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Purpose: Intravoxel incoherent motion (IVIM) analysis gives information on tissue 
diffusion and perfusion and may thus have a potential for e.g. tumor tissue charac-
terization. This work aims to study if clustering based on IVIM parameter maps can 
identify tumor subregions, and to assess the relevance of obtained subregions by 
histological analysis.
Methods: Fourteen mice with human neuroendocrine tumors were examined with 
diffusion‐weighted imaging to obtain IVIM parameter maps. Gaussian mixture mod-
els with IVIM maps from all tumors as input were used to partition voxels into k clus-
ters, where k = 2 was chosen for further analysis based on goodness of fit. Clustering 
was performed with and without the perfusion‐related IVIM parameter D∗, and with 
and without including spatial information. The validity of the clustering was assessed 
by comparison with corresponding histologically stained tumor sections. A Ki‐67‐
based index quantifying the degree of tumor proliferation was considered appropriate 
for the comparison based on the obtained cluster characteristics.
Results: The clustering resulted in one class with low diffusion and high perfusion 
and another with slightly higher diffusion and low perfusion. Strong agreement was 
found between tumor subregions identified by clustering and subregions identified 
by histological analysis, both regarding size and spatial agreement. Neither D∗ nor 
spatial information had substantial effects on the clustering results.
Conclusions: The results of this study show that IVIM parameter maps can be used 
to identify tumor subregions using a data‐driven framework based on Gaussian mix-
ture models. In the studied tumor model, the obtained subregions showed agreement 
with proliferative activity.
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1 |  INTRODUCTION

The vast number of available contrast mechanisms and capa-
bility to capture both anatomical and functional information in 
vivo make magnetic resonance imaging (MRI) an important 
tool for tumor characterization.1 Among the functional tech-
niques, diffusion and perfusion MRI are frequently used for 
tumor diagnosis and response assessment due to their sensi-
tivity to relevant tumor tissue characteristics.2 Diffusion MRI 
has the potential to probe microstructural tissue properties 
such as tumor cellularity and membrane integrity,3 whereas 
perfusion MRI can be used to evaluate the tumor vascularity.4 
Therapy‐induced changes of these properties occur well be-
fore gross morphological changes, which make them highly 
interesting for e.g. early therapy response assessment.2,5

It is increasingly recognized that clinically important 
tumor characteristics such as proliferative activity, cell death, 
and vascularization may vary substantially between differ-
ent parts of the tumor.6 This intratumor heterogeneity can 
result in substantial differences in therapeutic effect across 
the tumor and it has been shown to be a strong indicator of 
clinical outcome.7,8 Methods for assessment of the intratumor 
heterogeneity are thus becoming increasingly important for 
therapy response assessment and treatment planning.9

Quantitative in vivo imaging approaches, such as MRI, 
enable extraction of spatial information on tissue character-
istics. Even so, most quantitative imaging studies of tumors 
resign to averaging parameter values over the entire tumor, 
with the potential loss of important information.9 Several 
methods have been suggested to account for tumor hetero-
geneity, such as 1D‐ or 2D‐histogram analysis and texture 
analysis, longitudinal voxelwise analysis or division of the 
tumor into subregions.9-11 Ideally, the method should capture 
the information on heterogeneity contained in the images in 
a compact way, but also provide a comprehensible interpre-
tation. Histogram and texture analysis have shown promise 
as markers of tumor heterogeneity, but are completely based 
on mathematical descriptions of the distribution of data and 
often lack a clear biological meaning.12 Longitudinal vox-
elwise analysis is intuitive and has been proven useful for 
therapy response assessment, but is complicated by the need 
for high‐quality image co‐registration between time points. 
Partitioning of tumors into smaller regions for a subsequent, 
more localized analysis, provides interpretable results, but re-
quires a proper way of defining the subregions if the results 
are to be relevant.

