic stroke cases with comprehensively ascertained cerebro-

vascular phenotypes and genome-wide data. The project is fun-

ded by the NIH-NINDS (R01NS086905, N.R. Rost—PI) to

undertake the first major study to jointly model MRI-derived

traits obtained during acute ischemic stroke (AIS) evaluation,

causative and phenotypic stroke subtypes, and traditional vascular

risk factors to accelerate the pace of genetic discoveries and

advance clinical applications in risk and outcome prediction in

ischemic stroke.

Structure of MRI-GENIE. Participating study sites.
MRI-GENIE is founded on the existing collaborations between

members of the multidisciplinary clinical stroke research team

atMassachusetts General Hospital (MGH),Massachusetts Institute

of Technology (MIT), and the NINDS SiGN investigators.

To date, 12 sites from the initial SiGN study have contributed

phenotypes, images, and genotypic data of 3,301 participants to

MRI-GENIE (For a summary, see table and figure; detailed study

descriptions have been published previously11). Of those sites, 7 are

European centers (BASICMAR—Spain, BRAINS—United

Kingdom, GRAZ—Austria, KRAKOW—Poland, LEUVEN—

Belgium, LUND STROKE REGISTER—Sweden, and SAHLSIS

—Sweden) and 5 are based in the United States (GASROS,

GCNKSS, GEOS, ISGS, and MIAMISR). Informed consent of

study participants to data sharing was mandatory for all sites.

Shared data include basic demographics, vascular risk factors and

detailed Causative Classification of Stroke (CCS) phenotyping,

genotypic data, and clinical MRIs.

Study oversight. The primary aims and progress of the MRI-

GENIE study are overseen by a Scientific Steering Committee. In

conjunction with the SiGN Publication Committee, the MRI-

GENIE Steering Committee critically reviews project proposals

by collaborators to avoid potential overlap with existing SiGN

projects and to assess feasibility of the proposed projects. This

effort is supported by the Phenotyping Committee, which is in

charge of the data access to phenotypes previously obtained

through SiGN, current data acquisition for neuroimaging

markers, and quality control (QC) of new neuroimaging phe-

notypes. In addition, it is responsible for the oversight of statis-

tical analysis of MRI-derived phenotypes and functional

outcomes related to specific stroke subtypes. The Neuroimaging

Analysis Committee is in charge of designing, validating, and

implementing the MRI pipeline to automatically assess acute

and chronic neuroimaging markers. Moreover, it facilitates and

monitors the assessment of manually obtained neuroimaging

markers. The Genetic Analysis Committee conducts the primary

genetic analyses for the MRI-GENIE study to identify genetic

variants associated with acute and chronic MRI-based manifes-

tations of cerebrovascular disease. It is also essential in conducting

secondary analyses and additional projects as proposed by col-

laborators (detailed listings of committee memberships are

available in coinvestigator appendix e-1 at Neurology.org/ng).

Imaging platform. An integral part of the MRI-GENIE study

is the centrally maintained imaging platform hosting deidentified

acute or subacute brain MRIs obtained within 48 hours of

symptom onset from all contributing SiGN sites. The MRI-

GENIE Imaging Platform is maintained centrally at MGH and

has been described previously.14 Initially developed in the scope

of an NIH-funded project to create a centralized system to share

canonical human stroke data (R01 NS063925-01A1, O. Wu/

Sorensen—PI), the underlying technology for the imaging plat-

form integrates the eXtensible Neuroimaging Archive Toolkit

(XNAT)15 as the back-end data repository with a flexible, open-

source content management system with user-friendly features

(conglomeration of Plone,16 Deliverance,17 and NGINX18) as the

front end for the users. An example of such features is the ability

to search the imaging repository by stroke-specific clinical phe-

notypic variables (e.g., age, sex, or infarct location). Images can be

viewed for semiquantitative analysis via a web-based XNAT

plugin.15

Upon receipt of MRIs from the individual sites in the “Digital

Imaging and Communications in Medicine” (DICOM) format,

all images were deidentified to remove protected health informa-

tion (PHI) potentially embedded into the DICOM headers. In

addition, DICOM files with image type indicative of screen shots

were removed to ensure elimination of files with potential PHI

that may be “burned” into the screen shots. Each site provided

phenotypic data (e.g., SiGN ID, sex, race, ethnicity, age, and

infarct location). Age and sex were cross-referenced with pheno-

types documented in the SiGN Phenotype Database, to flag

potential discrepancies between databases.