Several methods have been suggested for identification of 
tumor subregions based on MRI.9 The methods have been 
based on geometrical parameters, such as radial distance from 
the tumor center,13,14 as well as functional characteristics 
based on different quantitative imaging‐derived parameters, 
either by predefined thresholds15 or by partitioning derived 
from the data itself.16 Among the data‐driven approaches, 

clustering methods such as k‐means clustering or Gaussian 
mixture models (GMM) have been proposed to enable par-
titioning of tumor voxels based on multiparametric data.16,17 
By including voxel data from multiple tumors and multiple 
time points, it is possible to produce clustering results with 
partitioning of voxels that is comparable across tumors and 
time.18

Since tumor subregions identified by clustering ap-
proaches are obtained in an unsupervised manner based on 
MR‐data only, they are not guaranteed to have a distinct 
biological meaning. However, such tumor subregions have 
shown agreement with histological analyses16,19,20 and have 
been used to monitor or predict treatment response.21-23

Most previous clustering studies have focused on iden-
tifying subregions based on properties of the tumor vascu-
larity using various forms of dynamic contrast‐enhanced 
MRI.17,18,22-29 But other MR techniques, such as mapping of 
the tissue T2 relaxation and the apparent diffusion coefficient 
(ADC), have also been utilized successfully.16,19-22

Intravoxel incoherent motion (IVIM) imaging has been 
proposed as a way of acquiring both diffusion and perfusion 
information completely noninvasively with a single imaging 
sequence.30 Since both blood microcirculation and tissue 
water diffusion are motions that cause a reduced MR signal 
when diffusion weighting is applied, a model can be fit to 
the diffusion‐weighed imaging data to obtain model parame-
ters describing the perfusion and diffusion within each voxel. 
The information attainable from IVIM parameter maps is 
thus interesting for tumor subregion identification by e.g. 
clustering.

The aim of this study was (1) to investigate if clustering 
of IVIM parameters can be used for identification of tumor 
subregions and (2) to evaluate the biological relevance of the 
obtained subregions by histological analysis.

2 |  METHODS

2.1 | Tumor model
Samples from the human small intestine neuroendocrine 
GOT1 tumor cell line31 were subcutaneously transplanted 
into the neck region of 4 weeks old female BALB/c nude 
mice (n  =  14, Charles River, Japan and Germany) under 
anesthesia.

The animals were fed with standard diet and water ad libi-
tum, and when tumor diameters reached approximately 15 mm, 
they were injected intravenously with a non‐curative amount of 
15 MBq 177Lu‐octreotate (specific activity: 26 MBq/mg octreo-
tate, manufacturer: IDB Holland, the Netherlands) in a tail vein. 
177Lu activity in syringes was measured before and after injec-
tion using a well‐type ionization chamber (CRC‐15R; Capintec, 
Iowa), and the estimated absorbed dose to tumor was 4.0 Gy, 
according to MIRD formalism.
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MR experiments were conducted 13 days after 177Lu‐oct-
reotate injection. At that time point, the tumor volume was ei-
ther stable or increasing after the initial therapeutic response, 
which ranged from significant tumor volume reduction to re-
duced growth rate (data not shown).

The study was approved by the Ethical Committee on 
Animal Research in Gothenburg, Sweden. Data from the 
animals were also included in a previous study on therapy 
response assessment.14

2.2 | MR imaging
MR imaging was performed on a horizontal bore 7T system 
(Bruker BioSpin 70/20AS MRI GmbH, Ettlingen, Germany; 
software: ParaVision 5.1), equipped with a maximum 
400 mT/m gradient system, a 72 mm volume transmit coil, 
and an actively decoupled four‐channel array rat brain re-
ceiver coil (RAPID Biomedical GmbH, Rimpar, Germany). 
Magnetic field homogeneity within the tumor was opti-
mized by field map‐based shimming (Bruker MAPSHIM). 
Diffusion‐weighted spin echo‐echo planar images (SE‐EPI) 
(Δ = 9 ms, δ = 4 ms) were acquired with three orthogonal 
gradient directions and b‐values 1.4, 14, 25, 36, 56, 82, 108, 
421, and 751 s/mm2 (5 animals) or 1.4, 5, 10, 20, 35, 50, 75, 
100, 201, 401, 602 and 802 s/mm2 (9 animals). Additional 
imaging parameters were: TE = 22 ms, TR = 1500 ms, num-
ber of signals averaged = 3, pixel size = 320 × 320 μm2, slice 
thickness = 1000  μm, slice gap = 500  μm, partial Fourier 
acceleration = 1.5, and EPI echo spacing  =   0.3 ms. The 
field of view (FOV) was approximately 14 × 26 mm2 (an-
terior‐posterior × left‐right directions) with phase encoding 
in the anterior‐posterior direction. The FOV was set to in-
clude the tumor and only very small amounts of other tis-
sues. All animals were imaged in supine position, anesthesia 
was maintained using air and isoflurane (2‐3%, Isoba vet., 
Schering‐Plough Animal Health, Denmark), and body tem-
perature was maintained by a heating pad and a circulating 
warm water system. The tumor was immobilized to reduce 
motion artifacts, by fitting it into a circular hole in the plas-
tic cradle that supported the animal. Total scan time was  
approximately 3 minutes.

2.3 | Model fitting
The IVIM effect was modeled using a biexponential model 
as follows: 

where S(b) is the signal at the diffusion weighting characterized 
by the b‐value b, S0 is the signal without diffusion weighting, f 
is the perfusion fraction, D is the tissue water diffusion coeffi-
cient and D∗ is the pseudo‐diffusion coefficient, describing the 
motion of water molecules in the capillaries.

The IVIM model (Equation 1) was fit voxel‐by‐voxel 
using a Bayesian method with prior distributions as shown in 
Table 1 and the mode used as central tendency measure, as 
described previously.32 Briefly, a Markov Chain Monte Carlo 
setup was used to sample the posterior distribution and pa-
rameter estimates were obtained by calculating the mode of 
the sampled marginal distributions of the posterior parameter 
distribution. The code is available at http://mathw orks.com/
matla bcent ral/profi le/autho rs/3680885‐oscar‐jalnefjord. A 3 
× 3 in‐plane median filter was applied before model fitting to 
reduce noise level and residual effects of motion.

2.4 | Clustering
The tumors were manually delineated in all slices using the 
image with the highest b‐value. The IVIM parameters D, f and 
D∗ from each voxel in every slice of all tumors were then in-
cluded in a common set of data used as input to the clustering 
algorithms described below and outlined in Figure 1. All IVIM 
parameters were log‐transformed before clustering to better con-
form to being approximated by a sum of Gaussian distributions.

Soft clustering of data into k classes was performed by fit-
ting a Gaussian mixture model (GMM) using the expectation 
maximization (EM) algorithm. Each iteration of the algo-
rithm starts with calculation of the class probabilities given 
the current set of model parameters (E‐step) as: 
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T A B L E  1  Prior distributions used for Bayesian IVIM model fitting

http://mathworks.com/matlabcentral/profile/authors/3680885
http://mathworks.com/matlabcentral/profile/authors/3680885
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where the superscript (t) shows the iteration index, xi is the 
class of voxel i, l is a given class label ranging from 1 to k, 
yi is a column vector containing D, f and D∗, g(yi;�l,�l) is 
the multivariate Gaussian probability density function with 
mean �l and covariance �l, and �l is prior class probability, 
also commonly denoted the mixing coefficient. The E‐step is 
followed by recalculation of the model parameters given the 
new class probabilities (M‐step) as: 

 

 

where N is the total number of voxels and T indicates trans-
pose. Fitting the GMM thus comprises estimation of k sets of 
prior class probabilities �l, mean vectors �l and covariance 
matrices �l.

Assuming that tumor subregions typically are larger than 
the voxel size, neighboring voxels are more likely to belong 
to the same cluster. Inclusion of this spatial information 
has previously been shown to enhance the clustering per-
formance.20 Therefore, a Gaussian hidden Markov random 
field model (GHMRFM) was implemented as described by 
Zhang et al.33 The difference compared with the GMM is the 
prior class distribution, which is set to depend on the class of 
neighboring voxels. At each E‐step in the EM‐algorithm, the 
class probabilities are instead calculated as 

where P(t)(xi = l|xNi
) is given by the Gibbs distribution 

 where Z is a normalizing constant and xNi
 denotes the classes of 

voxels in the neighborhood of voxel i, which was defined as the 
four voxels in the same image slice that shared a side with voxel 
i, i.e. the closest vertical and horizontal neighbors. Calculation 
of P(t)(xi = l|xNi

) necessitates estimation of the class labels. 
This was achieved through maximization of the posterior class 
probability using iterative conditional modes.33,34

The clustering was also performed based on only D and 
f to study the impact of exclusion of D∗. This may be of 
interest since D∗ could be hampered by low precision or not 
be available at all depending on image quality and choice 
of Yuan et al35 and Lemke et al.36