The imaging platform is open to collaborators for the explo-

ration of phenotypic and genetic underpinnings of AIS. Individ-

ual investigators receive access in a project-based manner, after

the MRI-GENIE Scientific Steering Committee and the SiGN

Publication Committee have reviewed the project proposal.

Incorporating the computational workflow for automated seg-

mentation of acute and chronic cerebrovascular phenotypes with
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the imaging platform will complete the process for centralized

data abstraction, collection, and sharing for future genetic studies.

MRI-derived phenotypes. The analysis of MRI-derived phe-

notypes will include both automated, volumetric analyses as well

as manual, semiquantitative analyses of acute and chronic cere-

brovascular phenotypes.

Image preprocessing. Prior to phenotypic analyses, imaging

data from some sites required a manual review. As part of the de-

identification process, some sites removed all metadata informa-

tion from the DICOM headers, including series description,

prior to transmission of images. This necessitated a visual review

of cases by a trained operator for sites for which no series descrip-

tions were available. For these sites, sequence labels for T2 fluid-

attenuated inversion recovery (T2 FLAIR), diffusion-weighted

imaging (DWI), susceptibility-weighted imaging (SWI), and

magnetic resonance angiography were ascertained. Although the

quality of specific sequences may preclude future analysis of

specific phenotypes, no participants were excluded for image

quality reasons (e.g., motion artifact and low-quality images) or

incomplete imaging data (e.g., missing FLAIR sequence) at this

stage to maximize the overall sample size in analysis of individual

phenotypes. For manual semiquantitative analyses, useful infor-

mation can often be extracted (e.g., location of acute infarct) by

expert image analysts despite artifacts (e.g., motion).

Image QC. Image sequences will be excluded from auto-

mated and semiquantitative analysis based on visual inspection

due to excessive motion artifact, incomplete sequence acquisition,

or severe bilateral brain pathology that precludes accurate assess-

ment. Details of the MRI data acquisition that are embedded in

the DICOM headers (e.g., MRI manufacturer, model name, field

strength, dimensions, echo time, and repetition time) will be re-

tained to allow for subset analysis of phenotypic information as

a function of data acquisition variability.

Quantitative analyses of acute and chronic neuroimaging
markers. The acute infarct volume measured on DWI will be

analyzed through an automated segmentation algorithm.19,20

The algorithm will be trained on an independent cohort of acute

stroke data and then applied to MRI-GENIE participants. The

results will be validated across sites against a random sample set of

images selected from each site for which manual lesion volumes

will be drawn. The automatically determined acute DWI volume

(DWIv) will be used to evaluate the effect of stroke lesion volume

and topography on poststroke outcomes. Voxel-based lesion–

symptom mapping (VLSM) has been used previously to investi-

gate the relationship between ischemic stroke lesion location and

stroke severity and outcome, but so far has been limited to the

middle cerebral artery territory. The sample size of MRI-GENIE

will allow for investigating all vascular territories with VLSM.21

The pre-existing burden of cerebrovascular white matter dis-

ease, measured as white matter hyperintensity volume (WMHv),

will be computed by a separate automatic analysis algorithm

based on T2-FLAIR images.22 Key components of the WMH

analysis will be the registration of all T2-FLAIR images to a com-

mon atlas space and segmentation of WMH based on the voxel

intensity information and spatial priors that pattern WMH in the

brain.23 The algorithm will be trained on manually outlined

WMH segmentations. Validation across sites will be performed

for each site on a random sample of scans representing the entire

severity spectrum of WMH.