The number of clusters, k, was chosen based on a heuris-
tic method where the mixture model (GMM or GHMRFM) 
was fitted for k  ∈  {1, …, 8}. For each k, the goodness of fit 
(GOF) was evaluated as: 

where the term in the inner sum equals the numerator in 
Equation 2 or 6 depending on model. The optimal value of k 
was chosen by finding the knee in a GOF vs. k plot, i.e. by find-
ing the maximum second derivative of GOF with respect to k. 
The rationale behind this method is that if the data originate 
from kopt classes, the GOF will increase substantially when 
more classes are added to the model for k < kopt. When addi-
tional classes are added for k > kopt, the additional increase in 
GOF is associated with fitting random fluctuations in the data 
and the increase is therefore limited.37 For both the GMM’s and 
GHMRFM’s with or without D∗ included, the optimal k was 
determined to be 2 (Supporting Information Figure S1).
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F I G U R E  1  Flowchart showing the 
MR analysis, including model fitting and 
clustering. IVIM parameter maps were 
calculated based on diffusion‐weighted 
images. The IVIM parameter maps from all 
tumors were used as input to the clustering 
algorithm, which produced both cluster 
maps, i.e. voxelwise class probabilities, and 
the cluster characteristics �

l
 (class mean), 

�
l
 (class covariance) and P(l) (prior class 

probability)
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The GMM was fitted using the built‐in MATLAB func-
tion fitgmdist whereas the GHMRFM was fitted using an 
in‐house developed function in MATLAB. Twenty random 
initializations were used to avoid potential local optima. The 
fitting algorithms were initialized by assigning all data points 
randomly to the k classes. Convergence was considered when 
the relative change in GOF (Equation 8) between iterations 
was less than 10−6. The robustness of the results was assessed 
by ensuring that the results were consistent when the fitting 
was repeated. MATLAB code for generation of cluster maps 
is available at http://mathw orks.com/matla bcent ral/profi le/
autho rs/3680885‐oscar‐jalnefjord.

2.5 | Histological analysis
Even if the clustering results in distinct partitioning of voxels, 
it cannot be guaranteed that the obtained clusters have a dis-
tinct biological meaning. Other potential sources of distinct 
variations in the parameter maps are image artifacts and sys-
tem imperfections. To verify that the partitioning was due to 
biological variations, a histological analysis was performed 
in accordance with previous studies on identification of 
tumor subregions by clustering.16,19,20 Based on the charac-
teristics of the clusters, i.e. the IVIM parameter combinations 
describing the mean vector of each class, it was hypothesized 
that the partitioning was related to proliferative activity and 
the histological analysis was chosen accordingly.

Immediately after the MR examination, the animals 
were killed by a lethal injection of sodium pentobarbitone 
(Pentobarbitalnatrium vet., Apotek Produktion & Laboratorier 
AB, Sweden, 60 mg/ml), followed by a heart incision. In order 
to achieve histological sections corresponding to the acquired 
images, the tumor was cut into two halves with the incision 
parallel to the MR imaging plane. The tumor was then em-
bedded in paraffin (Thermo Scientific HM 355S Automatic, 
Fisher Scientific, Sweden) with the cut surface positioned to 
meet the sweep plane of the microtome knife and three μm 
thick sections were collected for histological analysis.

The staining procedure included pretreatment with 
EnVision FLEX Target Retrieval Solution (high pH; PT‐
Link; Dako, Denmark) followed by incubations using 
Envision Flex (Dako, Denmark) and staining with a Ki‐67 
antibody, against the Ki‐67 protein that is associated with cel-
lular proliferation (AB9260; Merck Milipore). An autostainer 
Link (Dako, Denmark) was used for staining by following the 
manufacturer’s instructions. Positive and negative controls 
were included in each run.

The stained tissue sections were digitally imaged using 
a Leica SCN400 Slide Scanner (40× magnification, Leica 
Microsystems, Germany), resulting in images of 0.25 × 
0.25 μm2 resolution. To exclude background and adjacent 
tissue, the tumor tissue region was manually delineated. 

Segmentation of tumor tissue into proliferating or non‐pro-
liferating regions was then performed on the digitized his-
tological images in three steps as outlined in Figure 2. First, 
a 3‐dimensional color threshold was defined in the YCbCr 
color space in order to separate Ki‐67 positive pixels (light to 
dark brown) from Ki‐67 negative pixels. The color threshold 
outlined a rectangular block parallel with the coordinate axes 
of the color space. Second, an index defined as the proportion 
of Ki‐67 positive pixels in regions of 256 × 256 pixels (i.e. 
64 × 64 μm2) was calculated. Finally, proliferating regions 
were identified by applying a 2% threshold to the index maps, 
where an index higher than 2% was considered consisting of 
proliferating cells. A board certified pathologist was shown 
histological regions indexed above and below 2%, and veri-
fied that the regions appeared as proliferating and non‐prolif-
erating, respectively.