QC of automated, quantitative phenotypes. The results of
automatic acute DWI and WMH lesion analysis will be cross-

validated with manually drawn lesion volumes obtained on

a random subset of scans from each site representative of the

disease spectrum. Intraclass correlation coefficient (ICC) will be

used to assess the agreement between the manual and the auto-

mated volumes. Further evaluation of the automated algorithms

will involve voxel-based comparison of the automated masks with

manual outlines and classifying true positives, true negatives, false

positives, and false negatives. Performance of the automated al-

gorithms will be assessed by analysis of sensitivity, specificity, and

Dice similarity coefficient.24 Subset analysis of algorithm accuracy

as a function of MRI data acquisition parameters will be per-

formed to assess for bias as a function of scanner data quality.

Semiquantitative analysis of acute and chronic neuroimaging
markers. MRIs will be systematically reviewed for acute and chronic

markers of cerebrovascular disease to facilitate topography-based and

stroke subtype–specific analyses. Specific data sets may be excluded

on a case-by-case basis if artifacts preclude an accurate reading. DWI

will be used to ascertain acute infarct location (vascular territories:

middle cerebral artery, anterior cerebral artery, posterior cerebral

artery, vertebrobasilar artery, and multiple vascular territories),

Table Basic demographic data for the MRI-GENIE study sites (n 5 12)

Study name Center Total scans Mean age (SD)
Sex
(% female)

Race
(% Caucasian)

BASICMAR IMIM-Hospital del Mar, Spain 124 69.8 6 11.0 37.1 94.4

BRAINS Imperial College—London, UK 70 63.2 6 16.4 47.1 94.3

GASROS Mass General Hospital 457 64.9 6 14.5 35.4 93.2

GCNKSS U Cincinnati 245 64.3 6 14.3 49.0 72.7

GEOS U Maryland 76 41.8 6 6.5 26.3 52.6

SAHLSIS U of Gothenburg—Sweden 401 52.4 6 11.7 38.7 100

GRAZ Medical University—Graz, Austria 373 63.3 6 13.7 30.0 100

ISGS Mayo Clinic—Florida 425 65.1 6 14.7 40.9 84.2

KRAKOW Jagiellonian University—Poland 224 60.5 6 13.9 46.4 100

LEUVEN U Hospitals—Leuven, Belgium 448 66.9 6 14.7 42.0 99.6

LUND STROKE
REGISTER

Lund University Hospital,
Sweden

196 63.4 6 12.8 39.3 100

MIAMISR U Miami 262 62.1 6 13.8 37.0 59.5

Abbreviation: MRI-GENIE 5 MRI–GENetics Interface Exploration.
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number of acute infarct lesions, and DWI-based stroke subtypes

(cortical, subcortical, and watershed infarct). When available,

maps of the apparent diffusion coefficient (ADC) will be cross-

referenced to minimize inclusion of lesions that are not pertinent

to the index stroke. This is necessary because in the subacute to

chronic stage, within hyperintense DWI lesions, the corre-

sponding ADC values may be pseudonormal or elevated as

a result of vasogenic edema.25 T2-FLAIR sequences will be used

to screen for subacute and chronic infarcts, as well as WMH

severity using the Fazekas scale.26 Cerebral microbleed (CMB,#

10 mm) count and location, macrohemorrhages (.10 mm),27

and hemorrhagic infarct transformation will be rated on 2D T2*

gradient echo or 3D SWI sequences. In addition, the location of

arterial occlusion, collateral circulation grade, and evidence of

significant extracranial or intracranial large artery stenosis will be

evaluated on MR angiography.

QC of semiquantitative phenotypes. Readers will be system-

atically trained on a standardized training set of AIS MRIs to

attain the independent rater status (e.g., Fazekas score or CMBs).