2.6 | Statistical analysis
The agreement between subregions obtained from clustering 
and histological analysis was quantified by calculating Lin’s 
concordance correlation coefficient between areas of subre-
gions belonging to the cluster with high perfusion and areas 
identified as proliferating by the histological analysis. To 
compensate for MR image distortions and for tissue shrink-
age during the histological procedures, the tumor area in the 
histological index maps was set equal to the area of the tumor 
in the MR image.

3 |  RESULTS

3.1 | IVIM parameter data and clustering 
results
The IVIM parameters displayed distributions on the log 
scale that appeared well suited for being described by a few 
Gaussian distributions as is assumed when fitting a GMM 
(1D histograms in Figure 3 and 2D histograms in Supporting 
Information Figure S2). The subsequent clustering resulted 
in one class with low diffusion and high perfusion and one 
with higher diffusion and lower perfusion (Table 2). The ob-
tained cluster maps displayed distinct spatial patterns with 
large contiguous subregions in several tumors (Figure 4 and 
Supporting Information Figures S3‐S15).

Clustering with or without D∗ yielded similar results 
regarding cluster centers (Table 2) and spatial appearance 
(Figure 4 and Supporting Information Figures S3‐S15). 
Including spatial information in the clustering also had minor 
impact on the results (Table 2), although the cluster maps 
became somewhat more binary due to the support of infor-
mation from neighboring voxels (Figure 4 and Supporting 
Information Figures S3‐S15).

http://mathworks.com/matlabcentral/profile/authors/3680885
http://mathworks.com/matlabcentral/profile/authors/3680885
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3.2 | Agreement with histological analysis
A strong agreement was found between the areas defined as 
proliferating by histological analysis and the cluster areas re-
lated to low diffusion and high perfusion, both regarding size 
(Figure 5) and spatial similarity (Figure 6 and Supporting 
Information Figures S16‐S18). The concordance coefficient 

was high for all the studied approaches, although slightly 
lower for results based on GMM with D∗ included, mainly 
due to underestimation (top right plot in Figure 5). Most of 
the non‐proliferating regions, as identified by histology, were 
also seen in the cluster maps (e.g. tumors 12 and 13 in Figure 
6 and Supporting Information Figures S16‐S18). In a few 
cases, regions were marked as typically non‐proliferating by 
the clustering results although no such indication was sup-
plied by the histological analysis (e.g. tumor 14 in Figure 6 
and Supporting Information Figures S16‐S18).

4 |  DISCUSSION

This study presents an IVIM‐based clustering framework that 
can be used to identify tumor subregions based on the func-
tional information contained in the IVIM parameters. The 
results show that when applied to a mouse model of human 
neuroendocrine tumor, cluster maps displayed a strong agree-
ment with proliferative activity derived from Ki‐67‐stained 
tumor sections. The presented framework enables spatially 
localized analysis of functionally specific tumor subregions 
and may prove useful in longitudinal studies where it can be 
used to follow the evolution of tumor subregions over time. 
Furthermore, unlike previous clustering approaches where 
perfusion‐related parameters have been included, the IVIM‐
based approach used in the current study does not require an 
intravenous injection of a contrast agent and is completely 
noninvasive.

The cluster analysis resulted in one cluster that was de-
scribed by relatively high perfusion and low diffusion, and 
another cluster that was described by a very low perfusion, 
but only marginally higher diffusion. Reduced diffusion 
is associated with growth in several types of solid tumors, 
where uncontrolled proliferation and evasion of cell death 
mechanisms lead to increased cell density and, consequently, 
hindered water diffusion. Furthermore, in order for cells to 
proliferate, adequate perfusion is required.2 This is in agree-
ment with the results of this study, where the first cluster 
(high perfusion, low diffusion) corresponded spatially to 
the histological regions showing higher proliferative activ-
ity. Conversely, limited access to nutrients and oxygen due 
to inadequate perfusion will hamper proliferation. Moreover, 
tumor regions with low perfusion are more likely to be hy-
poxic or necrotic, and if tissue degradation is taking place, 
increased diffusion may be possible due to disintegration of 
membrane structures. The second cluster, described by very 
low perfusion and slightly higher diffusion may thus corre-
spond to such tissue regions. This is supported by the fact 
that it corresponded spatially to low‐proliferation regions on 
the Ki‐67 index maps. While this reasoning applies to the 
studied tumor model, other tumor types may have other tissue 
characteristics. For example, some tumors thrive in hypoxic 