Furthermore, agreement between raters will be evaluated with the

ICC for ordinal and continuous data, and a Cohen kappa will be

used to assess interrater agreement for categorical data.

AIS subtyping. All patients with AIS in SiGN underwent exten-

sive phenotyping through the web-based, standardized algorithm

“Causative Classification of Ischemic Stroke” (details on CCS

phenotyping in SiGN have been previously published).14 In brief,

CCS incorporates multiple clinical symptoms, clinical examina-

tions, and testing results obtained throughout the clinical stroke

evaluation and assigns both a phenotypic CCS subtype based on

abnormal testing results at the time of stroke and causative CCS

(CCSc) subtyping based on prior medical history. If challenged

with multiple potential causes of ischemic stroke, CCSc assigns

the most likely cause of stroke based on clinical data. CCSc al-

locates one of 5 different causative and phenotypic subtypes based

on symptoms, vascular risk factors, and diagnostic tests. The 5

major categories are large artery atherosclerosis (LAA), small

artery occlusion (SAO), CE stroke, other, and undetermined

causes of stroke. Known rare causes of ischemic stroke were

excluded fromMRI-GENIE. The exact workup was performed as

clinically directed by individual study centers. This includes pa-

tients with rare monogenic causes of stroke (cerebral autosomal

dominant arteriopathy with subcortical infarcts and leukoence-

phalopathy, mitochondrial encephalomyopathy, lactic acidosis,

and stroke-like episodes, and sickle cell syndrome), infectious

causes (infective endocarditis, meningitis, and primary infection

of the arterial wall), hypercoagulability (acute disseminated

intravascular coagulation and heparin-induced thrombocytopenia

type II), distinct vascular and cardiac disorders (acute arterial

dissection, dilated cardiomyopathy, papillary fibroelastoma, left

atrial myxoma, and cerebral venous thrombosis), as well as

migraine-related, drug-induced, or iatrogenic causes of ischemic

stroke.

In addition to CCS, Trial of Org 10172 Acute Stroke Treat-

ment (TOAST)28 subtyping was conducted by the sites if

required by the individual study protocols. Ischemic stroke cases

are assigned to the most likely cause of stroke: LAA, SAO, CE,

other, or undetermined. In SiGN, CCS and TOAST agree mod-

erately (agreement rate 70%), varying by site and stroke subtype

with LAA having the highest agreement across CCS and TOAST

and SAO having the lowest agreement rate.29 TOAST subtyping

will be valuable in instances if future replication cohorts will not

have appropriate CCS subtyping.

Functional outcomes and clinical characteristics. Baseline
stroke severity was assessed using the NIH Stroke Scale,30,31

and the modified Rankin Scale (mRS)32 was used to assess func-

tional outcomes at 3–6 months after stroke in a subset of the

SiGN sites. These data will be available through collaboration

with the Genetics of Ischemic Stroke Functional Outcome

(GISCOME) study. The mRS measures the degree of depen-

dence and disability after neurologic injury, ranging from

Figure Organizational structure of MRI-GENIE

MRI-GENIE 5 MRI–GENetics Interface Exploration; SiGN 5 Stroke Genetics Network.
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0 (asymptomatic) to 6 (death). Other clinical baseline character-

istics were collected per protocol of the individual studies.

Genotyping and analysis strategy. Stroke cases were either

genotyped previously and genotypes submitted to SiGN, or they

were genotyped as part of SiGN, at the Center for Inherited Dis-

ease Research on the Illumina HumanOmni5Exome-4v1 array.14

This platform includes 4.5 million single nucleotide poly-

morphisms (SNPs) genotyped across the genome, resulting in

excellent coverage of both common and infrequent variants

(.1%). In addition, 240,000 rare polymorphic variants (#1%)

were genotyped. The majority of cases are of European ancestry

(table), but a small number of African Americans (n 5 249, self-

reported) and Hispanics (n5 153, self-reported) are available for

analysis. The SiGN Data Management Core has undertaken the

data cleaning and QC procedures for the primary analysis in

SiGN. QC procedures included data cleaning by subjects with

removal of samples with (1) a poor genotyping rate (,98%), (2)

identity problems (sex mismatch, unexpected duplicates, and

cryptic relatedness), (3) chromosomal anomalies, (4) batch ef-

fects, and (5) ethnic outliers. Poor-quality SNPs were identified

on the basis of high levels of missingness. The cleaned data are

maintained at the SiGN Data Management Core. The analysis

plan for the MRI-GENIE portion of SiGN includes a principal

component analysis to identify and account for population

stratification in subsequent genome-wide association testing.

Genotype imputation has been performed on the University of

Michigan Imputation Server (imputationserver.sph.umich.edu/

index.html)33 using the Haplotype Reference Consortium

panel.34 The primary genetic analysis will be to test for the

association of SNPs with the DWI and WMH volumes. The

association analyses will be performed under a linear regression

model with allelic dose (0, 1, or 2 copies of the reference allele) as

the independent variable adjusted for age, sex, and population

stratification as calculated by principal component analysis. DWI

and WMH volumes will be adjusted for average head size and

natural log transformed to facilitate modeling with linear

regression because of nonlinear volume distributions. The current

sample size of 3,301 participants will provide 80% power to

detect variants accounting for as little as 1.2% of the variation in

DWI or WMH at genome-wide levels of statistical significance (i.

e., p , 5 3 1028). Secondary analyses will include the modeling

of CCS subtypes and ethnic group–specific analyses. SNPs found

to be associated with WMHv and/or DWIv will be tested for

association with 90-day mRS data available in the GISCOME

study. Additional analyses will be performed to examine stroke

subtype–specific genetic effects on DWIv and WMHv as well as

the genetic underpinnings of additional neuroimaging markers.

Incoming sites. In the spirit of open collaboration, the MRI-

GENIE Imaging Platform is available to collaborators. We are

currently incorporating 8 new sites (estimated additional total

n 5 3,890) including (1) Secondary Prevention of Small Sub-

cortical Strokes, n z 1,000, (2) Siblings With Ischemic Stroke

Study, n z 300, and (3) Washington State University–St. Louis

stroke patient collection, nz 640, (4) Helsinki-2000 study, nz

300, (5) Australian Stroke Genetics Cohort, nz 100, (6) Stroke

in Young Fabry Patients, n z 800, (7) University of Campinas

stroke patient collection, n z 150, and (8) Follow-up of Tran-

sient Ischemic Attack and Unelucidated Risk Factor Evaluation

Study/Observational Dutch Young Symptomatic StrokE studY,

n z 600. These collaborations will lead to the development of

one of the largest (nz 7,000) databases of patients with ischemic

stroke with MRI and genome-wide genotyping available to date.

CONCLUSIONS Quantitative neuroimaging has
recently been used to gain further insight into physi-
ology and anatomy in both healthy participants (e.g.,
intracranial volume35) and clinical cohorts (e.g., hip-
pocampal volumes36 and structural neuroimaging bi-
omarkers37 in Alzheimer disease). In this article, we
aim to analyze acute (e.g., cerebral infarct volume)
and chronic (e.g., WMH volume and cerebral micro-
bleeds) neuroimaging phenotypes in patients with
AIS. While genetic loci associated with WMH have
previously been reported in healthy populations,38,39

no loci associated with WMH have yet been identi-
fied in patients with AIS, despite efforts with large
sample sizes.40 Similarly, no studies have linked spe-
cific genetic loci with cerebral microbleeds or stroke
lesion volume. To facilitate these genetic studies,
MRI-GENIE will develop, validate, and disseminate
an automated analysis pipeline for large-scale phe-
notypic analysis of clinical brain MRI, as part of the
future advances in personalized prediction modeling
of stroke risk and outcomes.
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