F I G U R E  2  Flowchart showing the three steps in the histological 
analysis of Ki‐67 stained histological sections, which was used for 
identification of proliferating tumor regions. In the images shown in 
the first step, individual cells can be seen. Applying the color threshold 
identifies proliferating cells. The image in the second step is an 
index map of the entire tumor. The top image in the last step shows 
a thresholded index map where regions defined as proliferating are 
shown in green
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environments and would therefore likely be characterized by 
other combinations of IVIM parameters. It is therefore im-
portant to generate new clustering results for each specific 
setting, including tumor type and potential treatment.

Previous studies have shown that the diffusion coefficient 
was an important parameter for identification of necrotic 
regions.16,19,20 However, as is typical for the GOT1 tumor 
model, the tumors in this study did not display any obvious 
regions of necrosis, due to the slow tumor growth rate char-
acteristics for these types of neuroendocrine tumors.31 In the 
current study, the perfusion parameter f was the parameter 
that showed a prominent split into multiple clusters. D could 
potentially play a more important role if IVIM‐based cluster-
ing is applied in tumors with more necrosis. In such case, it 
may be of interest to evaluate the proposed framework on a 
larger number of clusters.

Including D∗ as input to the clustering appeared to have 
very limited effects on the results. In low perfused tissue, esti-
mates of D∗ are often associated with a high level of uncertainty 
due to the small signal fraction it is estimated from Lemke et 
al.36 In the present study, a Bayesian approach with lognormal 

prior distributions on D and D∗ was used to fit the model. 
The Gaussian shape of the distributions of those parameters, 
as seen in Figure 3, can thus partly be due to the prior dis-
tribution, especially for D∗. Choosing a less informative prior 
distribution would be possible, but D∗ may then be even less 
useful because of high estimation uncertainty.32 However, if 
the data used as input to the clustering includes multiple highly 
perfused tissue regions where D∗ can be estimated with higher 
certainty, D∗ could potentially have an incremental value.

The clustering with GMM’s gave cluster characteris-
tics, including mean vectors, very similar to those with 
GHMRFM’s, which indicates that a sufficient amount of in-
formation for clustering is contained in the IVIM parameter 
data. The difference between clustering based on GMM and 
GHMRFM was mainly a more distinct clustering into one or 
the other cluster, as would be expected due to the inclusion 
of information from neighboring voxels, especially in fairly 
homogeneous regions. Given the limited additional benefit in 
using GHMRFM, GMM appears preferable, especially based 
on computational cost since fitting a GHMRFM is associated 
with a computational time that is orders of magnitude longer 

F I G U R E  3  Distributions of IVIM 
parameter estimates on linear scale (top 
row) and log scale (bottom row) shown 
as histograms. The GMM fit based on 
log‐transformed data is superimposed on 
the histograms in black. The Gaussian 
distributions corresponding to the individual 
classes are shown in green and red 
(corresponds to class 1 and 2 in Table 2, 
respectively). The parameter data originate 
from all tumors in this study

T A B L E  2  Cluster characteristics for the different clustering approaches

Without D∗ With D∗

GMM GHMRFM GMM GHMRFM

Class label l 1 2 1 2 1 2 1 2

P(l) (%) 65 35 65 35 58 42 60 40

D (μm
2/ms) 0.65 0.73 0.62 0.78 0.65 0.72 0.61 0.80

�
l

f (%) 8.8 1.0 9.2 1.0 9.0 1.4 9.5 1.3

D∗ (μm
2/ms) — — — — 10.9 4.6 11.7 4.1

Note: P(l) is the prior class probability, i.e. the size of class l, and �
l
 is the mean vector of class l contain values of D, f and D∗. 
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F I G U R E  4  IVIM maps in color superimposed on the b = 1.4 s/mm
2 image (top) and cluster maps based on all clustering approaches (bottom) 

for an example tumor (same as in Figure 2). The cluster with high perfusion and low diffusion is shown in green in the cluster maps, while the 
cluster with low perfusion and somewhat higher diffusion is shown in red

F I G U R E  5  Scatter plots showing area of cluster with high perfusion and low diffusion identified by IVIM parameter clustering versus 
proliferating area derived from histological analysis. Lin’s concordance correlation coefficient (r

c
), based on all data points, and when excluding the 

largest and smallest data point (filled circles), are shown in each plot along with the line of equality
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than when fitting a GMM. For the data set used in this study, 
the computational time was on the order of seconds for GMM 
and minutes to hours for the GHMRFM on a modern laptop, 
with different computational time depending on the number 
of clusters. The difference between GMM’s and GHMRFM’s 
could potentially have been larger if no spatial filtering would 
have been applied prior to the model fit. However, the reason 
for filtering was not to obtain smoother parameter maps, but 
rather to get IVIM parameters of higher quality to enhance 
the subsequent clustering.

Previous studies have validated the clustering results by 
comparing the obtained tumor subregions with histological 
data16,19,20 or by relating them to treatment response.21-23 In 
the present study, the clustering results were compared with 
data from histological sections stained with a Ki‐67 anti-
body, which binds to actively proliferating cells. Proliferating 
tumor regions were identified as areas with a high proportion 
of Ki‐67 positive pixels, which was assumed to be equivalent 

to a high proportion of Ki‐67 positive cells. This histological 
validation method was chosen since it is related to a tissue 
property that is of interest for tumor tissue characterization, 
but is not directly related to any of the individual IVIM pa-
rameters. Studying the direct relationship between a single 
MR derived parameter and a histological counterpart e.g. D 
and cell density for hematoxylin and eosin staining,38 or f and 
microvessel density for CD‐31 staining39 has been done pre-
viously and was outside the scope of this study.

This study is associated with some limitations. The num-
ber of tumors is relatively small and only a single tumor model 
was studied. Still, the results clearly encourage future stud-
ies on the usefulness of IVIM in other tumor types, but fu-
ture work should also address repeatability, by repeated MR 
measurements, and reproducibility, by scanning of additional 
subjects or animals, to assess the robustness of the clustering 
results. Also, the histological analysis was limited to a sin-
gle staining. However, since the two identified classes were 

F I G U R E  6  Cluster maps based on the GHMRFM without D∗ (approach with highest Lin’s concordance correlation coefficient (r
c
)) and 

thresholded histology‐derived proliferation maps shown side‐by‐side for all tumors in this study. In the cluster maps, green indicates probability 
belonging to the cluster with high perfusion and low diffusion. In the thresholded proliferation maps, green pixels are above the threshold and are 
thereby considered to be proliferating. The tumors plotted as filled circles in Figure 5 are marked by an asterisk (*)
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accurately described by differences in proliferative activity, 
use of additional stainings would mostly show correlations 
between stainings. In future studies, depending on the studied 
tumors it may be beneficial to include other types of stainings 
to enable assessment, e.g. the degree of hypoxia or necrosis in 
the tissue for a more thorough characterization of the obtained 
tumor subregions. Furthermore, no direct co‐registration be-
tween MR and histology was made. The spatial agreement 
between proliferating areas derived from histological analy-
sis and cluster regions from MRI was therefore only qualita-
tively assessed in combination with a quantitative comparison 
of subregion areas. It is also unclear whether the differences 
in tumor size between MR images and Ki‐67 images can be 
compensated for by a simple scaling, as is assumed in the nor-
malization used in this study. However, direct co‐registration 
between MR images and histological tumor sections remains 
difficult due to MR image distortions and tissue deforma-
tions during the histological preparation process, especially 
in homogeneous tumors where landmarks within the tumor 
are missing. Finally, the manual delineation of tumors in the 
image with highest b‐value may have biased the analysis to-
ward excluding tumor tissue with high diffusion. However, 
this approach was chosen due to the limited contrast between 
tumor and surrounding tissue in images with a low b‐value. 
Alternatively, it would have been possible to, for example, use 
a co‐registered T2 weighted reference image for delineation.40

5 |  CONCLUSIONS

The results of this study show that IVIM parameter maps 
can be used to identify tumor subregions using a data‐driven 
framework based on Gaussian mixture models. In the studied 
tumor model, the obtained subregions showed agreement with 
proliferative activity as derived from histological analysis.
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FIGURE S1 Goodness of fit (GOF) and second derivative of 
GOF plotted versus the number of clusters k for all clustering 
approaches
FIGURE S2 Joint distributions of IVIM parameters before 
and after log transformation
FIGURES S3‐S15 IVIM parameter maps and cluster maps as 
seen in Figure 4 for all tumors except the one seen in Figure 4
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or GMM with/without D∗
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